60 research outputs found

    Performance improvement of bearingless multi-sector PMSM with optimal robust position control

    Get PDF
    Bearingless machines are relatively new devices that consent to suspend and spin the rotor at the same time. They commonly rely on two independent sets of three-phase windings to achieve a decoupled torque and suspension force control. Instead, the winding structure of the proposed multi-sector permanent magnet (MSPM) bearingless machine permits to combine the force and torque generation in the same three-phase winding. In this paper the theoretical principles for the torque and suspension force generation are described and a reference current calculation strategy is provided. Then, a robust optimal position controller is synthesized. A Multiple Resonant Controller (MRC) is then integrated in the control scheme in order to suppress the position oscillations due to different periodic force disturbances and enhance the levitation performance. The Linear-Quadratic Regulator (LQR) combined with the Linear Matrix Inequalities (LMI) theory have been used to obtain the optimal controller gains that guarantee a good system robustness. Simulation and experimental results will be presented to validate the proposed position controller with a prototype bearingless MSPM machine

    A Bearingless Induction Motor Direct Torque Control and Suspension Force Control Based on Sliding Mode Variable Structure

    Get PDF
    Aiming at the problems of the large torque ripple and unstable suspension performance in traditional direct torque control (DTC) for a bearingless induction motor (BIM), a new method of DTC is proposed based on sliding mode variable structure (SMVS). The sliding mode switching surface of the torque and flux linkage controller are constructed by torque error and flux error, and the exponential reaching law is used to design the SMVS direct torque controller. On the basis of the radial suspension force mathematical model of the BIM, a radial suspension force closed-loop control method is proposed by utilizing the inverse system theory and SMVS. The simulation models of traditional DTC and the new DTC method based on SMVS of the BIM are set up in the MATLAB/Simulink toolbox. On this basis, the experiments are carried out. Simulation and experiment results showed that the stable suspension operation of the BIM can be achieved with small torque ripple and flux ripple. Besides, the dynamic response and suspension performance of the motor are improved by the proposed method

    Fourth International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Fourth International Symposium on Magnetic Suspension Technology was held at The Nagaragawa Convention Center in Gifu, Japan, on October 30 - November 1, 1997. The symposium included 13 sessions in which a total of 35 papers were presented. The technical sessions covered the areas of maglev, controls, high critical temperature (T(sub c)) superconductivity, bearings, magnetic suspension and balance systems (MSBS), levitation, modeling, and applications. A list of attendees is included in the document

    Magnetic Bearings

    Get PDF
    The term magnetic bearings refers to devices that provide stable suspension of a rotor. Because of the contact-less motion of the rotor, magnetic bearings offer many advantages for various applications. Commercial applications include compressors, centrifuges, high-speed turbines, energy-storage flywheels, high-precision machine tools, etc. Magnetic bearings are a typical mechatronic product. Thus, a great deal of knowledge is necessary for its design, construction and operation. This book is a collection of writings on magnetic bearings, presented in fragments and divided into six chapters. Hopefully, this book will provide not only an introduction but also a number of key aspects of magnetic bearings theory and applications. Last but not least, the presented content is free, which is of great importance, especially for young researcher and engineers in the field

    Critical Review of Flywheel Energy Storage System

    Get PDF
    This review presents a detailed summary of the latest technologies used in flywheel energy storage systems (FESS). This paper covers the types of technologies and systems employed within FESS, the range of materials used in the production of FESS, and the reasons for the use of these materials. Furthermore, this paper provides an overview of the types of uses of FESS, covering vehicles and the transport industry, grid leveling and power storage for domestic and industrial electricity providers, their use in motorsport, and applications for space, satellites, and spacecraft. Different types of machines for flywheel energy storage systems are also discussed. This serves to analyse which implementations reduce the cost of permanent magnet synchronous machines. As well as this, further investigations need to be carried out to determine the ideal temperature range of operation. Induction machines are currently stoutly designed with lower manufacturing cost, making them unsuitable for high-speed operations. Brushless direct current machines, the Homolar machines, and permanent magnet synchronous machines should also be considered for future research activities to improve their performance in a flywheel energy storage system. An active magnetic bearing can also be used alongside mechanical bearings to reduce the control systems’ complications, thereby making the entire system cost-effective

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Milestones, hotspots and trends in the development of electric machines

    Get PDF
    As one of the greatest inventions of human beings, the electric machine (EM) has realized the mutual conversion between electrical energy and mechanical energy, which has essentially led humanity into the age of electrification and greatly promoted the progress and development of human society. This paper will briefly review the development of EMs in the past two centuries, highlighting the historical milestones and investigating the driving force behind it. With the innovation of theory, the progress of materials and the breakthrough of computer science and power electronic devices, the mainstream EM types has been continuously changing since its appearance. This paper will not only summarize the basic operation principle and performance characteristics of traditional EMs, but also that of the emerging types of EMs. Meanwhile, control and drive system, as a non-negligible part of EM system, will be complementarily introduced. Finally, due to the background of global emission reduction, industrial intelligentization and transportation electrification, EM industry will usher again in a golden period of development. Accordingly, several foreseeable future developing trends will be analyzed and summarized

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    OBSERVER-BASED-CONTROLLER FOR INVERTED PENDULUM MODEL

    Get PDF
    This paper presents a state space control technique for inverted pendulum system. The system is a common classical control problem that has been widely used to test multiple control algorithms because of its nonlinear and unstable behavior. Full state feedback based on pole placement and optimal control is applied to the inverted pendulum system to achieve desired design specification which are 4 seconds settling time and 5% overshoot. The simulation and optimization of the full state feedback controller based on pole placement and optimal control techniques as well as the performance comparison between these techniques is described comprehensively. The comparison is made to choose the most suitable technique for the system that have the best trade-off between settling time and overshoot. Besides that, the observer design is analyzed to see the effect of pole location and noise present in the system

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique
    • …
    corecore