6,339 research outputs found

    Direct Adaptive Control for Infinite-dimensional Symmetric Hyperbolic Systems

    Get PDF
    AbstractGiven a linear continuous-time infinite-dimensional plant on a Hilbert space and disturbances of known and unknown waveform, we show that there exists a stabilizing direct model reference adaptive control law with certain disturbance rejection and robustness properties. The closed loop system is shown to be exponentially convergent to a neighborhood with radius proportional to bounds on the size of the disturbance. The plant is described by a closed densely defined linear operator that generates a continuous semigroup of bounded operators on the Hilbert space of states.Symmetric Hyperbolic Systems of partial differential equations describe many physical phenomena such as wave behavior, electromagnetic fields, and quantum fields. To illustrate the utility of the adaptive control law, we apply the results to control of symmetric hyperbolic systems with coercive boundary conditions

    Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations

    Full text link
    The adjoint method, among other sensitivity analysis methods, can fail in chaotic dynamical systems. The result from these methods can be too large, often by orders of magnitude, when the result is the derivative of a long time averaged quantity. This failure is known to be caused by ill-conditioned initial value problems. This paper overcomes this failure by replacing the initial value problem with the well-conditioned "least squares shadowing (LSS) problem". The LSS problem is then linearized in our sensitivity analysis algorithm, which computes a derivative that converges to the derivative of the infinitely long time average. We demonstrate our algorithm in several dynamical systems exhibiting both periodic and chaotic oscillations.Comment: submitted to JCP in revised for

    Backstepping PDE Design: A Convex Optimization Approach

    Get PDF
    Abstract\u2014Backstepping design for boundary linear PDE is formulated as a convex optimization problem. Some classes of parabolic PDEs and a first-order hyperbolic PDE are studied, with particular attention to non-strict feedback structures. Based on the compactness of the Volterra and Fredholm-type operators involved, their Kernels are approximated via polynomial functions. The resulting Kernel-PDEs are optimized using Sumof- Squares (SOS) decomposition and solved via semidefinite programming, with sufficient precision to guarantee the stability of the system in the L2-norm. This formulation allows optimizing extra degrees of freedom where the Kernel-PDEs are included as constraints. Uniqueness and invertibility of the Fredholm-type transformation are proved for polynomial Kernels in the space of continuous functions. The effectiveness and limitations of the approach proposed are illustrated by numerical solutions of some Kernel-PDEs

    Cumulative reports and publications through December 31, 1990

    Get PDF
    This document contains a complete list of ICASE reports. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    Cumulative reports and publications through December 31, 1988

    Get PDF
    This document contains a complete list of ICASE Reports. Since ICASE Reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    An adaptive POD approximation method for the control of advection-diffusion equations

    Full text link
    We present an algorithm for the approximation of a finite horizon optimal control problem for advection-diffusion equations. The method is based on the coupling between an adaptive POD representation of the solution and a Dynamic Programming approximation scheme for the corresponding evolutive Hamilton-Jacobi equation. We discuss several features regarding the adaptivity of the method, the role of error estimate indicators to choose a time subdivision of the problem and the computation of the basis functions. Some test problems are presented to illustrate the method.Comment: 17 pages, 18 figure
    corecore