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Abstract. A good linear diffusion layer is a prerequisite in the design of block ciphers.
Usually it is obtained by combining matrices with optimal diffusion property over the
Sbox alphabet. These matrices are constructed either directly using some algebraic
properties or by enumerating a search space, testing the optimal diffusion property for
every element. For implementation purposes, two types of structures are considered:
Structures where all the rows derive from the first row and recursive structures built
from powers of companion matrices. In this paper, we propose a direct construction
for new recursive-like MDS matrices. We show they are quasi-involutory in the sense
that the matrix-vector product with the matrix or with its inverse can be implemented
by clocking a same LFSR-like architecture. As a direct construction, performances
do not outperform the best constructions found with exhaustive search. However, as
a new type of construction, it offers alternatives for MDS matrices design.
Keywords: diffusion layers · MDS matrices · involutions · cyclic codes

1 Introduction
The construction of good linear diffusion layers that can be efficiently implemented both
in hardware and in software is an important challenge in the design of block ciphers or
hash functions. Since the design of the AES MixColumn function, this issue has been
thoroughly considered. Namely, these matrices form the ground on which diffusion layers
are designed. MDS matrices ensure the maximal diffusion of symbols (usually bytes or
nibbles), giving thus a direct lower bound on the bit diffusion.

From coding theory MDS matrices have been known for decades as redundant part of
generator matrices of MDS codes under systematic form, [MS77, PH98]. However not all
of them can lead to efficient hardware or software implementation. To this end, two types
of matrix structure are usually investigated:

• Matrices such that every row is a permutation of the symbols of the first row.
The AES MixColum matrix is cyclic and hence is typically of this form, [DR02].
In software, the matrix-vector product can be tabulated efficiently. In hardware,
the structure of the matrices minimizes the number of symbol field multipliers to
implement. In [SKOP15], the authors presented a good survey of lightweight MDS
matrices with such properties.

†This work has been supported in part by ANR ARRAND 15-CE39-0002-01.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2016-09-01, Accepted: 2016-11-01, Published: 2017-02-03

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201763489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.13154/tosc.v2016.i2.80-98
mailto:victor.cauchois@m4x.org, Pierre.Loidreau@m4x.org
mailto:merkiche.nabil@gmail.com
http://creativecommons.org/licenses/by/4.0/


Victor Cauchois, Pierre Loidreau and Nabil Merkiche 81

• Serial or recursive matrices. They are powers of companion matrices of polynomials
over the symbol field. The matrix-vector products can be implemented with a Feistel
structure or by clocking an LFSR. This kind of matrices is well-suited for hardware
implementation. It is typically the structure chosen in the design of the PHOTON
family of hash functions or the LED block cipher, [GPP11, GPPR11].

There are mainly two methods to construct MDS matrices. The first one consists in
enumerating matrices in some search space and testing whether they are MDS or not.
It is in particular what was done for the AES MixColumn, PHOTON or LED matrices.
However, this method only works when the size of the searched matrices remains relatively
small since the procedure of testing whether a matrix is MDS requires to compute all the
minors of the matrix, which can quickly become computationally intractable.

The second method consists in a direct construction by using tools from coding theory.
It has been known since the 80’s that some types of matrices such as generalized Cauchy
matrices are MDS, [RL89]. Another example of direct construction of MDS matrices
consists in taking any subsquare matrix from a Hankel configuration, [RS85, Aid86]. In
this set of directly constructed MDS matrices, designers look for matrices with interesting
properties for implementation such as being cyclic or of Hadamard type. In [AF14], the
authors showed how to construct MDS recursive matrices by shortening an MDS BCH
code in an extension field of the symbol alphabet. Berger, in [Ber13], proposed a direct
construction of recursive Maximum Rank Distance (MRD1) matrices (which implies that
these matrices are also MDS) by proving that the redundancy matrix of some Gabidulin
codes is a power of the companion matrix of some polynomial.

Sometimes, designers may be interested in additional properties, especially to save
resources in hardware implementation. It is the case when the MDS matrix is involutory
since the matrix-vector product by the matrix or by its inverse can be implemented with the
same circuit. However, this latter requirement imposes a strong constraint on the matrices,
which in some cases do not even exist. For instance, Gupta et al showed that cyclic
involutory MDS matrices do not exist [GR14]. In [SKOP15], the authors proposed search
algorithms of lightweight involutory MDS matrices. More recently, Liu et al [LS16] relaxed
classical circulant matrices definitions to introduce cyclic matrices to prove the existence
of involutory cyclic MDS matrices. Li et al [LW16] relaxed classical MDS definition by
considering m×m non-singular matrices over F2 instead of field elements in F2m to show
the existence of matrices with the same symbol diffusion that are both involutory and
circulant.

Our Contributions
We propose a new direct construction of MDS matrices. These matrices are obtained
as skewed products of the companion matrix associated with a polynomial. The skewed
product is obtained by the use of the squaring function. Thanks to this skewed recursive
structure, our MDS matrices can be efficiently implemented with a skewed linear feedback
shift-register (SLFSR) where multiplications by symbols are skewed by squaring. This
mimics the approach in [AF14], showing that MDS cyclic codes lead to redundancy matrices
which can be recursively implemented as powers of companion matrices associated with
some polynomials. However, their approach is made more complex by the fact that BCH
MDS codes of even length do not exist in fields of characteristic 2.

By introducing the notion of 2-cyclicity which skews the notion of cyclicity, we do
not have this problem and our results are straightforward consequences of the theory of
Gabidulin codes [Gab85], further extended in [BGU07, CLU09, ?].

1An MRD code is also an optimal code for the rank metric used in network coding and in some
asymmetric code-based primitives
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Moreover, the MDS matrices that we obtain fulfill the additional quasi-involutory
condition: The inverse matrix is obtained by squaring the coefficients of the MDS matrix a
fixed number of times equal to the size of the matrix. From implementation considerations,
the squaring is an automorphism of the symbol field, this means that the inverse matrix-
vector product can be implemented by one additional bit permutation under proper
implementation settings.

Finally, as a direct construction, we do not aim at finding matrices that present better
performances than the best known matrices, found with exhaustive search. Still, it offers a
new way to construct MDS matrices that could benefit to situations when the complexity
of exhaustive search is prohibitive. We also show that the SLFSR structure can by itself
lead to MDS matrices comparable in terms of XOR count to the best known matrices
validating thus the interest of considering the SLFSR architecture to design MDS matrices.

Outline of the document
In a first part, we present interesting properties of cyclic codes. In characteristic 2, the
direct construction of MDS matrices from cyclic codes leads to a dead-end. In section 3, we
introduce the notion of 2-cyclicity and compare it with the classical definition of cyclicity,
a common tool of coding theory. We show that it is strongly related to a polynomial ring
called 2-polynomial ring where arithmetic operations can be efficiently performed. Similarly
to the cyclic case this leads to the design of matrices recursively constructed by skewing
the product of the companion matrices of the generating 2-polynomial. Additionally, we
prove that these matrices have some kind of quasi-involutory property. Section 4 deals
with 2-cyclic Gabidulin codes. These codes are the equivalent of BCH codes in the ring of
2-polynomials, giving thus a condition on their minimum distance. In well-chosen cases
they form a family of MDS 2-cyclic codes. Therefore, they provide us with recursively
constructed MDS matrices. In a final section, we show that the direct product with these
matrices can be efficiently implemented in hardware under the form of an LFSR skewed
by the squaring operator. This operator can be implemented with a bit permutation in a
proper basis (normal basis for instance, [Men93]). In this setting, the inverse product is
obtained by the same circuit simply by adding another bit permutation, therefore with
negligible additional complexity. We also compare the SLFSR implementation cost in
terms of XOR count and show that in the case of the field GF (24) it is competitive with
the best known matrices.

Notation and preliminaries
We denote by GF (22m) the finite field with 22m elements. In the following, the matrices
we will consider are m×m matrices whose coefficients lie in GF (22m).

Given an MDS-linear code C, the redundant part of a generator matrix of C under the
systematic form is an MDS matrix. In other words, if

C = 〈(R | I)〉

modulo any permutation of the code positions, then R is MDS.
Let g(X) ∈ GF (22m)[X] be a monic polynomial:

g(X) = Xm +
m−1∑
i=0

giX
i

The companion matrix associated with g is the m×m matrix we denote by Cg defined:
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Cg =


0 1 0 0 0
0 0 1 0 0
...

. . . . . . . . .
...

0 0 0 0 1
g0 g1 . . . . . . gm−1

 (1)

For an element x of GF (22m), we use the notation x[i] = x2i , meaning that x is
squared i times. We make an important use of the squaring of the coefficients of matrices.
Therefore, for any matrix A = (ak,l), we denote by A[i] =

(
a

[i]
k,l

)
the matrix obtained by

squaring i times all of its coefficients. This is different from the classical power of a matrix
A2i but has the following useful properties:

Proposition 1. Let A = (ak,l) and B = (bk,l) with compatible sizes. We have

•
(
A[i])[j] = A[i+j] for all integers i and j

• (AB)[i] = A[i]B[i] for all integers i

The proof is direct from the fact that the squaring is a field morphism in any field of
characteristic 2: For any elements x and y in GF (22m)

• (x+ y)[1] def= (x+ y)2 = x2 + y2 def= x[1] + y[1]

• (xy)[1] def= (xy)2 = x2y2 def= x[1]y[1]

Finally note that if x is an element of GF (22m), then x[2m] = x.

2 Cyclic codes and polynomial rings
Definition 1 (cyclic codes). Let C be a linear code of length 2m over GF (22m). Then C
is cyclic if for any vector x = (x0, . . . , x2m−1) ∈ C, the rotated vector:

(x ≫ 1) = (x2m−1, x0, . . . , x2m−2)

belongs to C.

Cyclic codes are a well-known long-time studied object in coding theory, [MS77, PH98].
In particular, there exists a generator matrix of C under the form:

G =


g0 · · · gm 0 0 · · · 0
0 g0 · · · gm 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 0 g0 · · · gm

 (2)

When it is monic, the polynomial g(X) = g0 +g1X+ · · ·+gmXm is called the generator
polynomial of the code C. This polynomial is a divisor of X2m−1 and there is a vector-space
isomorphism between codewords of C and polynomials of the form u(X)g(X) mod X2m − 1.
Any monic irreducible polynomial g dividing X2m − 1 uniquely defines its corresponding
cyclic code.

In [AF14] it is additionnally shown that if g is has degree m and generates a cyclic
code of length 2m, then a generator matrix under systematic form of the code is given by:



84 Direct construction of quasi-involutory, recursive-like MDS matrices


Xm mod g 1 0 · · · 0
Xm+1 mod g 0 1 · · · 0

...
...

. . . . . .
...

X2m−1 mod g 0 0 · · · 1


We denote by Mg the matrix defined by:

Mg =


Xm mod g
Xm+1 mod g

...
X2m−1 mod g

 (3)

Theorem 1. Let g be a polynomial of degree m. Then Mg is the mth power of the
companion matrix associated with g:

Mg = Cmg

If g is the generator polynomial of a [2m,m]-cyclic MDS code, then Mg is both MDS
and involutive.

M2
g = Im

Proof. We denote GF (22m)[X]/(g(X)) by Eg. Its canonical basis is {1, X, . . . ,Xm−1}.
The proof of the first part of the theorem is an imbrication of the two following facts:

• Mg is the matrix of the multiplication by Xm in Eg in its canonical basis.

• Cg is the matrix of the multiplication by X in Eg in its canonical basis.

Let now g be the generator polynomial of a [2m,m]-cyclic code. By construction, Mg

is then the redundancy matrix of a generator matrix under systematic form of an MDS
code. By definition, Mg is then MDS.

The proof of the involutivity of Mg is the imbrication of the two following facts:

• Mg is the matrix of multiplication by Xm in Eg in its canonical basis.

• The multiplication by Xm in Eg is an involution since g divides X2m − 1: For any
polynomial f(X) ∈ Eg, X2mf(X) mod g = f(X) mod g.

Remark 1.

1. As a consequence of the theorem, from a [2m,m]-cyclic codes we could derive an
involutive, recursive, MDS matrix. However, this reveals of little use since most
applications are made in characteristic 2. Known direct constructions of cyclic codes
are indeed BCH codes and, as was proved in [AF14], it is not possible to find MDS
BCH codes of length 2m and dimension m since it then needs the existence of a root
of even order.

2. Furthermore, for matrix sizes 2m = 2s, we know that there is no [2m,m] cyclic
MDS code in characteristic 2. Such a code would be generated by a polynomial that
divides X22s − 1. However, X22s − 1 factorizes in (X − 1)2s . The only polynomial
that generates a [2m,m] cyclic code is then X2s−1 − 1. This code cannot be MDS
since the redundancy matrix has zero coefficients in its first line. Thus there are no
cyclic [8, 4] or [16, 8] MDS code, implying that 4× 4 or 8× 8 MDS matrices of the
form (3) cannot be obtained from direct construction via cyclic codes.
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3. Augot and Finiasz method deals with this difficulty to derive from this property a
direct construction of MDS matrices of the form (3) by considering longer codes they
shorten. This method, however, does not preserve involutivity anymore.

4. The relation between Mg and Cg is of great interest for implementation since it can
be in hardware efficiently recursively implemented by clocking an LFSR m times.

A conclusion to the section is:

• MDS involutive recursive matrices of order 4 × 4, 8 × 8, 16 × 16, . . . do not exist
over fields of characteristic 2. Therefore there is no hope to obtain the direct and
inverse product of such a matrix by clocking the same LFSR.

• No direct construction of MDS recursive matrix is known.

In the following, we show that, by skewing slightly the multiplication, we can obtain
direct constructions of MDS involutive matrices of some recursive type.

3 2-cyclic codes and 2-polynomial rings
We extend cyclic codes-like properties by skewing the notion of cyclicity, preserving the
interest of the recursive structure and obtaining a direct construction for MDS matrices.
This skewing operation consists in authorizing the squaring operations on symbols in the
finite field GF (22m). This generalisation of the structure of cyclicity is called 2-cyclicity.

Definition 2 (2-cyclic codes, [Gab85]). Let C be a linear code of length n over GF (22m).
Then C is 2-cyclic if for any vector x = (x0, . . . , x2m−1) ∈ C, the rotated and squared
vector:

(x ≫ 1)[1] =
(
x

[1]
2m−1, x

[1]
0 , . . . , x

[1]
2m−2

)
belongs to C.

From [Gab85] there exists a generator matrix of C under the form:

G =


g0 · · · gm 0 0 · · · 0
0 g

[1]
0 · · · g

[1]
m 0 · · · 0

...
. . . . . . . . . . . . . . .

...
0 · · · 0 0 g

[m−1]
0 · · · g

[m−1]
m

 (4)

The matrix G is formed with rows such that the (i+ 1)th row is obtained by shifting
and squaring the ith row. Of course and contrarily to the classical case of cyclic codes
as seen in the previous section, the polynomial g(X) = g0 + g1X + · · ·+ gmX

m does not
divide X2m − 1 in the usual sense, but in a skewed sense.

This property is very much related to properties of one specific polynomial ring. This
polynomial ring can be found under several denominations and was originally introduced
by Ore [Ore33, Ore34] who did not give a particular denomination. In [Ber84], it is called
linearized polynomial ring since it comes with an evaluation map which makes the ring
isomorphic to the ring of linear mappings over finite fields. More generally, in the field of
symbolic computation, it is denoted by skew polynomial ring or Ore ring, [BP94]. What is
important to understand is that it has almost all the nice properties to perform efficient
arithmetic operations except the commutativity property.

Focusing on a ground field with characteristic 2, we call 2-polynomial ring and denote
by GF (22m)〈X〉 the ring defined as the set of polynomials

∑
i aiX

i together with the
following operations:
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• Addition : classical addition of polynomials.

• Multiplication by an element in GF (22m) : X ∗ a = a[1] ∗X.

Note that if we remove the [1] in the exponent, we get back to the classical polynomial
ring. To differentiate 2-polynomials from classical polynomials, we denote a 2-polynomial
A by A〈X〉 rather than A(X).

Here, the multiplication is skewed by the squaring. This could be a problem, but
it preserves very useful properties for finite field arithmetic. This ring is left and right
Euclidean:

Given A〈X〉 and B〈X〉 in GF (22m)〈X〉, there exists unique 2-polynomial pairs (q1, r1)
and (q2, r2) such that:

• A〈X〉 = B〈X〉 ∗ q1〈X〉+ r1〈X〉, where deg(r1) < deg(B)

• A〈X〉 = q2〈X〉 ∗B〈X〉+ r2〈X〉, where deg(r2) < deg(B)

Example 1. Here a small example to understand how to manipulate this ring. Consider
for instance P 〈X〉 = X + 1 and Q〈X〉 = X +α, where α lies in some field of characteristic
2. We have

• P 〈X〉 ∗Q〈X〉 = X2 + (α2 + 1)X + α

• Q〈X〉 ∗ P 〈X〉 = X2 + (α+ 1)X + α

Therefore P 〈X〉 ∗Q〈X〉 = Q〈X〉 ∗ P 〈X〉 if and only if α2 = α, that is α = 0 or α = 1.

Now we return to the similarities between the 2-cyclic codes and the cyclic codes.
If C is a 2-cyclic code, then it has a generator matrix under the form (4) where the
2-polynomial g〈X〉 = g0 + g1X + · · ·+ gmX

m, gm 6= 0 divides X2m − 1 on the right (i.e.
X2m − 1 = h〈X〉 ∗ g〈X〉).

As in the classical case, the codewords of C correspond to the coefficients of the
2-polynomials u〈X〉 ∗ g〈X〉, where u〈X〉 runs through all 2-polynomials of degree ≤ n−m.

We denote by mod∗g the operation of computing the remainder of the Euclidean
division on the right by g:

c〈X〉 mod∗g = r〈X〉 ⇔ c〈X〉 = b〈X〉 ∗ g〈X〉+ r〈X〉

According to this notation, a generator matrix under systematic form of C is:
Xm mod∗g 1 0 · · · 0
Xm+1 mod∗g 0 1 · · · 0

...
...

. . . . . .
...

Xn−1 mod∗g 0 0 · · · 1

 , (5)

We denote by Ng the matrix defined by:

Ng =


Xm mod∗g
Xm+1 mod∗g

...
X2m−1 mod∗g

 (6)

The following theorem proves in the 2-cyclic case, results similar to Theorem 1.
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Theorem 2. Let g be a 2-polynomial of degree m. Then Ng satisfies the quasi-recursive
property, i.e. is the product of the squared powers of companion matrices associated with g:

Ng = C [m−1]
g · · ·C [1]

g Cg = Cg[m−1] · · ·Cg[1]Cg,

where g[i]〈X〉 =
m−1∑
j=0

g
[i]
j X

j +Xm.

If g is the generator polynomial of a [2m,m] 2-cyclic MDS code, then Ng is MDS and
satisfies the quasi-involutory property:

N [m]
g Ng = Im

Proof. We denote GF (22m)〈X〉/(g〈X〉) by Fg. Here we consider the remainder of the
right division by g〈X〉. Its canonical basis is {1, X, . . . ,Xm−1}.

We will show by induction that for all integers i ≥ 1, the following property is satisfied:

Pi :

 Xi mod∗g
...

Xi+m−1 mod∗g

 = C [i−1]
g . . . Cg

The property P0 is satisfied. Namely, the matrix is the companion matrix associated
with g:  X1 mod∗g

...
Xm mod∗g

 =


0 1 0 0 0
0 0 1 0 0
...

. . . . . . . . .
...

0 0 0 0 1
g0 g1 . . . . . . gm−1


Suppose now that Pi is satisfied for some i ≥ 1. We have then:

Pi :

 Xi mod∗g
...

Xi+m−1 mod∗g

 = C [i−1]
g . . . Cg

Thus, computing C
[i]
g C

[i−1]
g . . . Cg, we first observe that the (m − 1) first lines are

respectively equal to Xi+1 mod∗g, . . . , Xi+m−1 mod∗g.
The last line satisfies:

m−1∑
j=0

g
[i]
j (Xi+j mod∗g) = (

m−1∑
j=0

g
[i]
j X

i+j) mod∗g =

Xi(
m−1∑
j=0

gjX
j)

 mod∗g

=
(
Xi ∗ (Xm + g(X))

)
mod∗g = Xi+m mod∗g

which concludes the proof by induction.
From that property, we obtain directly the first part of the theorem.
Let now g be the generator polynomial of a [2m,m] 2-cyclic code.
P2m may be written :

C [2m−1]
g . . . Cg =

 X2m mod∗g
...

X3m−1 mod∗g
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As C [2m−1]
g . . . Cg = C

[2m−1]
g . . . C

[m]
g C

[m−1]
g . . . Cg = (C [m−1]

g . . . Cg)[m](C [m−1]
g . . . Cg),

we have :

N [m]
g Ng =

 X2m mod∗g
...

X3m−1 mod∗g


Recall now that g divides on the right X2m − 1. Then, for any polynomial f(X) ∈ Fg,

f(X)X2m mod∗g = f(X) mod∗g. We obtain then:

N [m]
g Ng =

 X0 mod∗g
...

Xm−1 mod∗g

 = Im

Finally, Ng is by construction the redundancy matrix of a generator matrix under
systematic form of an MDS code. By definition, Ng is then MDS.

4 Direct construction
This section exploits the results of Theorem 2 to directly construct a new family of MDS
matrices which has the property to be quasi-involutory. In a first part, from Gabidulin’s
results, we show how to directly construct MDS matrices under the form (6), satisfying
the quasi-involutory property. Finally we propose an algorithmic procedure to generate
them, and show that the matrices generated with this procedure are all different.

4.1 2-cyclic Gabidulin codes
The 2-cyclic MDS Gabidulin codes are constructed as follows, [Gab85]: Consider the finite
field GF (22m) (typically in the following 2m = 8). Let α be a normal element of the field.
This means that B = {α, α[1], . . . , α[2m−1]} is a binary basis of GF (22m). Then the code
C having the following parity-check matrix is MRD and therefore MDS:

H =


α[0] α[1] · · · α[2m−1]

α[1] α[2] · · · α[0]

...
...

. . .
...

α[m−1] α[m] · · · α[m−2]

 (7)

Additionally, Gabidulin proved that the code C has a generator-matrix

G =


g0 · · · gm 0 0 · · · 0
0 g

[1]
0 · · · g

[1]
m 0 · · · 0

...
. . . . . . . . . . . . . . .

...
0 · · · 0 0 g

[m−1]
0 · · · g

[m−1]
m


where the elements gi ∈ GF (22m) satisfy the following linear system:

m∑
i=0

giα
[i+j] = 0, ∀j = 0, . . . ,m− 1. (8)
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what implies that the 2-polynomial g〈X〉 =
m∑
i=0

giX
i, is a right divisor of X2m − 1.

Therefore the code C is 2-cyclic, MDS and generated by g. Therefore,

C = 〈G〉 = 〈(Ng | Im)〉,

And by using Theorem 2 we conclude that the matrix:

Ng =


Xm mod∗g
Xm+1 mod∗g

...
X2m−1 mod∗g

 (9)

is MDS, satisfying the quasi-involutory and quasi-recursive properties.

4.2 General construction
We now show how to construct such MDS matrices Ng from 2-cyclic MDS Gabidulin codes
by considering normal elements:

• Choose an element α ∈ GF (22m) and check if it is normal (different algorithms exist
to test the normality of an element). Since we usually consider m as a power of 2,
2m is also a power of two and this implies that there are exactly 22m−1 such normal
elements, which are exactly the elements of trace equal to 1, [MP13] corollary 5.2.9.
Therefore, half of the elements of the field are normal. If 2m is not a power of 2,
then the number of normal elements is known, [MP13] corollary 5.2.8.

• Generate the matrix H = (H1 | H2) such that:

H1 =


α[0] α[1] · · · α[m−1]

α[1] α[2] · · · α[m]

...
...

. . .
...

α[m−1] α[m] · · · α[2m−1]

 , H2 =


α[m] α[m+1] · · · α[2m−1]

α[m+1] α[m+2] · · · α[0]

...
...

. . .
...

α[2m−1] α[0] · · · α[m−2]

 .

• Set Ng = H2H
−1
1 .

To be done, it suffices to prove that the matrix H = (H1, | H2) is a parity-check matrix
of the code C generated by (H2H

−1
1 | Im). We have:

(H2H
−1
1 | Im)(H1 | H2)T = H2H

−1
1 HT

1 +HT
2 .

Now since H1 and H2 are symmetric, HT
1 = H1 and HT

2 = H2. Therefore, we have

H2H
−1
1 HT

1 +HT
2 = H2 +H2 = 0,

in characteristic 2.
Remark 2. Once such a matrix is constructed, any matrix of the form N

[i]
g is also quasi-

involutory. Another nice property relies on the fact that if C is a circulant non-singular
binary matrix then CM is an MDS matrix that satisfies (CM)[m]CM = C2, therefore the
product is not anymore involutive but its coefficients belong to the binary field.

The following theorem shows that all constructed matrices are different, if we depart
from different normal elements.

Theorem 3. Let α1 and α2 two distinct normal elements, then the matrices Ng obtained
by the previous construction are different.
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Proof. Let Cα1 and Cα2 , the codes with parity check matrices H = (H1 | H2) respectively
constructed from α1 and α2. The respective MDS matrices say Ng(α1) and Ng(α2) are
equal if and only if Cα1 = Cα2 , that is if and only if the generating polynomials gα1〈X〉
and gα2〈X〉 are equal. The reason is that a 2-cyclic code is uniquely defined by a monic
generating polynomial.

From a linear application point of view [Ber84], the root space of gα1 is 〈α1, . . . , α
[m−1]
1 〉

and the root space of gα2 is 〈α2 . . . , α
[m−1]
2 〉. Therefore, Ng(α1) = Ng(α2) implies

V = 〈α1, . . . , α
[m−1]
1 〉 = 〈α2, . . . , α

[m−1]
2 〉.

Suppose now that this equality is satisfied. Then α1 is a binary linear combination of
α2, . . . , α

[m−1]
2 :

α1 =
m−1∑
i=0

aiα
[i]
2 , ai ∈ GF (2).

Since the squaring operation is 2-linear in fields of characteristic 2, we obtain

α
[1]
1 =

m−1∑
i=0

aiα
[i+1]
2 =

m−1∑
i=1

ai−1α
[i]
2︸ ︷︷ ︸

∈V

+am−1α
[m]
2 .

Now since the first term ∈ V, it can be rewritten as a binary linear combination of
α1, . . . , α

[m−1]
1 . Considering the second term α

[m]
2 , it can be rewritten as (α[m−1]

2 )[1], where
α

[m−1]
2 =

∑m−1
i=0 biα

[i]
1 ∈ V. Therefore α

[m]
2 =

∑m−1
i=0 bi−1α

[i]
1 + bm−1α

[m]
1 . Now necessarily

bm−1 = 1. Namely, if bm−1 = 0, this would imply that α[m]
2 ∈ V, but since α2 is normal

by hypothesis, α[m]
2 cannot be a binary linear combination of other squared powers of α2.

Therefore, we have
α

[1]
1 = λ︸︷︷︸

∈V

+am−1α
[m]
1 .

The term λ is a binary linear combination of α1, . . . , α
[m−1]
1 . Since α1 is normal, then

α1, . . . , α
[m−1]
1 , . . . , α

[2m−1]
1 is a binary basis of GF (22m). Therefore, am−1 = 0. By

induction, we show that ai = 0 for i 6= 0. Therefore, if 〈α1, . . . , α
[m−1]
1 〉 = 〈α2, . . . , α

[m−1]
2 〉,

then necessarily α1 = α2.
Hence if α1 6= α2, then Ng(α1) 6= Ng(α2).

Remark 3. In the proof we omitted some arguments explaining why the root space uniquely
determines the polynomial. The point is that gα1 and gα2 have 2-degree m and annihilate
binary vector spaces of dimension m. Since they are monic, the theory of 2-polynomials
establishes the unicity, as in the classical case where, given m distinct points in some field,
there is a unique monic polyomial of degree m whose roots are the m distinct points.

We sum up here the routine to generate an MDS matrix according to our construction :

1. Choose a normal element α.

2. Compute H = (H1 | H2) with:

H1 =


α[0] α[1] · · · α[m−1]

α[1] α[2] · · · α[m]

...
...

. . .
...

α[m−1] α[m] · · · α[2m−1]

 , H2 =


α[m] α[m+1] · · · α[2m−1]

α[m+1] α[m+2] · · · α[0]

...
...

. . .
...

α[2m−1] α[0] · · · α[m−2]

 .
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3. Compute Ng = H2H
−1
1 . The inverse matrix is N−1

g = N
[m]
g .

4. Compute Cg from the first line of Ng.

Now we conclude the section with an example.

Example 2. Let m = 4. The finite field we consider is then GF (28). Let β be a generator
of the multiplication group GF (28) = {1, β, . . . , β254} where β is a root of the irreducible
polynomial x8 + x4 + x3 + x2 + 1 = 0x11c. Note that β is not a normal element.

1. We chose to consider the normal element β21.

2. The parity-check matrix under the form (7) is:
β21 β42 β84 β168 β81 β162 β69 β138

β42 β84 β168 β81 β162 β69 β138 β21

β84 β168 β81 β162 β69 β138 β21 β42

β168 β81 β162 β69 β138 β21 β42 β84


3. Hence the MDS matrix Ng is written:

Ng =


β199 β96 β52 β123

β190 β218 β231 β125

β194 β227 β224 β66

β76 β54 β217 β28

 =


0x0e 0xd9 0x14 0xc5
0xae 0x2b 0xf5 0x33
0x32 0x90 0x12 0x61
0x1e 0x50 0x9b 0x18


The second matrix being the expression of Ng in hexadecimal in the basis 0x11c

Its inverse matrix is:

N−1
g = N [4]

g =


β124 β6 β67 β183

β235 β173 β126 β215

β44 β62 β14 β36

β196 β99 β157 β193

 =


0x97 0x40 0xc2 0xc4
0xeb 0xf6 0x66 0xef
0xee 0xde 0x13 0x25
0xc8 0x96 0xd5 0x19


4. As we will see in Section 5, the matrix-vector product with Ng may be done by

implementing only the companion matrix associated with g, the unique monic 2-
polynomial of degree 4 satisying the linear equations, g〈X〉 = β199 +β96X+β52X2 +
β123X3 +X4 :

Cg =


0 1 0 0
0 0 1 0
0 0 0 1

β199 β96 β52 β123

 =


0x00 0x01 0x00 0x00
0x00 0x00 0x01 0x00
0x00 0x00 0x00 0x01
0x0e 0xd9 0x14 0xc5


5 Implementation
The goal of this section is to show that the direct product by a matrix Ng under the form (6)
can be implemented by clocking a skewed LFSR. Whenever the matrix is quasi-involutory
the inverse product is implemented by adding some routing.

First we present two simple algorithms computing the direct and inverse product of
a vector by a matrix Ng under the form (6). The core of the algorithms comes from the
decomposition presented in Theorem 2 and consists in iterating the same loop. A step in
the loop corresponds to some sort of product with a companion matrix of a polynomial.
In a second part we show that this product can be efficiently implemented by clocking
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a skewed LFSR. Then we present the results we obtained in hardware implementation.
In a final part we make some comparisons of our construction with some other existing
constructions by using the metric derived from the so-called XOR count. With our direct
constructions of MDS matrices from MDS Gabidulin codes, we did not find matrices that
have better XOR counts than best known constructions. It is not a surprise since direct
constructions are a lot more restrictive than exhaustive search. Our goal is more to give
an alternative to previous constructions of MDS matrices than to try to improve the best
results.

However to validate the interest of the architecture in itself, for small parameters we did
an exhaustive search on matrices constructed as product of powers of companion matrices
and computed the XOR count involved by clocking the register. With this method we
were able to show that this construction was competitive with the best constructions found
in the literature.

5.1 Algorithm
Algorithms 1 and 2 compute matrix-vector product respectively for a matrix Ng and its
inverse where the matrix Ng is of the form :

Ng = C [m−1]
g · · ·Cg

Algorithm 1 Matrix vector product
Require: x ∈ GF (22m)m an input vector and Cg
Ensure: y = Ngx the result of the matrix vector product

1: y← x[1] . Initialization
2: for i = 0 to m− 1 do
3: y← Cgy[−1] . Matrix-vector product with companion matrix
4: end for
5: y← y[m−1] . Final step
6: return y

The proof of correctness can be made by induction. We show that after the ith step of
the for loop, the following property is satisfied :

Pi : y[i] = C [i]
g · · ·Cgx

The property P0 is satisfied. Namely, we have y = Cgx.
Suppose now that Pi is satisfied for some i. After the (i + 1)th step, we have then,

thanks to the distributive property of the squaring operator :

y[i+1]
(i+1) =

(
Cgy[−1]

(i)

)[i+1]
= C [i+1]

g y[i]
(i) = C [i+1]

g C [i]
g · · ·Cgx

Therefore, Pi+1 is also satisfied.
By induction, we have then after m step :

Pm−1 : y[m−1] = C [m−1]
g · · ·Cgx

Therefore, at the end of the loop, we have to square the result m− 1 times to get the
wanted matrix-vector product, explaining thus the Final step.

The proof of correctness is almost the same since :

N−1
g x = N [m]

g x =
(
Ngx[−m]

)[m]
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Algorithm 2 Matrix-vector product for the inverse matrix
Require: x ∈ GF (22m)m an input vector and Cg
Ensure: y = N−1

g x the result of the matrix vector product
1: y← x[−m+1] . Initialization
2: for i = 0 to m− 1 do
3: y← Cgy[−1] . Matrix-vector product with companion matrix
4: end for
5: y← y[−1] . Final step
6: return y

Thus, computing the matrix-vector product and the matrix-vector product with the
inverse matrix can be factorized easily. Only initialization and final steps are different but
we now show that it can be done very efficiently in hardware.

5.2 Hardware Architecture
In the previous sections, we demonstrated how to directly construct MDS matrices with
quasi-involutory property. The direct and inverse product computation can be done by
clocking an SLFSR. In this section we show that this SLFSR architecture is interesting in
hardware implementations compared to the direct matrix-vector product when considering
growing size matrices.

The specific form of the matrix Ng can be computed using the architecture presented
in Fig. 1. This architecture is derived from LFSR architecture. It is composed of registers
(Xi), γ[−1] units, multipliers in Galois fields by constants (gi) and the sum in Galois fields
(xors).

Figure 1: Skewed LFSR Architecture.

The γ[−1] units compute the inverse square of Xi. Using an appropriate basis of Xi, a
normal basis, the Frobenius map can be evaluated easily using a fixed bit permutation.
Thus the γ[−1] computation has no cost in hardware resources.

In the design of a cryptographic scheme, a designer would naturally do all the computa-
tions in a normal basis which is much more adapted to the design of skewed-LFSRs rather
than polynomial bases and there would be no additional cost. As noticed in [CR15], the
choice of the basis has "no influence on the differential and linear properties of the cipher",
on the complexity of statistical attacks for Substitution-Permutation Networks. Any
supplementary cost concerning basis transformations is then implementation dependent
and cannot be evaluated a priori. However, if necessary, the transformation from and to a
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Table 1: P&R performances and comparisons
Design m Slices LUT FF Cycles

Unrolled 4 46 138 32 1
8 483 1657 128 1

SLFSR 4 55 129 46 4
8 318 826 156 8

normal basis, linear matrix with fixed coefficient in GF (2), can be done once before and
after the execution of the algorithm.

Suppose that y = (y0, . . . , ym−1) is the current state of this architecture, then the step
obtained by clocking one time the SLFSR is Cgy[−1]. This corresponds to one step of the
for loop in Algorithms 1 and 2. It implies that the product of matrix Ng by a vector can
be simply implemented by clocking m times a structure very close to an LFSR.
Remark 4. The cost of the computation of the matrix-vector product with Ng and with its
inverse are the same. However, to be able to compute both with such implementation, one
additional MUX is needed to decide which permutation of the input and which permutation
of the output are to be done.

5.3 Hardware Results
This section aims to present the validity of our concept. One future work could be to go
through exhaustive search to determine if new MDS matrices with lower costs than the
state-of-the-art may be found with these direct constructions. These research may reveal
costly.

Target technology The design was implemented on a Xilinx Kintex-7 FPGA using the
SAKURA evaluation board available. This board includes the device xc7k160t which is a
mid range FPGA on the 28nm process node.

Implementation We have validated our approach, using VHDL, by computing the matrix-
vector product, with coefficients in GF (22m) with m = 4 and m = 8, in 2 differents ways:

• unrolled matrix-vector product,

• SLFSR.

Table 1 shows P&R results of both designs. In the case where m = 4, one can see that
the unrolled product is smaller, in slices, than the SLFSR. This is not surprising because
of the relative cost of multiplexers, higher in smaller dimension with SLFSR design. But
considering higher dimension, we observe that this cost is compensated by the compact
form of the algorithm.

5.4 XOR count and comparisons with previous constructions
In this section, we do not consider matrices from our direct constructions anymore but we
present results found through exhaustive searches on all 3×3, 4×4 and 6×6 matrices over
GF (24) constructed as the product of square powers of companion matrices. For every
such matrix, we tested if it was MDS and if it was both MDS and quasi-involutory. We
computed the XOR count of the product of the elements of the register in all the different
23 = 8 normal bases. By considering that all computations outside the computation of
the matrix-vector product are made in a normal basis, we do not need to add an extra
cost corresponding to a basis input/output transformation. In our simulations, GF (24) is
generated by the polynomial x4 + x+ 1 = 0x13.



Victor Cauchois, Pierre Loidreau and Nabil Merkiche 95

3 × 3 matrices

We consider Ng = C
[2]
g C

[1]
g Cg matrices build from companion matrices :

Cg =

 0 1 0
0 0 1
g0 g1 g2


We obtained 2010 MDS matrices among which 6 are quasi-involutory. We checked

among the list of 1980 MDS matrices obtained by clocking 3 times an LFSR that none of
our matrices can be obtained in the classical way.

The companion matrix

Cg1 =

 0x0 0x1 0x0
0x0 0x0 0x1
0x6 0x6 0x1


generates an MDS quasi-involutory matrix Ng1 with XOR count 12 + 2 × 4 for the

register, when the chosen normal basis is generated by the element 0x9.
When the condition of quasi-involutory is relaxed, which means that we do not have to

compute the inverse matrix anymore, the companion matrix:

Cg2 =

 0x0 0x1 0x0
0x0 0x0 0x1
0x1 0x8 0x1


generates an MDS matrix Ng. The XOR count of the coefficients of the register are

3 + 2× 4, still in the normal basis generated by 0x9.

4 × 4 matrices

We consider Ng = C
[3]
g C

[2]
g C

[1]
g Cg matrices build from companion matrices :

Cg =


0 1 0 0
0 0 1 0
0 0 0 1
g0 g1 g2 g3


We obtained 3120 MDS matrices among which 240 are quasi-involutory. We checked

among the list of 3660 MDS matrices obtained by clocking 4 times an LFSR that none of
our matrices can be obtained in the classical way.

The companion matrix

Cg3 =


0x0 0x1 0x0 0x0
0x0 0x0 0x1 0x0
0x0 0x0 0x0 0x1
0xd 0x1 0xe 0xb


generates an MDS quasi-involutory matrix Ng2 with XOR count 13 + 3 × 4 for the

register, when the chosen normal basis is generated by the element 0x9.
When the condition of quasi-involutory is relaxed, the companion matrix:

Cg4 =


0x0 0x1 0x0 0x0
0x0 0x0 0x1 0x0
0x0 0x0 0x0 0x1
0xf 0x1 0x1 0x8


generates an MDS matrix Ng. The XOR count of the coefficients of the register are

6 + 3× 4 = 18, still in the normal basis generated by 0x9.
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6 × 6 matrices

We consider Ng = C
[5]
g C

[4]
g C

[3]
g C

[2]
g C

[1]
g Cg matrices build from companion matrices :

Cg =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
g0 g1 g2 g3 g4 g5


We obtained 60 MDS matrices. We noticed that all of them were quasi-involutory. We

checked among the list of 180 MDS matrices obtained by clocking 6 times an LFSR that
none of our matrices could be obtained in the classical way. Among them, the companion
matrix:

Cg6 =


0x0 0x1 0x0 0x0 0x0 0x0
0x0 0x0 0x1 0x0 0x0 0x0
0x0 0x0 0x0 0x1 0x0 0x0
0x0 0x0 0x0 0x0 0x1 0x0
0x0 0x0 0x0 0x0 0x0 0x1
0xa 0x5 0x1 0xa 0xb 0x1


generates an MDS quasi-involutory matrixNg1 with XOR count 17+5×4 for the register,

when the chosen normal basis is generated by the element 0x9. In [LS16], generalising
the notion of circulant matrices does not allow the authors to construct MDS involutive
matrices. We then see that an SLFSR construction may offer interesting alternatives for
certain sets of parameters where involutive MDS matrices are difficult to build.

As shown in Table 2, the obtained results are very similar to the best obtained in the
literature. Recall here that for Quasi-Involutory Skewed Recursive matrices, to allow both
computations of matrix-vector product with the matrix and with its inverse, the cost of a
MUX operator must be added to the XOR count given in this table, while in the case of
involutory matrices, the XOR count corresponds to the overall cost.

Table 2: Best known MDS matrices with F24 elements without counting the necessary cost
of a MUX for quasi-involutory matrices

matrix type Matrix Size Ground Field XOR Count Reference
Circulant 3× 3 GF (24) 1 + 2× 4 [LS16]

Skewed Recursive 3× 3 GF (24) 3 + 2× 4 this paper
Involutory Circulant 3× 3 GF (24) 12 + 2× 4 [LS16]

Quasi-Involutory Skewed Recursive 3× 3 GF (24) 12 + 2× 4 this paper
Circulant 4× 4 GL(4, GF (2)) 3 + 3× 4 [LW16]
Circulant 4× 4 GF (24) 3 + 3× 4 [LS16]

Skewed Recursive 4× 4 GF (24) 6 + 3× 4 this paper
Involutory Circulant 4× 4 GL(4, GF (2)) 5 + 3× 4 [LW16]
Involutory Hadamard 4× 4 GF (22m)/0x13 6 + 3× 4 [SKOP15]

Quasi-Involutory Skewed Recursive 4× 4 GF (24) 13 + 3× 4 this paper
Circulant 6× 6 GF (24) 12 + 5× 4 [LS16]

Quasi-Involutory Skewed Recursive 6× 6 GF (24) 17 + 5× 4 this paper

All these constructed matrices cannot be obtained by our direct construction, rather by
exhaustive search and testing. However, the obtained results are close to the best existing
constructions. This demonstrates the interest of constructing MDS matrices by clocking
an SLFSR.
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Moreover, our method ensures that even in situations were the exhaustive search is not
feasible we can construct matrices that are both MDS and quasi-involutory.

6 Conclusion and perspectives
In this paper, we give a new direct construction of MDS matrices that may be very
efficiently implemented by clocking a so-called SLFSR. This new method relies on non-
commutative polynomials where multiplication has been skewed by the squaring operator.
Our work may be seen as a generalization of cyclic codes and classical polynomials in the
sense that if we choose the identity automorphism to construct our polynomial ring, we
get back to the classical theory. As a direct construction, it opens the gate for building
big diffusion layers without the costs of exhaustive search. We presented here only the
most intuitive construction but we can do exactly the same with any automorphism of
the finite field and not only with the squaring operator. We can thus obtain more MDS
matrices that benefit from the same advantages concerning implementation.
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