24 research outputs found

    Direct Construction of Recursive MDS Diffusion Layers using Shortened BCH Codes

    Get PDF
    MDS matrices allow to build optimal linear diffusion layers in block ciphers. However, MDS matrices cannot be sparse and usually have a large description, inducing costly software/hardware implementations. Recursive MDS matrices allow to solve this problem by focusing on MDS matrices that can be computed as a power of a simple companion matrix, thus having a compact description suitable even for constrained environ- ments. However, up to now, finding recursive MDS matrices required to perform an exhaustive search on families of companion matrices, thus limiting the size of MDS matrices one could look for. In this article we propose a new direct construction based on shortened BCH codes, al- lowing to efficiently construct such matrices for whatever parameters. Unfortunately, not all recursive MDS matrices can be obtained from BCH codes, and our algorithm is not always guaranteed to find the best matrices for a given set of parameters.Comment: Best paper award; Carlos Cid and Christian Rechberger. 21st International Workshop on Fast Software Encryption, FSE 2014, Mar 2014, London, United Kingdom. springe

    On the Direct Construction of MDS and Near-MDS Matrices

    Full text link
    The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. Consequently, various methods have been proposed for designing MDS matrices, including search and direct methods. While exhaustive search is suitable for small order MDS matrices, direct constructions are preferred for larger orders due to the vast search space involved. In the literature, there has been extensive research on the direct construction of MDS matrices using both recursive and nonrecursive methods. On the other hand, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer compared to MDS matrices. However, no direct construction method is available in the literature for constructing recursive NMDS matrices. This paper introduces some direct constructions of NMDS matrices in both nonrecursive and recursive settings. Additionally, it presents some direct constructions of nonrecursive MDS matrices from the generalized Vandermonde matrices. We propose a method for constructing involutory MDS and NMDS matrices using generalized Vandermonde matrices. Furthermore, we prove some folklore results that are used in the literature related to the NMDS code

    Direct construction of quasi-involutory recursive-like MDS matrices from 2-cyclic codes

    Get PDF
    A good linear diffusion layer is a prerequisite in the design of block ciphers. Usually it is obtained by combining matrices with optimal diffusion property over the Sbox alphabet. These matrices are constructed either directly using some algebraic properties or by enumerating a search space, testing the optimal diffusion property for every element. For implementation purposes, two types of structures are considered: Structures where all the rows derive from the first row and recursive structures built from powers of companion matrices. In this paper, we propose a direct construction for new recursive-like MDS matrices. We show they are quasi-involutory in the sense that the matrix-vector product with the matrix or with its inverse can be implemented by clocking a same LFSR-like architecture. As a direct construction, performances do not outperform the best constructions found with exhaustive search. However, as a new type of construction, it offers alternatives for MDS matrices design

    Systematization of a 256-bit lightweight block cipher Marvin

    Get PDF
    In a world heavily loaded by information, there is a great need for keeping specific information secure from adversaries. The rapid growth in the research field of lightweight cryptography can be seen from the list of the number of lightweight stream as well as block ciphers that has been proposed in the recent years. This paper focuses only on the subject of lightweight block ciphers. In this paper, we have proposed a new 256 bit lightweight block cipher named as Marvin, that belongs to the family of Extended LS designs.Comment: 12 pages,6 figure

    Lightweight Design Choices for LED-like Block Ciphers

    Get PDF
    Serial matrices are a preferred choice for building diffusion layers of lightweight block ciphers as one just needs to implement the last row of such a matrix. In this work we analyze a new class of serial matrices which are the lightest possible 4×44 \times 4 serial matrix that can be used to build diffusion layers. With this new matrix we show that block ciphers like LED can be implemented with a reduced area in hardware designs, though it has to be cycled for more iterations. Further, we suggest the usage of an alternative S-box to the standard S-box used in LED with similar cryptographic robustness, albeit having lesser area footprint. Finally, we combine these ideas in an end-end FPGA based prototype of LED. We show that with these optimizations, there is a reduction of 1616% in area footprint of one round implementation of LED

    Direct Construction of Lightweight Rotational-XOR MDS Diffusion Layers

    Get PDF
    As a core component of Substitution-Permutation Networks, diffusion layer is mainly introduced by matrices from maximum distance separable (MDS) codes. Surprisingly, up to now, most constructions of MDS matrices require to perform an equivalent or even exhaustive search. Especially, not many MDS proposals are known that obtain an excellent hardware efficiency and simultaneously guarantee a remarkable software implementation. In this paper, we study the cyclic structure of rotational-XOR diffusion layer, one of the commonly used linear layers over (F2b)n{(\mathbb{F}_{\rm{2}}^b)^n}, which consists of only rotation and XOR operations. First, we provide novel properties on this class of matrices, and prove the a lower bound on the number of rotations for n4n \ge 4 and show the tightness of the bound for n=4n=4. Next, by precisely characterizing the relation among sub-matrices for each possible form, we can eliminate all the other non-optimal cases. Finally, we present a direct construction of such MDS matrices, which allows to generate 4×44 \times 4 perfect instances for arbitrary b4b \ge 4. Every example contains the fewest possible rotations, so under this construction strategy, our proposal costs the minimum gate equivalents (resp. cyclic shift instructions) in the hardware (resp. software) implementation. To the best of our knowledge, it is the first time that rotational-XOR MDS diffusion layers have been constructed without any auxiliary search

    On the Construction of Near-MDS Matrices

    Full text link
    The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. However, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer, compared to MDS matrices. In this paper, we study NMDS matrices, exploring their construction in both recursive and nonrecursive settings. We provide several theoretical results and explore the hardware efficiency of the construction of NMDS matrices. Additionally, we make comparisons between the results of NMDS and MDS matrices whenever possible. For the recursive approach, we study the DLS matrices and provide some theoretical results on their use. Some of the results are used to restrict the search space of the DLS matrices. We also show that over a field of characteristic 2, any sparse matrix of order n4n\geq 4 with fixed XOR value of 1 cannot be an NMDS when raised to a power of knk\leq n. Following that, we use the generalized DLS (GDLS) matrices to provide some lightweight recursive NMDS matrices of several orders that perform better than the existing matrices in terms of hardware cost or the number of iterations. For the nonrecursive construction of NMDS matrices, we study various structures, such as circulant and left-circulant matrices, and their generalizations: Toeplitz and Hankel matrices. In addition, we prove that Toeplitz matrices of order n>4n>4 cannot be simultaneously NMDS and involutory over a field of characteristic 2. Finally, we use GDLS matrices to provide some lightweight NMDS matrices that can be computed in one clock cycle. The proposed nonrecursive NMDS matrices of orders 4, 5, 6, 7, and 8 can be implemented with 24, 50, 65, 96, and 108 XORs over F24\mathbb{F}_{2^4}, respectively

    Some methods for constructing mds-matrices over finite field

    Get PDF
    Предлагаются новые методы построения MDS-матриц с использованием возведения в степень сопровождающих матриц многочленов над конечным полем. Изучается ряд неприводимых многочленов степени t = 4 и 6, сопровождающая матрица которых при возведении в соответствующую степень t является MDS-матрицей. Представлен новый метод построения MDS-матриц, ориентированных на низкоресурсную программную и аппаратную реализации

    Construction and Filtration of Lightweight Formalized MDS Matrices

    Get PDF
    The 4x4 MDS matrix over F2 is widely used in the design of block cipher\u27s linear diffusion layers. However, considering the cost of a lightweight cipher\u27s implementation, the sum of XOR operations of a MDS matrix usually plays the role of measure. During the research on the construction of the lightweight 4x4 MDS matrices, this paper presents the concept of formalized MDS matrix: some of the entries that make up the matrix are known, and their positions are determined, and the criterions of the MDS matrix is satisfied. In this paper, using the period and minimal polynomial theory of entries over finite fields, a new construction method of formalized MDS matrices is proposed. A large number of MDS matrices can be obtained efficiently by this method, and their number distribution has significant structural features. However, the algebraic structure of the lightest MDS matrices is also obvious. This paper firstly investigates the construction of 4x4 lightweight MDS matrices, analyzes the distribution characteristics of the them, and the feasibility of the construction method. Then, for the lightest MDS matrices obtained from the method above, the algebraic relations in themselves and between each other are studied, and the important application of the alternating group A4 and it\u27s subgroup, the Klein four-group is found
    corecore