16,346 research outputs found

    A shape memory alloy adaptive tuned vibration absorber: design and implementation

    No full text
    In this paper a tuned vibration absorber (TVA) is realized using shape memory alloy (SMA) elements. The elastic modulus of SMA changes with temperature and this effect is exploited to develop a continuously tunable device.A TVA with beam elements is described, a simple two-degree-of-freedom model developed and the TVA characterized experimentally. The behaviour during continuous heating and cooling is examined and the TVA is seen to be continuously tunable. A change in the tuned frequency of 21.4% is observed between the cold, martensite, and hot, austenite, states. This corresponds to a change in the elastic modulus of about 47.5%, somewhat less than expected.The response time of the SMA TVA is long because of its thermal inertia. However, it is mechanically simple and has a reasonably good performance, despite the tuning parameters depending on the current in a strongly nonlinear way

    Experimental study of contact transition control incorporating joint acceleration feedback

    Get PDF
    Joint acceleration and velocity feedbacks are incorporated into a classical internal force control of a robot in contact with the environment. This is intended to achieve a robust contact transition and force tracking performance for varying unknown environments, without any need of adjusting the controller parameters, A unified control structure is proposed for free motion, contact transition, and constrained motion in view of the consumption of the initial kinetic energy generated by a nonzero impact velocity. The influence of the velocity and acceleration feedbacks, which are introduced especially for suppressing the transition oscillation, on the postcontact tracking performance is discussed. Extensive experiments are conducted on the third joint of a three-link direct-drive robot to verify the proposed scheme for environments of various stiffnesses, including elastic (sponge), less elastic (cardboard), and hard (steel plate) surfaces. Results are compared with those obtained by the transition control scheme without the acceleration feedback. The ability of the proposed control scheme in resisting the force disturbance during the postcontact period is also experimentally investigated

    Adaptive shared control system

    Get PDF

    Analysis And Design Optimization Of Multiphase Converter

    Get PDF
    Future microprocessors pose many challenges to the power conversion techniques. Multiphase synchronous buck converters have been widely used in high current low voltage microprocessor application. Design optimization needs to be carefully carried out with pushing the envelope specification and ever increasing concentration towards power saving features. In this work, attention has been focused on dynamic aspects of multiphase synchronous buck design. The power related issues and optimizations have been comprehensively investigated in this paper. In the first chapter, multiphase DC-DC conversion is presented with background application. Adaptive voltage positioning and various nonlinear control schemes are evaluated. Design optimization are presented to achieve best static efficiency over the entire load range. Power loss analysis from various operation modes and driver IC definition are studied thoroughly to better understand the loss terms and minimize the power loss. Load adaptive control is then proposed together with parametric optimization to achieve optimum efficiency figure. New nonlinear control schemes are proposed to improve the transient response, i.e. load engage and load release responses, of the multiphase VR in low frequency repetitive transient. Drop phase optimization and PWM transition from long tri-state phase are presented to improve the smoothness and robustness of the VR in mode transition. During high frequency repetitive transient, the control loop should be optimized and nonlinear loop should be turned off. Dynamic current sharing are thoroughly studied in chapter 4. The output impedance of the multiphase v synchronous buck are derived to assist the analysis. Beat frequency is studied and mitigated by proposing load frequency detection scheme by turning OFF the nonlinear loop and introducing current protection in the control loop. Dynamic voltage scaling (DVS) is now used in modern Multi-Core processor (MCP) and multiprocessor System-on-Chip (MPSoC) to reduce operational voltage under light load condition. With the aggressive motivation to boost dynamic power efficiency, the design specification of voltage transition (dv/dt) for the DVS is pushing the physical limitation of the multiphase converter design and the component stress as well. In this paper, the operation modes and modes transition during dynamic voltage transition are illustrated. Critical dead-times of driver IC design and system dynamics are first studied and then optimized. The excessive stress on the control MOSFET which increases the reliability concern is captured in boost mode operation. Feasible solutions are also proposed and verified by both simulation and experiment results. CdV/dt compensation for removing the AVP effect and novel nonlinear control scheme for smooth transition are proposed for dealing with fast voltage positioning. Optimum phase number control during dynamic voltage transition is also proposed and triggered by voltage identification (VID) delta to further reduce the dynamic loss. The proposed schemes are experimentally verified in a 200 W six phase synchronous buck converter. Finally, the work is concluded. The references are listed

    Human Activity Recognition and Control of Wearable Robots

    Get PDF
    abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega (AωA \omega) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the AωA \omega algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator (AωAOA\omega AO) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The AωA \omega algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The AωAOA\omega AO method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201

    Design of an Elastic Actuation System for a Gait-Assistive Active Orthosis for Incomplete Spinal Cord Injured Subjects

    Get PDF
    A spinal cord injury severely reduces the quality of life of affected people. Following the injury, limitations of the ability to move may occur due to the disruption of the motor and sensory functions of the nervous system depending on the severity of the lesion. An active stance-control knee-ankle-foot orthosis was developed and tested in earlier works to aid incomplete SCI subjects by increasing their mobility and independence. This thesis aims at the incorporation of elastic actuation into the active orthosis to utilise advantages of the compliant system regarding efficiency and human-robot interaction as well as the reproduction of the phyisological compliance of the human joints. Therefore, a model-based procedure is adapted to the design of an elastic actuation system for a gait-assisitve active orthosis. A determination of the optimal structure and parameters is undertaken via optimisation of models representing compliant actuators with increasing level of detail. The minimisation of the energy calculated from the positive amount of power or from the absolute power of the actuator generating one human-like gait cycle yields an optimal series stiffness, which is similar to the physiological stiffness of the human knee during the stance phase. Including efficiency factors for components, especially the consideration of the electric model of an electric motor yields additional information. A human-like gait cycle contains high torque and low velocities in the stance phase and lower torque combined with high velocities during the swing. Hence, the efficiency of an electric motor with a gear unit is only high in one of the phases. This yields a conceptual design of a series elastic actuator with locking of the actuator position during the stance phase. The locked position combined with the series compliance allows a reproduction of the characteristics of the human gait cycle during the stance phase. Unlocking the actuator position for the swing phase enables the selection of an optimal gear ratio to maximise the recuperable energy. To evaluate the developed concept, a laboratory specimen based on an electric motor, a harmonic drive gearbox, a torsional series spring and an electromagnetic brake is designed and appropriate components are selected. A control strategy, based on impedance control, is investigated and extended with a finite state machine to activate the locking mechanism. The control scheme and the laboratory specimen are implemented at a test bench, modelling the foot and shank as a pendulum articulated at the knee. An identification of parameters yields high and nonlinear friction as a problem of the system, which reduces the energy efficiency of the system and requires appropriate compensation. A comparison between direct and elastic actuation shows similar results for both systems at the test bench, showing that the increased complexity due to the second degree of freedom and the elastic behaviour of the actuator is treated properly. The final proof of concept requires the implementation at the active orthosis to emulate uncertainties and variations occurring during the human gait
    • …
    corecore