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Abstract

Given a linear continuous-time infinite-dimensional plant on a Hilbert space and disturbances of known and unknown waveform, 
we show that there exists a stabilizing direct model reference adaptive control law with certain disturbance rejection and 
robustness properties. The closed loop system is shown to be exponentially convergent to a neighborhood with radius 
proportional to bounds on the size of the disturbance. The plant is described by a closed densely defined linear operator that
generates a continuous semigroup of bounded operators on the Hilbert space of states.
Symmetric Hyperbolic Systems of partial differential equations describe many physical phenomena such as wave behavior, 
electromagnetic fields, and quantum fields. To illustrate the utility of the adaptive control law, we apply the results to control of 
symmetric hyperbolic systems with coercive boundary conditions.
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1. Introduction

Many control systems are inherently infinite dimensional when they are described by partial differential 
equations. Currently there is renewed interest in the control of these kinds of systems especially in flexible aerospace 
structures and the quantum control field1-2. It is especially of interest to control these systems adaptively via finite-
dimensional controllers. In our work3-6, we have accomplished direct model reference adaptive control and 
disturbance rejection with very low order adaptive gain laws for MIMO finite dimensional systems. When systems 
are subjected to an unknown internal delay, these systems are also infinite dimensional in nature. The adaptive 
control theory can be modified to handle this situation7. However, this approach does not handle the situation when 
partial differential equations describe the open loop system.

This paper considers the effect of infinite dimensionality on the adaptive control approach previously published4-

6. We will show that the adaptively controlled system is globally stable, but the adaptive error is no longer 
guaranteed to approach the origin. However, exponential convergence to a neighborhood can be achieved as a result 
of the control design. We will prove a robustness result for the adaptive control which extends the published results4.

Our focus will be on applying our results to Symmetric Hyperbolic Systems of partial differential equations. Such 
systems, originated by K.O. Friedrichs and P. D. Lax, describe many physical phenomena such as wave behavior, 
electromagnetic fields, and the theory of relativistic quantum fields15-18. To illustrate the utility of the adaptive 
control law, we apply the results to control of symmetric hyperbolic systems with coercive boundary conditions.

2. Robustness of the error system

We begin by considering the definition of Strict Dissipativity for infinite-dimensional systems and the general 
form of the “adaptive error system” to later prove stability. The main theorem of this section will be utilized in the 
following section to assess stability of the adaptive controller with disturbance rejection for linear diffusion systems.
Noting that there can be some ambiguity in the literature with the definition of strictly dissipative systems, we 
modify the suggestion of Wen8 for finite dimensional systems and expand it to include infinite dimensional systems.

Definition 1: The triple (Ac, B, C) is said to be Strictly Dissipative if cA is a densely defined ,closed operator on

XAD c )( a complex Hilbert space with inner product ),( yx and corresponding norm  ),( xxx and
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We say that ( , , )A B C is Almost Strictly Dissipative (ASD) when there exists a *
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Theorem 1: Consider the coupled system of differential equations
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Proof of Theorem 1: This has been proven by the authors21.

3. Robust adaptive regulation with disturbance rejection

In order to accomplish some degree of disturbance rejection in a MRAC system, we make use of a definition7:

Definition 2: A disturbance vector q
D Ru is said to be persistent if it satisfies disturbance generator equations:
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where F is a marginally stable matrix and )(tD is a vector of known functions forming a basis for all the possible 

disturbances. This is known as “disturbances with known waveforms but unknown amplitudes”.

Consider the Linear Infinite Dimensional Plant with Persistent Disturbances given by:
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where 0(0) ( )x x D A , )(ADx is the plant state, )(ADbi are actuator influence functions, 

)(ADci are sensor influence functions, , mu y are the control input and plant output m-vectors 

respectively, Du is a disturbance with known basis functions D . We assume the columns of  are linear 

combinations of the columns of B (denoted Span( ) Span(B)). The above system must have output regulation to a 
neighborhood:
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Since the plant is subjected to unknown bounded signals, we cannot expect better regulation than (6). The adaptive 
controller will have the form:
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Using Theorem 1, we have the following corollary about the corresponding direct adaptive control strategy:

Corollary 1: Assume the following:

i.) There exists a gain, *
eG such that the triple ),,( * CBCBGAA eC is SD, i.e. ASD,is),,( CBA

ii.) A is a densely defined ,closed operator on XAD )( and generates a 0C semigroup of bounded 

operators )(tU ,

iii.) Span( ) Span(B)

Then the output ( )y t exponentially approaches a neighborhood with radius proportional to the magnitude of the 

disturbance, , for sufficiently small and i . Furthermore, each adaptive gain matrix is bounded.

Proof: Proof is omitted due to space limitations.

Corollary 1 provides a control law that is robust with respect to persistent disturbances and unknown bounded 

disturbances, and, exponentially with rate ate , produces: ( ) vMB

4. Symmetric hyperbolic systems

The above robust adaptive controller is illustrated on an m input, m output Symmetric Hyperbolic Problem:
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with inner product ( , ) ( )Tv w v w dz and is a bounded open set with smooth boundary, and where 

1 2 3 :  linear; ( )m
m iB b b b b X b D A , 2

0(0) ( ) ( )Nx x D A X L , and 

:  linear; ( )m
iC X c D A . For this application we will assume the disturbances are step functions. Note 
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disturbances are often applicable. So we have 1D and 
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an Nx1 column vector of functions.Thus (8) is a symmetric Hyperbolic System of first order partial differential 
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1 2 3( ) 0.5 ...T T T T
Nh x x A x x A x x A x x A x and ( )n z is the outward normal vector on boundary 

of the domain N . Now use * *

D

e D D e D D D

u w

u G y G G y G G where 
T

Dy

which implies *[ ]

c

t e

A x

x Ax BG Cx Bw v which implies *
c eA A BG C . Since the boundary conditions 

are coercive, we use the Divergence Theorem to obtain

* *
0

1

* *
0 0

( ) 0

*
0

( , ) ( , ) ( , ) ( ) ( , ) ( , )

1 1
( ) ( , ) ( , ) ( ) ( , ) ( , )

2 2

( , ) ( , )

N
T

c e i e
i i

T
e e

Div h

e

x
A x x Ax x BG Cx x x A dz A x x BG Cx x

z

h dz A x x BG Cx x h n dz A x x BG Cx x

A x x BG Cx x

Assume i ib c or *B C and 0* *
e eG -g . Then we have 

2* *
0 0 0( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0* *

c e e eA x x A x x BG Cx x A x x - g Cx B x A x x - g Cx

which implies 
2

0Re ( , ) *
c e(A x,x) A x x - g Cx and *B C which is not quite strictly dissipative.

But we have the following result:

Theorem 2: cA is a normal operator with compact resolvent; hence it has discrete spectrum, in the sense that it 

consists only of isolated eigenvalues with finite multiplicity.

Proof: Proof is omitted due to space limitations.
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Consider that s uX E E where sE is the stable eigenspace and uE is the unstable eigenspace with 

corresponding projections ,s uP P . Assume that dim u uE N and uE E . This implies that ,s uP P are bounded 

self adjoint operators. Choose uPC ; this is possible when the unstable subspace is finite-dimensional.

Then we have the following result:

Theorem 3:

2

0Re( , ) sA x x P x for all ( )x D A implies that ( , , )A B C is almost strictly dissipative (ASD).

Proof: Proof is omitted due to space limitations.

Here is a simple first order symmetric hyperbolic system example to illustrate some of the above:  
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t z D

BA A
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where 0 is small. If we use *
* 0eG g where 

T

1 2x q q this implies that 

2 2 2 2 2 2

0 1 * 2 * 1 2

0

Re ( , ) min( , )*
c eA x,x A x x - g Cx q g q g q q x

Then *( , , )c eA A BG C B C is strictly dissipative with P I and we can apply Theo. 1 and Cor. 1.

5. Conclusions

In Theo. 1 we proved a robustness result for adaptive control under the hypothesis of almost strict dissipativity 
for infinite dimensional systems. This idea is an extension of the concept of m-accretivity for infinite dimensional 
systems9. In Cor 1, we showed that adaptive regulation to a neighborhood was possible with an adaptive controller 
modified with a leakage term. This controller could also mitigate persistent disturbances. The results in Theo. 1 can 
be easily extended to cause model tracking instead of regulation. Also we can relax the requirement that the 
disturbance enters through the same channels as the control. We applied these results to general symmetric 
hyperbolic systems using m actuators and m sensors and adaptive output feedback. We showed that under some 
limitations on operator spectrum that we can accomplish robust adaptive control. This allows the possibility of rather 
simple direct adaptive control which also mitigates persistent disturbances for a large class of applications in wave 
behavior, electromagnetic fields, and some quantum fields.
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