4 research outputs found

    A natural user interface architecture using gestures to facilitate the detection of fundamental movement skills

    Get PDF
    Fundamental movement skills (FMSs) are considered to be one of the essential phases of motor skill development. The proper development of FMSs allows children to participate in more advanced forms of movements and sports. To be able to perform an FMS correctly, children need to learn the right way of performing it. By making use of technology, a system can be developed that can help facilitate the learning of FMSs. The objective of the research was to propose an effective natural user interface (NUI) architecture for detecting FMSs using the Kinect. In order to achieve the stated objective, an investigation into FMSs and the challenges faced when teaching them was presented. An investigation into NUIs was also presented including the merits of the Kinect as the most appropriate device to be used to facilitate the detection of an FMS. An NUI architecture was proposed that uses the Kinect to facilitate the detection of an FMS. A framework was implemented from the design of the architecture. The successful implementation of the framework provides evidence that the design of the proposed architecture is feasible. An instance of the framework incorporating the jump FMS was used as a case study in the development of a prototype that detects the correct and incorrect performance of a jump. The evaluation of the prototype proved the following: - The developed prototype was effective in detecting the correct and incorrect performance of the jump FMS; and - The implemented framework was robust for the incorporation of an FMS. The successful implementation of the prototype shows that an effective NUI architecture using the Kinect can be used to facilitate the detection of FMSs. The proposed architecture provides a structured way of developing a system using the Kinect to facilitate the detection of FMSs. This allows developers to add future FMSs to the system. This dissertation therefore makes the following contributions: - An experimental design to evaluate the effectiveness of a prototype that detects FMSs - A robust framework that incorporates FMSs; and - An effective NUI architecture to facilitate the detection of fundamental movement skills using the Kinect

    BIOMETRIC TECHNOLOGIES FOR AMBIENT INTELLIGENCE

    Get PDF
    Il termine Ambient Intelligence (AmI) si riferisce a un ambiente in grado di riconoscere e rispondere alla presenza di diversi individui in modo trasparente, non intrusivo e spesso invisibile. In questo tipo di ambiente, le persone sono circondate da interfacce uomo macchina intuitive e integrate in oggetti di ogni tipo. Gli scopi dell\u2019AmI sono quelli di fornire un supporto ai servizi efficiente e di facile utilizzo per accrescere le potenzialit\ue0 degli individui e migliorare l\u2019interazioni uomo-macchina. Le tecnologie di AmI possono essere impiegate in contesti come uffici (smart offices), case (smart homes), ospedali (smart hospitals) e citt\ue0 (smart cities). Negli scenari di AmI, i sistemi biometrici rappresentano tecnologie abilitanti al fine di progettare servizi personalizzati per individui e gruppi di persone. La biometria \ue8 la scienza che si occupa di stabilire l\u2019identit\ue0 di una persona o di una classe di persone in base agli attributi fisici o comportamentali dell\u2019individuo. Le applicazioni tipiche dei sistemi biometrici includono: controlli di sicurezza, controllo delle frontiere, controllo fisico dell\u2019accesso e autenticazione per dispositivi elettronici. Negli scenari basati su AmI, le tecnologie biometriche devono funzionare in condizioni non controllate e meno vincolate rispetto ai sistemi biometrici comunemente impiegati. Inoltre, in numerosi scenari applicativi, potrebbe essere necessario utilizzare tecniche in grado di funzionare in modo nascosto e non cooperativo. In questo tipo di applicazioni, i campioni biometrici spesso presentano una bassa qualit\ue0 e i metodi di riconoscimento biometrici allo stato dell\u2019arte potrebbero ottenere prestazioni non soddisfacenti. \uc8 possibile distinguere due modi per migliorare l\u2019applicabilit\ue0 e la diffusione delle tecnologie biometriche negli scenari basati su AmI. Il primo modo consiste nel progettare tecnologie biometriche innovative che siano in grado di funzionare in modo robusto con campioni acquisiti in condizioni non ideali e in presenza di rumore. Il secondo modo consiste nel progettare approcci biometrici multimodali innovativi, in grado di sfruttare a proprio vantaggi tutti i sensori posizionati in un ambiente generico, al fine di ottenere un\u2019elevata accuratezza del riconoscimento ed effettuare autenticazioni continue o periodiche in modo non intrusivo. Il primo obiettivo di questa tesi \ue8 la progettazione di sistemi biometrici innovativi e scarsamente vincolati in grado di migliorare, rispetto allo stato dell\u2019arte attuale, la qualit\ue0 delle tecniche di interazione uomo-macchine in diversi scenari applicativi basati su AmI. Il secondo obiettivo riguarda la progettazione di approcci innovativi per migliorare l\u2019applicabilit\ue0 e l\u2019integrazione di tecnologie biometriche eterogenee negli scenari che utilizzano AmI. In particolare, questa tesi considera le tecnologie biometriche basate su impronte digitali, volto, voce e sistemi multimodali. Questa tesi presenta le seguenti ricerche innovative: \u2022 un metodo per il riconoscimento del parlatore tramite la voce in applicazioni che usano AmI; \u2022 un metodo per la stima dell\u2019et\ue0 dell\u2019individuo da campioni acquisiti in condizioni non-ideali nell\u2019ambito di scenari basati su AmI; \u2022 un metodo per accrescere l\u2019accuratezza del riconoscimento biometrico in modo protettivo della privacy e basato sulla normalizzazione degli score biometrici tramite l\u2019analisi di gruppi di campioni simili tra loro; \u2022 un approccio per la fusione biometrica multimodale indipendente dalla tecnologia utilizzata, in grado di combinare tratti biometrici eterogenei in scenari basati su AmI; \u2022 un approccio per l\u2019autenticazione continua multimodale in applicazioni che usano AmI. Le tecnologie biometriche innovative progettate e descritte in questa tesi sono state validate utilizzando diversi dataset biometrici (sia pubblici che acquisiti in laboratorio), i quali simulano le condizioni che si possono verificare in applicazioni di AmI. I risultati ottenuti hanno dimostrato la realizzabilit\ue0 degli approcci studiati e hanno mostrato che i metodi progettati aumentano l\u2019accuratezza, l\u2019applicabilit\ue0 e l\u2019usabilit\ue0 delle tecnologie biometriche rispetto allo stato dell\u2019arte negli scenari basati su AmI.Ambient Intelligence (AmI) refers to an environment capable of recognizing and responding to the presence of different individuals in a seamless, unobtrusive and often invisible way. In this environment, people are surrounded by intelligent intuitive interfaces that are embedded in all kinds of objects. The goals of AmI are to provide greater user-friendliness, more efficient services support, user-empowerment, and support for human interactions. Examples of AmI scenarios are smart cities, smart homes, smart offices, and smart hospitals. In AmI, biometric technologies represent enabling technologies to design personalized services for individuals or groups of people. Biometrics is the science of establishing the identity of an individual or a class of people based on the physical, or behavioral attributes of the person. Common applications include: security checks, border controls, access control to physical places, and authentication to electronic devices. In AmI, biometric technologies should work in uncontrolled and less-constrained conditions with respect to traditional biometric technologies. Furthermore, in many application scenarios, it could be required to adopt covert and non-cooperative technologies. In these non-ideal conditions, the biometric samples frequently present poor quality, and state-of-the-art biometric technologies can obtain unsatisfactory performance. There are two possible ways to improve the applicability and diffusion of biometric technologies in AmI. The first one consists in designing novel biometric technologies robust to samples acquire in noisy and non-ideal conditions. The second one consists in designing novel multimodal biometric approaches that are able to take advantage from all the sensors placed in a generic environment in order to achieve high recognition accuracy and to permit to perform continuous or periodic authentications in an unobtrusive manner. The first goal of this thesis is to design innovative less-constrained biometric systems, which are able to improve the quality of the human-machine interaction in different AmI environments with respect to the state-of-the-art technologies. The second goal is to design novel approaches to improve the applicability and integration of heterogeneous biometric systems in AmI. In particular, the thesis considers technologies based on fingerprint, face, voice, and multimodal biometrics. This thesis presents the following innovative research studies: \u2022 a method for text-independent speaker identification in AmI applications; \u2022 a method for age estimation from non-ideal samples acquired in AmI scenarios; \u2022 a privacy-compliant cohort normalization technique to increase the accuracy of already deployed biometric systems; \u2022 a technology-independent multimodal fusion approach to combine heterogeneous traits in AmI scenarios; \u2022 a multimodal continuous authentication approach for AmI applications. The designed novel biometric technologies have been tested on different biometric datasets (both public and collected in our laboratory) simulating the acquisitions performed in AmI applications. Results proved the feasibility of the studied approaches and shown that the studied methods effectively increased the accuracy, applicability, and usability of biometric technologies in AmI with respect to the state-of-the-art

    The Application of the Human-Biometric Sensor Interaction Method to Automated Border Control Systems

    Get PDF
    Biometrics components are used in many different systems and technologies to verify that the user is whom they say they are. In Automated Border Control systems, biometrics components used in conjunction with a traveller's documents to make sure the user is whom they say they are so that they can cross into a countries borders. The systems are expected to verify the identity with a higher degree than officers who manually check travellers. Each year the number of travellers crossing through a country borders increases and so systems are expected to handle bigger demands; through improving the user experience to ensuring accuracy and performance standards increase. While the system does bring its benefits through increased speed and higher security, there are drawbacks. One of the main issues with the systems is a lack of standardisation across implementations. Passing through an automated process at Heathrow may be different to Hong Kong. The infrastructure, information, environment and guidance given during the transaction will all greatly differ for the user. Furthermore, the individual components and subsequent processing will be evaluated using a different methodology too. This thesis reports on the contrasts between implementations, looking at solutions which utilise different biometric modalities and travel documents. Several models are devised to establish a process map which can be applied to all systems. Investigating further, a framework is described for a novel assessment method to evaluate the performance of a system. An RGB-D sensor is implemented, to track and locate the user within an interactive environment. By doing so, the user's interaction is assessed in real-time. Studies then report on the effectiveness of the solution within a replicated border control scenario. Several relationships are studied to improve the technologies used within the scenario. Successful implementation of the automated assessment method may improve the user's experience with systems, improving information and guidance, increasing the likelihood of successful interaction while maintaining a high level of security and quicker processing times

    Direct and Indirect Human Computer Interaction Based Biometrics

    No full text
    Abstract—In this paper we survey the state of the art in direct and indirect human computer interaction based biometrics. Direct HCI biometrics are based on abilities, style, preference, knowledge, or strategy used by people while working with a computer. The indirect HCI-based biometrics are events that can be obtained by monitoring users ’ HCI behavior indirectly via observable low-level actions of computer software. We examine current research and analyze the types of features used to describe HCI behavior. After comparing accuracy rates for verification of users using different HCI-based biometric approaches we address privacy issues which arise with the use of HCI dependant biometrics. Finally, we present results of our experiments with direct and indirect HCI-based behavioral biometrics employed as a part of an intrusion detection system. Index Terms—behavioral biometrics, human computer interaction, intrusion detection
    corecore