257 research outputs found

    Kinematic Performance Measures and Optimization of Parallel Kinematics Manipulators: A Brief Review

    Get PDF
    This chapter covers a number of kinematic performance indices that are instrumental in designing parallel kinematics manipulators. These indices can be used selectively based on manipulator requirements and functionality. This would provide the very practical tool for designers to approach their needs in a very comprehensive fashion. Nevertheless, most applications require a more composite set of requirements that makes optimizing performance more challenging. The later part of this chapter will discuss single-objective and multi-objectives optimization that could handle certain performance indices or a combination of them. A brief description of most common techniques in the literature will be provided

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Paralleelmehhanismide kinetostaatiliste jõudlusindeksite uuring ning võrdlus

    Get PDF
    Nii kaua, kui on kasutusel olnud robotid, on käinud teadusuuringud nende kasutamiseks ning töö optimeerimiseks meie igapäevases elus. Samal ajal, kui meie teadmised robotite teemal on suuresti arenenud, on kasvanud ka vastavate struktuuride keerukus. Seega on arendatud mitmeid meetodeid ja indekseid, aitamaks disaneritel ning inseneridel välja selgitada parimad seadmed vastavate ülesannete lahendamiseks. Lisaks on huvi paralleelmehhanismide suunas viimaste aastate jooksul märgatavalt kasvanud. Peamiseks põhjuseks on paljudes valdkondades märgatavalt parem sooritusvõime võrreldes seriaalmanipulaatoritega. Ometi pole arendatud veel ühtegi globaalset jõudlusindeksit, mis võimaldaks täpsuse perspektiivis paralleelmanipulaatorite omavahelise võrdluse. Käesoleva lõputöö fookuseks on kintestaatilise jõuldusindeksi arendustööst ülevaate pakkumine. Uuritav indeks peab robustselt suutma hinnata läbi vastava indeksi paralleelmanipulaatorite täpsust.For as long as we have used robots there has also been ongoing research to allow us to use and improve efficiency of automation in our daily lives. As our knowledge about robots has largely improved, so has the complexity of their structures. Thus, various methods and indices have been developed to help designers and engineers determine the best manipulator for a specific task. In addition, the interest towards parallel manipulators has seen growth in the last couple of years due to significantly better performance in various areas in comparison to serial mechanisms. However, no global performance index to evaluate accuracy and allow comparison in that perspective between parallel mechanisms has been developed. This thesis focuses on giving an overview on the developments towards finding a robust kinematic sensitivity index to measure accuracy performance of parallel manipulators

    Error Modeling and Design Optimization of Parallel Manipulators

    Get PDF

    A SERIAL-PARALLEL HYBRID ROBOT FOR MACHINING OF COMPLEX SURFACES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore