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SUMMARY 

 

Machining of complex surfaces (MOCS) is a global technological topic. Many 

products are designed with complex surfaces to enhance their appearances 

and/or functions. Although computer numerical control (CNC) systems, serial 

robots and parallel manipulators are competent in completing MOCS, CNC 

systems lack flexibility, while serial robots find it difficult to achieve high 

accuracy and parallel manipulators possess smaller workspace. In an attempt 

to overcome these problems, this study constructs a hybrid robot to combine 

the advantages of a serial robot and a parallel manipulator. The serial robot 

works as an approximate positioner and is locked during machining. The 

parallel manipulator is used for fine-tuning and completes the machining task. 

 

In order to improve the performance of the parallel manipulator, a method is 

proposed to optimize the dexterity, stiffness and space utilization of the 

parallel manipulator. Its workspace is analyzed using a geometrical method, 

which is capable of providing accurate boundary and volume for the 

manipulators with similar structures. Since most researchers ignore the 

deformation of the mobile platform, an algebraic expression is presented to 

obtain the stiffness matrix of the parallel manipulator considering the 

compliance of the mobile platform, the limbs and the actuators. This algebraic 

expression is convenient, fast and has comparable accuracy compared to a 

FEA method. To evaluate the stiffness property, a novel stiffness index is 

proposed to measure the resistance of a parallel manipulator to the 

deformation due to the applied external wrench. Compared with several other 



x 

 

indices, this index is able to relate the stiffness property to the direction of the 

applied wrench and avoid the interpretation difficulty of arithmetic operations 

between translations and orientations with different units. For the optimization 

of the space utilization, the variable volume of the manipulator due to its 

changing postures in movements is integrated into the index calculation, 

which has not been considered by other researchers. Comparing with the 

optimal solution obtained by other researchers, this study is able to obtain an 

optimal parallel manipulator with better dexterity, stiffness and space 

utilization. 

 

The registration of the hybrid robot is crucial whenever its interaction with 

objects is to be detected by a tracking system. However, there is no reported 

solution to address this issue for a hybrid robot. This study gives a first 

attempt to propose several different methods to solve this problem. With the 

evaluation of these methods, they are able to provide globally robust solutions. 

The proposed Degradation-Kronecker method is faster and the purely 

nonlinear method is more accurate. 

 

Finally, the accuracy of the hybrid robot is compared with a CNC machining 

center and a serial robot. The comparison shows that the accuracy of the 

hybrid robot is much better than the serial robot. Although the accuracy of the 

hybrid robot cannot reach the level of the CNC machining center, it should be 

noted that the hybrid robot is more flexible than a CNC system. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Overview 

Generally, machining of complex surfaces (MOCS) refers to the 

manufacturing of workpieces which have free-form surfaces. Complex 

surfaces are widely used in the design of modern products, such as the blades 

of a turbine, the structural frames of an aircraft, the elegant case of an 

electrical appliance and anatomical implants. The increasing complexity of 

free-form parts makes MOCS very common in modern manufacturing. 

Besides the field of manufacturing, the MOCS are also encountered in 

orthopaedic surgeries due to unique and complex shapes of human bones. 

 

To perform MOCS, computer numerical control (CNC) systems are widely 

used because of their high accuracy and ease of manipulation [1–2]. Although 

CNC systems have dominated this field, serial robots have also emerged for 

polishing free-form surfaces [3], drilling and riveting in aircraft components 

manufacturing [4–7] and surgical operations [8, 9]. Aircraft manufacturing 

seldom uses parallel manipulators for machining, while it has been reported 

that parallel manipulators are capable of 5-axis machining [10, 11] and can be 

applied in orthopaedic surgeries [12]. However, the CNC machine, serial robot 

and parallel manipulator suffer from their own limitations. Thus, it is 

necessary to make a comparison of this equipment, which will be presented in 

the following section. 
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1.2 Comparison of general methods for MOCS 

As stated above, CNC systems benefit from their high accuracy and relative 

ease of manipulation. Generally, their high accuracy is attributed to their 

precise movements and large rigid tables [13]. On the other hand, the large 

tables also make CNC systems inflexible. The CNC systems are much larger 

than workpieces in general. This disadvantage makes them difficult to be used 

in crowded workplaces, such as the aircraft assembly line and surgical 

operation theatre. Compared with CNC systems, serial robots possess higher 

flexibility. The serial robot can also produce a large work volume with high 

dexterity. However, low stiffness and error accumulation from its base to its 

end effector are the disadvantages of a serial robot. To achieve high accuracy, 

parts of high stiffness and high accuracy but low weight have to be used, 

which will increase the cost of serial robots. Both low applied force capacity 

and low payload-to-weight ratio limit the applications of serial robots. In 

comparison, parallel manipulators generally possess high rigidity, high 

payload-to-weight ratio and are capable of achieving high accuracy at lower 

cost. However, parallel manipulators suffer from smaller work volume and 

lower dexterity than serial robots. 

 

To overcome these existing issues in CNC systems, serial robots and parallel 

manipulators, one possible solution is to design specific systems for given 

tasks, such as an one-sided cell end effector described in [14] for the drilling 

operation in aircraft assembly. These specific systems increase the 

manufacturing cost and lack flexibility to satisfy the requirements of other 

tasks. Considering these problems, another method is to combine a parallel 
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manipulator and a serial robot to form a hybrid robot. In this method, the serial 

robot works as an approximate positioner and the parallel manipulator, which 

is attached to the serial robot, is used for fine-tuning to increase the accuracy. 

As a result, the hybrid robot is more flexible and has a lower cost than a CNC 

system. It also has higher accuracy than a serial robot and with a larger 

workspace than a parallel manipulator.  

 

It should be noted that the attachment of a parallel manipulator onto a serial 

robot increases the load of the serial robot, which might weaken the stiffness 

of the hybrid robot. To address this issue, an optimized approach is necessary 

to design a compact parallel manipulator. Additionally, it is common to 

overlook the original reference position of the workpiece before machining. 

For example, during fuselage assembly of an aircraft, the position of the 

fuselage should be obtained first with the aid of tracking systems [15–17]. In 

the case of a surgical operation aided with a robotic system, the positions of 

the robot and the patient should be coupled to allow the robot to register the 

target coordinates [18–22]. Therefore, before machining with the hybrid robot, 

it is crucial to know the coordinates of the workpiece and the hybrid robot, if 

the workpiece used in MOCS lacks its original reference positions. This thesis 

focuses on the optimization of the parallel manipulator, and the registration of 

the hybrid robot. 

 

1.3 Motivation of the study 

A hybrid robot can be a combination of several serial robots, a combination of 

several parallel manipulators, or a combination of serial robots and parallel 



4 

 

manipulators. Since this study aims to combine the advantages of a serial 

robot and a parallel manipulator, the hybrid robot in this study is a parallel 

manipulator connected as the end effector of a serial robot. 

 

1.3.1 Optimization of parallel manipulators 

As parallel manipulators have good performance in terms of accuracy, rigidity 

and load-weight ratio, they can be applied in precision machining, medical 

surgery, pick-and-place operations, and other fields [23]. The performance 

analysis of a parallel manipulator is complex, however, a good optimization 

design approach is able to bring significant improvements, and this has 

attracted much interest from the researchers [24–32]. Although the parallel 

manipulator possesses several advantages, its applications are limited by its 

small workspace. It is also difficult to have a large workspace with a miniature 

parallel manipulator. Most of the research focuses on the maximization of the 

workspace of a parallel manipulator and/or the optimization of its performance 

measures. There are few studies to minimize its dimension with respect to 

specific tasks. Although researchers [33] have addressed a similar issue in the 

optimization field, the performance measures have been neglected.  

 

1.3.2 Workspace analysis of parallel manipulators 

For the study of a parallel manipulator, it is common to compute and optimize 

the workspace volume or the workspace boundary of the manipulator. Since it 

is complicated to obtain the exact boundary of the workspace, many 

researchers conduct space discretization and then search for feasible points 

within a bounded space [24, 25, 27, 29, 32–34]. The discretization method 
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simplifies the determination of the workspace, but the computation time of this 

method becomes too long to achieve an accurate result. During an 

optimization procedure, it is necessary to run each iterative step in the 

searching process. As a result, the process is very time consuming. Besides the 

discretization method, a geometrical method can be used to analyze the 

trajectory of each limb of the manipulator in space and obtain their 

intersections to outline the workspace boundary. Although this method can 

reduce computation time significantly and is accurate, it lacks general 

applicability. For different parallel manipulators, the workspace has to be 

reanalyzed, and it is difficult to consider the various physical constraints in a 

particular geometrical analysis. 

 

1.3.3 Stiffness analysis of parallel manipulators 

Although parallel manipulators have good performance in terms of accuracy 

and rigidity, it is still necessary to consider the stiffness in the pre-design stage 

as it is dependent on the material property, the structural configuration and its 

dimension. Stiffness is related to the accuracy of a manipulator since it reflects 

the direct mapping between the externally applied wrench and the deformation 

of the manipulator. Stiffness analysis of parallel manipulators has attracted 

constant attention of researchers [35–42]. Although experimental methods are 

recommended to validate the mechanical design of a robotic system, it is still 

challenging to set up a precise experimental configuration to investigate the 

stiffness of a multi-body robot, such as a parallel manipulator. Finite element 

analysis (FEA) methods are alternatives to the experimental methods, however, 

the FEA methods are typically time-consuming [43]. Compared with the FEA 
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methods, design using algebraic methods can deduce the stiffness of a parallel 

manipulator using algebraic expressions. The reported algebraic methods have 

generally ignored the deformation of the mobile platform. In stiffness analysis, 

Cheng [36] found that the deformation of a parallel manipulator using FEA is 

larger than that obtained using an algebraic method, in which the actuator and 

the limb are assumed to be flexible. Based on this finding, Cheng mentioned 

that the difference might be caused by neglecting the deformation of the 

mobile platform and the passive joints. 

 

1.3.4 Registration of industrial robots 

The registration of an industrial robot is crucial whenever its interaction with 

objects has to be detected by a tracking system. If a tracking system is used to 

guide the movements of a robot, the pose of its end-effector with respect to its 

origin has to be connected with a global coordinate frame. This connection can 

be achieved with a registration procedure which has been addressed by many 

researchers [44–55]. Currently, there are two registration procedures, which 

are the hand-eye calibration and the robot-world and hand-eye calibration. In 

the hand-eye calibration, the pose of the tool with respect to the camera is 

unknown and should be identified. In the robot-world and hand-eye calibration, 

the pose of the tool with respect to the flange, where the tool is fixed, and the 

pose of the robot’s origin with respect to the camera are two unknowns and 

should be solved. However, none of the various solutions proposed are for the 

registration of a hybrid robot, which consists of a serial robot and a parallel 

manipulator. Different from classical registration methods, the registration of a 

hybrid robot has three unknowns to be determined, which include the pose of 
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the tool with respect to the flange, the pose of the origin of the serial robot 

with respect to the camera and the pose of the parallel manipulator with 

respect to the serial robot, i.e., two more unknowns as compared to the hand-

eye calibration case, and one more unknown as compared to the robot-world 

and hand-eye calibration. In addition, the registration equation of a hybrid 

robot cannot separate the unknowns and has a product of at least two 

unknowns. The product couples the unknowns together, which makes it 

difficult to be solved using the existing methods. 

 

1.4 Objectives of the study 

A hybrid robot, which consists of a serial robot and a parallel manipulator, is 

more flexible and has lower cost than a CNC system for a specific task. A 

hybrid robot could combine and complement the advantages of the serial robot 

and the parallel manipulator. A heavy parallel manipulator can increase the 

payload of the hybrid robot. With a large manipulator, it is difficult to 

decrease its weight, and hence the load on the serial robot which the 

manipulator is attached. Additionally, a large parallel manipulator can increase 

the risk of collision between the manipulator and its working environment. A 

compact parallel manipulator, which also has competent workspace, is capable 

of overcoming these disadvantages. As mentioned earlier, researchers focus 

mostly on workspace maximization, and little attention has been paid to 

dimensional minimization of a parallel manipulator. It is still necessary to 

optimize and decrease the dimension and improve the performance of the 

parallel manipulator before attaching this onto the serial robot. Although 

workspace computation is generally necessary during the optimization of a 
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parallel manipulator, the current methods require considerable computation 

work which is time consuming. Stiffness is related to the accuracy of a parallel 

manipulator and many researchers have adopted the algebraic method to 

optimize its stiffness and workspace simultaneously. However, many 

researchers have ignored the deformation of the mobile platform during the 

computation of the stiffness matrix. It is important to have an accurate 

registration of an industrial robot with its task objects, but there is still no 

reported method for the registration of a hybrid robot. 

 

With the shortcomings described above, this study plans to construct a hybrid 

robot with high accuracy and flexibility, which can be applied for MOCS. The 

serial robot functions as an approximate positioner, and the parallel 

manipulator is used for fine-tuning. To achieve this objective, a compact 

parallel manipulator with optimized operational performance will be presented. 

This parallel manipulator is designed by maximizing its ratio of workspace to 

dimensional volume and improving its dexterity and stiffness measures 

simultaneously, while maintaining a prescribed task space in its workspace. To 

reduce the computation load, a geometrical method will be described to 

determine the boundary and volume of the workspace of the parallel 

manipulator. The stiffness of the parallel manipulator will be analyzed 

considering the deformation of the mobile platform, limbs and actuators, and 

this method will be used to obtain the stiffness matrix during the optimization. 

To link the hybrid robot to the task objects, three different methods will be 

used to register the hybrid robot and they will be compared to identify the 

performances of these methods in addressing the registration process. 
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The optimization results can be used for the construction of a parallel 

manipulator in practice. Large workspace to dimensional volume ratio 

guarantees the configuration of a compact parallel manipulator to generate a 

large workspace, such that for a given task, it would yield the lowest weight 

and decrease the load to be attached to the serial robot. The geometrical 

method for analyzing the workspace of the parallel manipulator provides an 

efficient and accurate way to obtain the workspace boundary and volume. The 

algebraic method for stiffness analysis provides a general expression for a 

group of parallel manipulators which have similar structures. Finally, the 

registration method should be the first solution to address registration of 

hybrid robots. 

 

1.5 Structure of the thesis 

This thesis is organized as follows: 

 

Chapter 2 is a brief review of the existing methods for workspace analysis, 

stiffness analysis, optimization of parallel manipulators, and registration of 

industrial robots.  

 

Chapter 3 describes the structure and kinematics of the parallel manipulator 

and the hybrid robot used in this study, followed by the workspace analysis of 

the manipulator using a geometrical method. The accuracy and computation 

time of the method is compared to a discretization method. 
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An algebraic method is proposed in Chapter 4 for the stiffness analysis of a 

group of parallel manipulators which have similar structures. This method is 

compared to a FEA method to validate its accuracy. A new stiffness index is 

also introduced in this chapter to measure the stiffness property. This stiffness 

index can relate the stiffness property to the wrench applied on the 

manipulator for a particular task. 

 

Chapter 5 provides the optimization of a parallel manipulator. Since the 

dexterity and stiffness properties are dependent of the poses of the mobile 

platform of the parallel manipulator, two global indices are used to measure 

the average dexterity and stiffness over the entire workspace. The objective 

function aims to maximize the ratio of workspace to the dimensional volume, 

global dexterity index and global stiffness index of the parallel manipulator. 

The optimization result is compared with a reported optimization technique, 

which was used to optimize the dexterity and space utilization of a parallel 

manipulator without considering the stiffness. 

 

A hybrid robot is constructed based on the optimization results shown in 

Chapter 5. Chapter 6 proposes three different methods for the registration of 

the hybrid robot. These methods are compared to investigate their properties in 

addressing the registration of hybrid robots. 

 

The hybrid robot is used to machine a simple part to investigate its accuracy 

and compared with the serial robot, which is used to fix the parallel 

manipulator in the hybrid robot, and a CNC machine in Chapter 7. 
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Chapter 8 summarizes the conclusions made in this study and the works are 

planned to completed in the future. 
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CHAPTER 2 LITERATURE REVIEW 

 

Different hybrid robots have been proposed for industrial usage [56, 57] and 

surgical tasks [58–60]. Although a hybrid robot could combine the advantages 

of a serial robot and a parallel manipulator, the design of the parallel 

manipulator should be studied carefully. In this chapter, the workspace 

analysis, stiffness analysis, and optimization of a parallel manipulator are 

reviewed. The state-of-art of the registration of an industrial robot is also 

presented. 

 

2.1 Workspace analysis of parallel manipulators 

Since parallel manipulators present some disadvantages like small workspace 

and high degree of design complexity, workspace is considered one of the 

most important factors during the design procedure of parallel manipulators. 

This section reviews the existing methods for the workspace analysis of 

parallel manipulators. Generally, these methods can be categorized into two 

groups: numerical methods and geometrical methods. 

 

2.1.1 Numerical methods 

Numerical methods use discretized points to represent the approximate 

workspace of a parallel manipulator. A bounded spatial space, in which the 

workspace of a parallel manipulator is enclosed completely, is first discretized 

into points. With the inverse or forward kinematics of the manipulator, these 

discretized points which satisfy the kinematics are kept, and they are then 
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considered to form the workspace, if they also satisfy the constraint imposed 

by the motion range of passive joints and the requirement of no collision.  

 

For numerical methods, the algorithm for the generation of candidate points is 

important, since it determines the computation time spent on the workspace 

identification. With different methods, these candidate points are generated 

differently.  

 

The common method is to find a spatial bounding box which covers the entire 

workspace, and the bounding box is discretized into points using a given step. 

All the discretized points are checked one by one to remove the points outside 

the workspace. This method is also known as the brute force search method. 

During this process, many non-feasible points are included in the checking 

procedure and this could cause large computation load. This method was 

adopted by Stamper et al [24], Tsai and Joshi [25], Altuzarra et al [32], Laribi 

et al [33], Herrero et al [34], Rao et al [61], Cheng et al [62], and Rezaei et al 

[63]. Stamper et al used the Monte Carlo method to select points from the 

spatial box. In theory, the Monte Carlo method guarantees that points left after 

checking the kinematics and constraints represent the true workspace, if an 

infinite number of points have been chosen from the spatial box for checking. 

In practice, it is impossible to choose an infinite number of points. Rao et al 

[61] sliced the entire workspace into layers and each layer is discretized into 

points. With inverse kinematics, these points are tested to find an approximate 

workspace on each layer. However, inverse kinematics is not the only method 

for the checking of candidate points. Rezaei et al [63] used forward kinematics 
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to find points in the workspace. This technique enumerates all the possible 

combinations of the positions of actuators and computes the corresponding 

postures of the mobile platform of a parallel manipulator. This method is able 

to avoid the interference of infeasible points, but the point cloud obtained does 

not have a uniform density. 

 

Besides this exhaustive search method, some researchers adopted the radial 

search technique to speed up searching [27, 64]. Wang et al [64] used a 

cylindrical coordinate system to search the workspace boundary. With this 

coordinate system, the workspace is sliced into layers and each layer is 

searched using the radial search method. The searching process within one 

layer is depicted in Figure 2-1. Generally, the starting point is located at the 

center of a current layer. If a unit direction and a step are given, this method 

finds points in this direction with an interval of the step until a point outside 

the workspace is found, and then searching continues in another direction from 

the starting point. Different from Wang et al [64], Monsarrat and Gosselin [27] 

conducted a spherical search algorithm to determine the workspace boundary. 

A spherical coordinate system was used to slice the workspace into layers 

intersecting at one point. Searching within one layer is similar to the method 

used by Wang et al [64]. Compared with the brute force search method, the 

radial search technique can decrease non-feasible points in the searching 

process.  
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Figure 2-1: Radial search technique within one layer 

 

However, the improvement in the computation load using radial search is not 

significant. Additionally, the radial search technique cannot find voids in the 

workspace. To address this problem, Dash et al [65] sliced the workspace into 

layers and each layer is discretized into many sectors. Each sector is 

represented by a point located in the sector. If the representative point is in the 

workspace, the sector is considered as one part of the workspace. This method 

is similar to the brute force search method, since if the result is required to be 

exact, the sectors have to be discretized into tiny areas. Different from the 

above mentioned brute force search method, Dash et al [65] used a 

geometrical method to estimate approximately the boundary in each layer, so 

that many non-feasible sectors are excluded from the checking procedure. 

Correspondingly, the computation speed can be improved. Nevertheless, 

similar to the radial search technique, the improvement is not significant.  

 

In practice, the points on the boundary are essential for determining the 

workspace shape. Hence, Wang et al [66] used the information of the last 

boundary point to search for next boundary point. The workspace is sliced into 

layers first. The last boundary point of the last layer is projected into the 
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current layer to generate a new starting point. This point, which is inside or 

outside the workspace, determines whether the searching direction is outwards 

or inwards. With this method, it is unnecessary to search the entire workspace 

thoroughly. However, the voids in the workspace cannot be found. 

 

Besides the kinematics used for the testing of candidate points, Jacobian 

matrices of kinematic equations can also be used to distinguish workspace 

boundary. Jo and Haug [67] found that boundaries of the workspace have row 

rank deficient Jacobian matrices. Although the Jacobian matrix can help 

identify the boundaries, the time complexity is similar with using kinematics. 

Additionally, the constraints posed by joints and no collision requirement 

cannot be integrated into the Jacobian matrix. To address this problem, the 

kinematics and the constraints can be formulated into an objective function, 

and then an optimization algorithm can be used to find the workspace 

boundary by optimizing the objective function [68, 69]. This method is 

capable of representing the boundary with feasible solutions, while the 

computation time is also considerable to reach high accuracy [69]. 

 

Generally, the advantages of numerical methods are simple implementation 

and ability to consider all kinds of constraints. The disadvantages are high 

computation cost and their accuracy is dependent on the resolution of the 

candidate points. High resolution can improve accuracy with significant 

increase of computation load. 
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2.1.2 Geometrical methods 

Geometrical methods separate parallel mechanisms into open loops first, and 

then obtain the workspace of each open loop. The true workspace of a parallel 

manipulator is the intersection of the workspaces of all the open loops. 

 

Gosselin [70] first presented a geometrical method to compute the workspace 

of a Stewart platform. A Stewart platform is a 6 degree of freedoms (DOFs) 

parallel manipulator. The author assumed the orientation of the manipulator 

was given, and then the workspace is sliced along its height into layers. The 

boundary in each layer is an intersection of 6 pairs of concentric circles. The 

total workspace could be obtained by an integration of the intersection along 

the height. Since the orientation is constant, the workspace obtained is called a 

constant orientation workspace [71]. The author did not present a method to 

compute the workspace with variable orientations. To complement Gosselin’s 

work, Huang et al [72] defined the orientation capability of a 6-DOF parallel 

manipulator to be a range of the orientation. If the range is given, the 

workspace boundary corresponding to each orientation angle is obtained using 

a similar method to solve the constant orientation workspace. The intersection 

of the boundaries obtained in different orientation angles forms the workspace 

which can be reached by the mobile platform with variable orientations. This 

workspace is called the total orientation workspace [71]. In general, the total 

orientation workspace of a parallel manipulator is a subset of its constant 

orientation workspace. Although the author mentioned that the constraints 

could decrease the total orientation workspace, the constraints were not 

formulated into the closed form solution. Similar to Huang et al, Lee and 
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Perng [73] analyzed the position and orientation workspace of a 6-DOF 

Hexapod. An inscribed circle and circumscribed circle are used to 

approximate the workspace boundary, while constraints are ignored. Bonev 

and Ryu [74] found that the workspace of a parallel manipulator consists of 

portions of spheres, circular cylinders, elliptic cylinders, and planes if 

considering constraints. The intersection of these portions consists of spatial 

algebraic curves. Bonev and Ryu used a geometrical method to obtain 

intersection vertices of these curves, after which these vertices were used to 

reconstruct the curves and boundary surfaces of the workspace with the aid of 

a commercial computer aided design software. It should be noted that Bonev 

only considered computing the constant orientation workspace.  

 

Besides 6-DOF parallel manipulators, several studies have been focused on 3-

DOF purely translational parallel manipulators [75, 76]. An analytic 

expression was obtained to represent the boundary surfaces of the workspace 

of two 3-DOF parallel manipulators [75], while the constraints were not 

integrated into the expression. Pashkevich et al [76] analyzed the singularities 

and constraints posed by active joints of a 3-DOF parallel manipulator, the 

orthoglide. Considering the singularities and constraints posed by the active 

joints, the workspace boundary was obtained with a geometrical method. 

However, the constraints posed by the passive joints were ignored. 

 

In general, geometrical methods are more accurate and faster to obtain the 

workspace boundary of a parallel manipulator. The main disadvantages are the 

lack of general applicability to solve the workspace of parallel manipulators 
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having different structures. Each method is designed to solve one specific 

manipulator configuration. Nevertheless, the property of fast computation is 

able to decrease the computation load significantly during an optimization 

process. 

 

2.2 Stiffness analysis of parallel manipulators 

Accuracy is related to the stiffness of a manipulator since stiffness reflects the 

direct mapping between the externally applied wrench and the deformation of 

the manipulator. Although parallel manipulators present good performance in 

terms of accuracy and rigidity, it is still necessary to consider the stiffness in 

the pre-design stage, as the stiffness is dependent on material property and 

structural configuration. Stiffness analysis of parallel manipulators attracts 

constant attention of researchers. Generally, the analysis methods fall into 

three categories, namely, experimental methods, FEA methods and algebraic 

methods. 

 

2.2.1 Experimental methods 

Experimental methods are recommended to validate the mechanical design of 

a robotic system. Nevertheless, it is still challenging to set up a precise 

experimental configuration to investigate the stiffness of a multi-body robot, 

such as a parallel manipulator.  

 

The investigation of the stiffness is usually achieved by measuring the 

displacements of the manipulator under an external wrench. Figure 2-2 depicts 

a general setup for displacement measurement. In practice, the displacements 
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are attributed to the deformation of the manipulator, the clearance between 

connected components and the backlash of the actuators. The clearance and 

backlash cannot be avoided due to manufacturing and assembly tolerance and 

errors. Therefore, the accuracy of experimental methods cannot be guaranteed, 

except that the deformation can be distinguished from the clearance and 

backlash. However, this distinction is difficult in practice. 

 

Wrench

Mobile 

platform

Sensor

Fixed plate

 

Figure 2-2: General setup for displacement measurement of a parallel 

manipulator 

 

To decrease the effect of clearance and backlash, Aginaga et al [35] applied an 

external force in the positive and negative directions consecutively to obtain 

an average result, although the author admitted that error sources were not 

excluded successfully in the experiments. Applying a preload on a parallel 

manipulator is another method to reduce the clearance and backlash. This 

method was adopted by Huang et al [76] and Pinto et al [78]. Although the 

preload is able to decrease the clearance and backlash, it is difficult to 

determine an appropriate magnitude of the preload. Although the experimental 

methods are capable of obtaining the total displacement of a parallel 
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manipulator under an external wrench, it is difficult to isolate its deformation 

of from the source errors, and the effect of source errors is still unknown. 

 

2.2.2 FEA methods 

FEA methods are alternatives to the experimental methods. With appropriate 

settings, modelling and meshing, FEA methods are able to obtain accurate 

results. Therefore, the FEA methods have been adopted by many researchers 

to evaluate their analytical results [36–41]. Generally, commercial FEA 

software is used to implement the analysis. Before the analysis, some 

assumptions have to be made, such as Rezaei [37] who assumed all the passive 

joints to be rigid. The motors of the actuators are modelled using linear spring 

elements. FEA methods are generally very time-consuming [43].  

 

Since stiffness is dependent of the configuration and dimension of a parallel 

manipulator, FEA methods always require a complete re-meshing and re-

calculation if the configuration or the dimension is changed. Re-meshing can 

generate a huge computation load if the stiffness is considered in the 

optimization design stage. 

 

2.2.3 Algebraic methods 

Compared with FEA methods, algebraic methods deduce the stiffness of a 

parallel manipulator using algebraic expressions. With algebraic expressions, 

it is easy to obtain the stiffness matrix even if the configuration or the 

dimension has been changed.  
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However, algebraic methods always require several assumptions to be made. 

Gosselin [42] used a Jacobian matrix, which relates the velocity of the mobile 

platform of a parallel manipulator to the velocities of the actuators, to quantify 

the stiffness matrix. This quantification considers the compliance of the 

actuators, while the other components are assumed to be rigid. Several 

researchers [38, 40] considered the compliance of the limbs of a parallel 

manipulator while the other components are assumed to be rigid. The 

compliances of the limbs and the actuators have drawn much research 

attention [35]. El-Khasawneh [41] integrated the compliance of the limbs and 

the compliance of the actuators into the stiffness analysis of a Stewart platform, 

but had ignored the compliance of the mobile plate of the Stewart platform. 

Cheng [36] found that the deformation of a parallel manipulator using FEA 

method for stiffness analysis is larger than that obtained using the algebraic 

method, in which the actuators and the limbs are assumed to be flexible. Based 

on this finding, Cheng mentioned that the difference might be caused by 

neglecting the deformation of the mobile platform and the passive joints of the 

parallel manipulator. Rezaei [37] first considered the compliance of the mobile 

platform, the limbs and the actuators to analyze the stiffness of a parallel 

manipulator which uses three translational actuators. The compliance of the 

motors in the actuators was included in Rezaei’s algebraic model. 

Nevertheless, the deformation of the lead screws in the actuators was 

neglected. 

 

It can be seen that the reported algebraic methods generally ignore the 

deformation of the mobile platform, although Cheng [36] mentioned that this 
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could cause different results when compared with the FEA method. Although 

algebraic methods can provide an expression to obtain the stiffness matrix 

easily, the analysis should be carried out carefully to avoid considerably 

negative effect of the assumptions on the accuracy, such as the low accuracy 

of stiffness prediction due to the neglect of the deformation of the mobile 

platform. 

 

2.3 Optimization of parallel manipulators 

Optimization design of a parallel manipulator has attracted much interest from 

researchers to achieve high performance. These optimization methodologies 

can fall into two groups, namely, single performance and multi-performance 

optimization. 

 

2.3.1 Single performance optimization 

Single performance optimization usually only concerns one criterion in the 

whole process. Tsai and Joshi [25] undertook architecture optimization to 

maximize the global conditioning index (GCI) of a purely translational 

manipulator. This index assesses the distribution of the condition number of 

the Jacobian matrix over the entire workspace of a parallel manipulator. The 

condition number is a measure of the error amplification between the joints 

and the Cartesian spaces due to kinematic transformation. Since the Jacobian 

matrix depends on the configuration of the manipulator, the condition number 

presents only a local property of the manipulator, while the GCI gives a global 

property measurement. If J  denotes the Jacobian matrix, W  denotes the 

whole workspace, the GCI 
c  can be obtained using Equation (2-1): 



24 

 

 

1

W
c

W

dW

dW


 





J J
 (2-1) 

 

The GCI first proposed by Gosselin and Angeles [79] has been widely used by 

researchers for the optimization of parallel manipulators [23, 27, 79, 80]. The 

GCI has the advantages of using a single value to describe the kinematic 

behavior of a parallel manipulator. It can be used to describe the performance 

related to dexterity and singularity. However, if the manipulator has both 

translation and orientation, the Jacobian matrix for computing the GCI is not 

homogeneous in terms of units. 

 

The stiffness property of a parallel manipulator is another optimization aspect 

to be considered. Kim and Tsai [26] defined nine design variables for the 

maximization of the stiffness of a 3-DOF parallel manipulator with a given 

workspace volume which is an important property. As the exact true 

workspace volume is difficult to be evaluated with a given manipulator, the 

volume is assumed to be equal to the product of the stroke lengths of the three 

linear actuators used in the parallel manipulator. Kim and Tsai also assumed 

all the links of the manipulator to be rigid to obtain the stiffness matrix.  

 

Maximization of the workspace volume was presented in [27] for the design of 

a 3-leg 6-DOF parallel manipulator. The absence of critical singularities is one 

of the important constraints in their optimization. The maximization of the 

workspace of a parallel manipulator was also presented in [31]. Their work 

includes constraints on actuated/passive joint limits and link interference in the 
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optimization, which is solved using a controlled random search algorithm. 

Besides workspace maximization, an optimal dimensional synthesis method of 

a delta parallel manipulator was presented in [33] to find the smallest 

workspace such that the prescribed task space can be enveloped. Since the 

objective is to minimize the workspace, the dimension and kinematic behavior 

of the robot are not considered.  

 

Since the objective of single performance optimization contains only one 

criterion function, the other performance behavior might be affected or even 

compromised during optimization. 

 

2.3.2 Multi-performance optimization 

Since several performance behaviors might be conflicting, multi-performance 

optimization can guarantee that several compromising performance indices 

can be obtained simultaneously. An optimal design of a 3-DOF parallel 

manipulator was proposed in [82] with the objective of minimizing the cost 

function which affects the global and fluctuation condition indices. This 

fluctuation condition index can be interpreted as the standard deviation of GCI 

and it is considered to reflect the fluctuation of GCI in a specified workspace. 

The GCI was optimized with a global stiffness index which has been used to 

represent the stiffness property in [83] for a spherical parallel manipulator. In 

[29], the authors presented a multi-objective optimization method for the 

dimensional design of one class of parallel mechanism, namely, hexaslides. 

The global dexterity index and a workspace volume index are adopted as 

performance measures to be maximized. A multi-objective optimization of a 
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parallel manipulator was presented in [84]. A global isotropy index and a 

global dynamic index are chosen as the kinematic/dynamic performance 

quantization of the mechanism. The isotropy index is maximized while the 

dynamic index is simultaneously minimized in this optimization problem. The 

Normal Boundary Intersection (NBI) method was used to obtain Pareto-front 

hypersurface of the dual-objective optimal design. In [32], it also considers the 

kinematic and dynamic criteria. The multi-objective optimal design was 

presented in [85] for a 3-DOF parallel manipulator. The optimal stiffness in 

workspace and the transmission quality index was formulated as a single 

objective function. Genetic algorithm (GA) was used to solve this problem due 

to its robust convergence property. 

 

In general, there are two types of methods to solve multi-objective 

optimization. One method is to solve the optimization problem by aggregating 

all the objectives into a scalar function using weighting parameters. Although 

this method can produce a single solution without interaction with the user, the 

solution is highly dependent on the setting of the weighting parameters which 

are unknown prior to optimization. If the optimal solution cannot satisfy the 

user’s requirement, he/she may need to perform the optimization many times 

using different settings of weighting parameters until a suitable optimal 

solution is found [86]. The Pareto method incorporates all the objectives 

within the optimization process and attempts to find a set of trade-off solutions 

in the objective space. Once the trade-off hypersurface of the solutions is 

obtained, the user can select the appropriate design considering other 

requirements. To obtain the hypersurface, Zitzler [87] claimed that the GA 
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method can perform better than the random search method in multi-modal 

multi-objective optimization. According to Shukla and Deb [88], compared to 

NBI, the GA method, especially the non-dominance sorted genetic algorithm 

(NSGA) method, proposed in [89], performs better in achieving both 

convergence and diversity of solutions. However, the Pareto method needs 

longer computation time compared to the first type of methods, and the Pareto 

method provides final results near the globally optimal solution. In order to 

achieve the optimal solution accurately, the first type of methods can be used 

to improve the final results.  

 

2.4 Registration of industrial robots 

If a tracking system is used to guide the movements of a robot, the pose of its 

end-effector with respect to its origin and a global coordinate frame has to be 

coupled. This can be achieved with a registration procedure. 

 

2.4.1 Hand-eye calibration 

In the 1980s, the registration of an industrial robot was simplified as hand-eye 

calibration (HEC) [43, 89], and solved using several approaches. For the HEC, 

the registration is formulated to solve Equation (2-2), where X  is the 

transformation matrix of the relative pose of the camera with respect to the 

gripper of a robot, A  is the transformation matrix of the current pose of the 

gripper with respect to its last pose, and B  is the transformation matrix of the 

current pose of the camera with respect to its last pose. The camera is mounted 

rigidly with respect to the gripper. 

 AX XB  (2-2) 
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Shiu and Ahmad [44] proposed a general closed-form solution where the 

transformation matrix is separated into its rotation and translation components. 

It is stated that a unique solution could be obtained with at least two sets of 

data [90]. In the work reported by Richter et al [45], a non-orthogonal method 

was used to obtain the calibration solution. This method is proven to be more 

accurate than the method proposed by Tsai and Lenz [90]. To guarantee the 

orthogonality of the rotation component, Andreff et al [91] proposed an online 

calibration using a two-step method for the estimation of the rotation 

component, while the method produces larger errors compared with an 

axis/angle method, dual quaternion method and nonlinear method.  

 

Different from the previous methods, Chou and Kamel [46] used quaternions 

as equivalent forms of rotation and translation. Without using the least-square 

method to solve the over-determined equation system, a criterion was 

developed to choose three linear equations and one nonlinear equation to 

obtain the rotation and two linear equations to obtain the translation. Horaud 

and Dornaika [47] proposed a nonlinear technique based on the quaternion 

method to solve the rotation and translation simultaneously. Dual quaternion 

[48] is another approach to solve the calibration in order to obtain a 

simultaneous solution for rotation and translation.  

 

Chen [49] made the first attempt to address this registration with the screw 

theory. This approach was adopted by Zhao and Liu [92], where the rotation 
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and translation are solved simultaneously using the singular value 

decomposition (SVD) analysis.  

 

The HEC has merged with camera calibration in a few reported works [93–95]. 

The combined calibration approach can determine the hand-eye parameters 

and the camera intrinsic parameters. However, combined calibration becomes 

unnecessary when the camera has been calibrated using self-calibration 

techniques.  

 

All these mentioned approaches require the HEC data to have a known 

correspondence and they cannot solve the HEC if prior knowledge of the 

correspondence is not known. Ackerman and Chirikjian [50] proposed a 

probabilistic solution for the HEC without the requirement of the 

correspondence. Although this approach addressed the problem caused by 

unknown correspondence, the authors assumed that the relative motions 

between consecutive reference frames were small during the calibration. They 

did not prove its validity in the case of large motions. 

 

Table 2-1 summarizes the merits and shortcomings of all the methods 

mentioned in this subsection. 
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Table 2-1: The comparison of several methods proposed to solve HEC 

Methods 

Correspondence 

requirement of 

input and output 

data 

Closed-

form 

solution 

Pros Cons 

Separation 

closed-form 

method [44] 

Yes Yes 

Fast computation; 

orthogonalization is 

not required. 

Cannot obtain the 

translation and 

rotation 

simultaneously; low 

accuracy. 

Non-

orthogonal 

method [45] 

Yes Yes 

Able to obtain the 

translation and 

rotation 

simultaneously. 

An additional 

orthogonalization 

procedure is 

required. 

Online 

calibration 

[91] 

Yes Yes 
Orthogonalization is 

not required. 

Cannot obtain the 

translation and 

rotation 

simultaneously; low 

accuracy. 

Quaternion 

method [47] 
Yes No 

Able to obtain the 

translation and 

rotation 

simultaneously; 

orthogonalization is 

not required. 

Low computation 

speed. 

Dual 

quaternion 

method [48] 

Yes Yes 

Able to obtain the 

translation and 

rotation 

simultaneously; fast 

computation 

Lower accuracy 

than the Kronecker 

product method if 

used to solve robot-

world and hand-eye 

calibration. 

Screw 

theory 

method [49, 

92] 

Yes Yes 

Able to obtain the 

translation and 

rotation 

simultaneously; fast 

computation 

Similar accuracy 

with the dual 

quaternion method. 

Combined 

calibration 

approach 

[93-95] 

Yes No 

Able to obtain the 

translation, rotation 

and camera 

parameters 

simultaneously 

Low computation 

speed 

Probabilistic 

solution [50] 
No Yes 

Orthogonalization is 

not required 

Cannot obtain the 

translation and 

rotation 

simultaneously; 

continuous motion 

of the robot is 

required. 

 

2.4.2 Robot-world and hand-eye calibration 

For HEC, the camera should be rigidly attached on the robot’s end-effector. 

However, this attachment is not always necessary. For convenience, the 

camera can be fixed at a specific location in the environment. In this case, the 
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registration has more unknown parameters than that of the original HEC. The 

registration is also referred to as the robot-world and hand-eye calibration 

(RWHEC) [51, 52, 96] or the robot-world and tool-flange calibration [53, 97]. 

Different from HEC, the RWHEC can be formulated as in Equation (2-3), 

where X  and Y  are two unknown transformations. For the experimental 

setup in Figure 2-3, X  denotes the transformation from the tool to the gripper 

of the robot, and Y  is a transformation from a global coordinate frame to the 

base coordinate frame of the robot. The matrix A  denotes the transformation 

of the tool pose with respect to the coordinate frame of the camera and B  

denotes the transformation of the gripper pose with respect to the origin 

coordinate frame of the robot. These two transformations are constant after 

grasping the tool with the gripper of the robot and fixing the position of the 

camera. 

 AX YB  (2-3) 
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Figure 2-3: The RWHEC setup of a serial robot 
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Most of the solutions fall into two categories, namely, closed-form and 

iterative form. 

 

A linear closed-form solution was proposed [53] to obtain the unknowns of the 

RWHEC with the quaternion and the screw theory. The authors [53] claimed 

that this method is fast and robust. In this method, each rigid transformation is 

separated into a rotation and a translation. This separation was adopted by 

Dornaika and Horaud [51] and Shah [96] in their closed-form methods. Shah 

[96] formulated a solution using the Kronecker product method. After 

comparing with the quaternion method, the Kronecker product method is 

proven to be reliable and accurate. To avoid accumulative errors caused by the 

separation, Li [52] combined the rotation and translation together and solved 

them using the Kronecker product method. However, the Kronecker product 

method fails to provide orthogonal rotation matrices. Ernst et al [97] used a 

similar method to solve the same equation, where the same problem has 

occurred. In general, closed-form methods are fast and robust although they 

have limited accuracy. 

 

Different from closed-form methods, iterative methods usually have better 

performance but require longer computation time. In the work reported by 

Dornaika and Horaud [51], the rotation and translation residuals in each 

configuration were combined into an error function. With simulation and 

experimental results, it was found that the proposed nonlinear methods have 

better accuracy. Without a minimization function, an iterative estimation 

method [54] was used to solve the rotation and translation unknowns. This 
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method was stated to be robust against noise and convergent within a 

reasonable tolerance. However, the authors [54] did not compare their method 

with other different methods. In the work reported by Strobl and Hirzinger 

[55], an optimal model was built based on the minimization of the sum of 

prediction errors with normal distribution. After a comparison with several 

other methods, it was found that the proposed method presented superior 

performance. This method assumes that the error and noise in the registration 

complies with normal distribution.  

 

2.4.3 Registration of a hybrid robot 

Both HEC and RWHEC can be considered as classical registration methods. 

Different from the classical registration, the registration of a hybrid robot has 

three unknowns to be determined, i.e., two more unknowns, which include the 

transformation Y  from the coordinate frame of the camera to that of the 

origin of the serial robot and the transformation Z  from the flange of the 

serial robot to the base of the parallel manipulator, as compared to the HEC. 

As compared to RWHEC, the registration equation of the hybrid robot has one 

more unknown, which is the transformation Z . In addition, the registration 

equation of a hybrid robot has two unknowns coupled together. The 

registration can be represented by Equation (2-4), where Z  is an unknown 

constant matrix, and C  is the transformation from the base of the parallel 

manipulator to its flange as shown in Figure 2-4. 

 AX YBZC  (2-4) 
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Although different hybrid robots have been proposed, their registration 

methods have not been reported. One possible solution is a specific interface 

to provide a known transformation from the parallel manipulator to the serial 

robot. In this case, the registration becomes the same as in RWHEC. If this 

transformation cannot be obtained, all the closed-form solutions discussed 

above will not be able to provide a solution, since the closed-form solutions 

are proposed to solve specific registration equations; if the equations are 

modified, their applicability is lost. 
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Figure 2-4: The registration setup of a hybrid robot 

 

2.5 Conclusion 

Numerical methods can obtain the workspace of a parallel manipulator and are 

simple to implement and deal with various constraints. However, these 

methods require long computation time and can generate considerable 

computation load if used in an optimization process. Although it is more 
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difficult for geometrical methods to consider all the constraints in workspace 

computation, they are fast and suitable to achieve optimized results. 

 

Experimental methods are recommended to investigate the stiffness of a 

parallel manipulator. The difficulty is the lack of precise setup of an 

experiment to exclude the effects of source errors on the accuracy. FEA 

methods can be considered as alternatives to experimental methods. However, 

FEA methods have large computation load. It is time-consuming to use FEA 

methods to obtain the stiffness in an optimization process. During the stiffness 

optimization, algebraic methods are more suitable, since they are fast and have 

comparable accuracy with FEA methods. 

 

Since single performance optimization concerns only one criterion, it is easy 

to use one objective function to measure its behavior. It should be noted that 

single performance optimization may deteriorate several other criteria, since 

some of them may be conflicting. Multi-performance optimization is able to 

address this issue, since it can provide results to reach compromising 

optimization. 

 

Various approaches have been proposed to solve HEC and RWHEC. Since the 

registration of a hybrid robot is different from those in HEC and RWHEC, the 

proposed approaches would have some difficulty to address the registration of 

a hybrid robot. It is necessary to propose an appropriate method to solve this 

problem.  
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CHAPTER 3 STRUCTURE OF THE HYBRID ROBOT 

AND THE WORKSPACE ANALYSIS OF THE 

PARALLEL MANIPULATOR 

 

The hybrid robot consists of a serial robot and a parallel manipulator. This 

chapter will first illustrate the structure of the parallel manipulator and the 

hybrid robot. The parallel manipulator is a parallelogram-type manipulator 

using translational actuators. This type of parallel manipulators can be termed 

a triglide [98]. 

 

Since the workspace of a parallel manipulator is limited, its analysis is a 

crucial step to investigate its capability during its design stage. Discretization 

methods are often used to solve the workspace boundary of a parallel 

manipulator. However, these methods generate more computation load and 

consume longer processing time compared with geometrical methods. 

Although many researchers have proposed various geometrical studies of the 

workspace boundary of a parallel manipulator, the analysis of a triglide has 

not been reported.  

 

After the structure description, the kinematics of the parallel manipulator is 

presented, and then the workspace boundary of the parallel manipulator is 

obtained in this chapter using a geometrical method. This method is compared 

with the discretization method to evaluate their performance. Since the 

workspace of a general triglide is irregular, this chapter uses a regular 

workspace to represent approximately the true workspace for practical 
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applications, such as the determination of task space and path planning in the 

workspace. 

 

3.1 Structure of the hybrid robot 

3.1.1 Structure of the parallel manipulator 

Stewart platform application is popular in the industry, since they can provide 

3-DOF translations and 3-DOF orientations. However, more DOFs would 

mean more actuators and more limbs in the structure of a parallel manipulator. 

The weight of the manipulator will increase due to increasing number of 

actuators and limbs. As the proposed hybrid robot is to install a parallel 

manipulator at the end effector position of a serial robot, the weight of the 

manipulator will affect the stiffness of the hybrid robot. 

 

In recent years, several studies have been focused on 3-DOF pure translational 

parallel manipulators [33, 98, 99]. In the class of 3-DOF pure translational 

parallel manipulators, the delta robot is probably the best known manipulator. 

It was first patented in 1990s [100] and has been applied for picking or 

packaging operations because of its fast movement. The orientation of the 

mobile platform of the delta robot is constrained by a parallelogram structure. 

However, fast movements may not be needed in other fields. After the 

development of the delta robot, the parallelogram structure was adopted by 

several researchers to construct the limbs of the linear delta [101] and the 

orthoglide [102], by replacing the rotary actuators of the delta robot with 

translational actuators. This replacement is able to decrease the velocity of its 

mobile platform. Besides the delta mechanism, the 3-DOF parallel 
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manipulator having universal-prismatic-universal (UPU) or prismatic-

universal-universal (PUU) limb structure has attracted attention for its elegant 

and symmetric topology [25, 103, 104]. The structure of 3-PUU or 3-UPU 

parallel manipulator may be the simplest of all the 3-DOF pure translational 

parallel manipulators. Nevertheless, this structure also makes the movement of 

the mobile platform sensitive to the unavoidable minute clearance of the 

passive joints [105], making pure translation difficult to achieve with this type 

of structure in practice. Compared to 3-PUU or 3-UPU mechanism, the 

parallelogram structure used in the delta robot constrains the orientation 

motion of its mobile platform successfully. In this study, the linear delta and 

the orthoglide are grouped as pure translational parallelogram-type parallel 

manipulators using translational actuators, which are termed triglide. A 

triglide is defined to be a 3-DOF pure translational parallel kinematic 

manipulator which uses translational actuators and has three independent 

limbs, each of which is of parallelogram structure. 

 

Figure 3-1 depicts the structure of a general triglide. A general triglide consists 

of a base plate, a mobile platform and three parallelogram limbs which 

connect the mobile platform with the base plate. Three translational actuators 

are distributed on the base plate. A general parallelogram contains four ball 

joints which link four rods together. These ball joints can be replaced with 

universal or rotational joints. 
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joint
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Figure 3-1: The structure of a general triglide 

 

The DOFs of the triglide can be obtained with the modified Grübler criterion 

[106]. 

 
1

( 1)
j

i p

i

F n j f f


      (3-1) 

where F  is the DOFs of a mechanism, 
if  is the degrees of relative motion 

permitted by joint i , 
pf  is the passive DOFs, j  is the number of joints, and n  

is the number of links in the mechanism, including the fixed link, and   is the 

DOFs of the space in which the mechanism functions. 

 

For a triglide, the number of passive joints is 6pf  . As the triglide has three 

prismatic joints and 12 ball joints, 39if   and 15j  . Since 11n   and 

6  , the DOFs of the triglide is 3F  . 

 

3.1.2 Structure of the hybrid robot 

In order to adjust the position and orientation of the parallel manipulator in 

space, a 5-axis serial robot, Scorbot-ER VII (Eshed Robotec Inc.), is used to 
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construct the hybrid robot. The serial robot works as an approximate 

positioner. Its function is to position the parallel manipulator near the target 

area. During the machining process, the serial robot is locked and the parallel 

manipulator is used to complete the machining operation. Figure 3-2 illustrates 

the structure of the hybrid robot. 

 

Triglide

Scorbot

 

Figure 3-2: The structure of the hybrid robot 

 

3.2 Kinematics of the parallel manipulator 

It is necessary to obtain the kinematics of the parallel manipulator, since its 

workspace is determined by its kinematics. Considering that the coordinate 

frame O  is fixed with the mobile platform, while the frame O  is fixed with 

the base plate which is considered the global frame, points 
iA  and 

iC  denote 

respectively the original and current position of the moving slider of the 

translational actuator with 1, 2, 3i  , and 
id  is the distance of 

i iAC . The 

length of 
i iB C  is denoted by l . The distances of 

iOA  and 
iO B  are represented 
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respectively by 
aR  and 

bR . The angle between the actuator’s axis and the 

reference plane XOY  is given by  . Symbols 
i  and 

i  denote angles 

iXOA  and 
iX O B   respectively. In order to achieve a symmetric workspace, 

this study assumes that the triglide has three identical limbs and three identical 

translational actuators, and the actuators are distributed symmetrically on the 

base plate. 

 

X 

Y Z 

 O

Z Y

X
 O

aR

bR

l

iA

iC

iB






 

Figure 3-3: The structure of one limb of a triglide 

 

In general, each ball joint can rotate about three orthogonal axes. However, 

only two axis rotations have effect on the DOFs of the parallelogram structure. 

Thus, this structure presents four rotation DOFs from its lower rod to its upper 

rod as depicted in Figure 3-4(a). In this figure, the axes 1 and 3 are parallel to 

each other and along the shafts of the lower and upper rods respectively. The 

axes 2 and 4 are perpendicular to the plane formed by the axes 1 and 3 and 

through the central points of the lower and upper rods respectively. This is 

very similar with the universal joint-universal joint (U-U) limb structure 

shown in Figure 3-4(b). In this figure, the axes 1 and 2 are perpendicular to 

each other and along the two shafts of the cross of the lower universal joint. 
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The axes 3 and 4 are perpendicular to each other and along the two shafts of 

the cross of the upper universal joint. Therefore, the kinematics of the triglide 

can be considered to be the same as that of a 3-PUU parallel manipulator. 

 

Axis 1

Axis 2

Axis 3

Axis 4

 

Axis 3

Axis 1
Axis 2

Axis 4

 

(a) The parallelogram structure (b) The U-U limb structure 

Figure 3-4: The effective DOFs of the parallelogram structure and the U-U 

limb structure 

 

3.2.1 Inverse kinematics 

For inverse kinematics, the traveling distance of each actuator needs to be 

solved with the given position of O . If 
is  is the unit vector of

i iAC , it can be 

obtained using Equation (3-2). 

  
2

1

1

T

i i icos sin tan
tan

  


  


s   (3-2) 

 

It can also be shown that 

  0
T

i a i a iR cos R sin OA   (3-3) 

  0
T

i b i b iR cos R sin  O B   (3-4) 
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Since the mobile platform has only three translational DOFs, it is assumed that 

 
T

x y z OO . Equation (3-5) can be obtained according to the 

geometrical relationship. 

 ( ) ( )i i i i i i i i
      B C OC OB OA A C OO O B   (3-5) 

 

For a simple representation, assume that 
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  (3-6) 

 

Equation (3-5) yields 

 

1 2

1 2

i i i

i i i i i

i

K d K x

M d M y

d N z

  
 

  
 
  

B C   (3-7) 

 

Since the limb length is constant, i i lB C , and 2 2 2

2 2 1i iK M N   . if 

 
 1 2 1 2 2 2

2 2 2 2

1 1
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C K x M y z l
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



  (3-8) 

 

It can be obtained that 
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 2 0i i i id B d C     (3-9) 

 

Hence, the solutions of the inverse kinematics are 

 

2 4

2

i i i

i

B B C
d

  
   (3-10) 

 

From Equation (3-10), two solutions can be obtained. Due to the limitations of 

the motion ranges of actuators and passive joints, there is only one solution 

satisfying the limitations in general. 

 

3.2.2 Forward kinematics 

The forward kinematics solves the position of the mobile platform when the 

travelling distance of each actuator is given. The forward kinematics solution 

is as follows. 
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  (3-11) 

 

Coefficients 
1k , 

2k , 
3k , 

4k , 
5k , 

6k  and 
7k  in Equation (3-11) can be obtained 

using Equation (3-12). 
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where, 2( cos cos cos sin )i b i a i i i iR R da      , 

2( sin sin sin sin )i b i a i i i ib R R d     , 2 cosi i ic d   , 

2 2 2 2
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i
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b i i i i i

R R d lh
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3.3 Workspace analysis of the parallel manipulator 

3.3.1 Workspace boundary 

According to the kinematics of a general triglide, Equation (3-13) can be 

obtained. 

 

 

2

2

2

1

1

1

i
a i b i

i
i i a i b i

i

d
cos R cos

tan

d
sin R sin

ta

R

n

d tan
z

t

x

R

n

y

a

 


 






  
  

  
 
   
  
 
 




 




 





B C  (3-13) 

 

Since i i lB C , Equation (3-14) can be obtained with Equation (3-13). 

 2 2 2 2( ) ( ) ( )i i ix A y B z C l       (3-14) 
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where 
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Equation (3-14) shows that each limb of a general triglide produces a spherical 

surface with its center located at ( , , )i i iA B C . As a triglide has three limbs, 

each location of the moving platform of the triglide is an intersection point of 

these three spherical surfaces. 

 

If the workspace is sliced with a plane parallel to plane XOY, the workspace 

on the slicing plane can be obtained using Equation (3-15). On the slicing 

plane, the workspace becomes an intersection of three circles.  

 2 2 2 2( ) ( ) -( )i i ix A y B l z C      (3-15) 

 

Equation (3-15) shows that the positions and radii of all the circles are 

dependent on the value of 
id , which is the travelling distance of the ith 

actuator, if the slicing plane is confirmed. Thus, the limiting values of 
id  

produces the workspace boundary on the slicing plane. It should be noted that 

the minimal value of 
id  can be defined to be 0, so that 0id  . The center of 

the circle formed with one limb when 0id   is denoted by 
1iO .With different 

values of 
id , the centers of the circles are moving away from 

1iO  towards the 

other two limbs. Hence, the circle with the largest value of 
Lid , which is the 

longest distance from 
1iO  to the circle, produces boundary sections which are 
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far away from 
1iO . This circle is called as distal circle. The circle with the 

smallest value of 
Lid  produces boundary sections which are near 

1iO , and this 

circle is called as proximal circle. Figure 3-5 plots the workspace boundary 

formed with one limb on a slicing plane. The shadowed area illustrates the true 

workspace. Therefore, for a triglide, the workspace on a slicing plane is the 

intersection of the shadowed areas formed with three limbs as shown in Figure 

3-6. 

 

max( )Lid

min( )Lid

1iO

 

Figure 3-5: The workspace boundary of one limb on a slicing plane 
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Figure 3-6: The workspace boundary of a triglide on a slicing plane 
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3.3.2 Workspace volume 

The workspace volume V  can be obtained using Equation (3-16). 

 V Adz A z    (3-16) 

where A  denotes the workspace area on an arbitrary slicing plane, and z  

denotes the increment between two adjacent slicing planes. If z  approaches 

0, V A z  . 

 

Equation (3-16) shows that the calculation of area A  which is a crucial step to 

obtain the workspace volume. In order to obtain area A , the boundary should 

be found first. Figure (3-6) presents the workspace located inside the 

intersection of three distal circles and outside all the proximal circles. The arcs 

of the distal and proximal circles constitute the workspace boundary. The 

following procedures provide a solution to obtain these boundary arcs. Figure 

(3-7) shows the flowchart of the procedures to solve the workspace boundary 

on an arbitrary slicing plane. After solving the workspace boundary on a 

slicing plane, area A  can be obtained by calculating the area of the enclosed 

shape. 

 

1 Solve the intersection of three distal circles. If the intersection exists, the 

arcs enclosing the intersection area can be obtained and go to step 2, else go 

to step 8; 

2 Solve the intersection of the proximal circle of one limb with the distal 

circles of the other limbs. If intersection exists, the arcs enclosing the 

intersection area can be obtained and go to step 3, else go to step 4; 
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3 If the arc obtained in step 2 belongs to a distal circle, the arc’s overlapped 

portion with the arc obtained in step 1 is removed, and the left portion of 

the arc obtained in step 1 is kept as a boundary, else the arc obtained in step 

2 is kept as a boundary; 

4 If any proximal circle has not been used to calculate an intersection, go to 

step 2, else go to step 5; 

5 Solve the intersection of any two proximal circles. If the intersection exists, 

the arcs enclosing the intersection area can be obtained and go to step 6, 

else go to step 7; 

6 The overlapped portion of the arc obtained in step 5 with the arc obtained 

in step 2 is removed and the left portion of the arc obtained in step 2 is kept 

as a boundary; 

7 If the intersection of any two proximal circles has not been solved, go to 

step 5, else go to step 8; 

8 If the left arcs are not empty, they constitute the workspace boundary, else 

the workspace is empty. 
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Figure 3-7: The flow chart for solving the workspace boundary on an arbitrary 

slicing plane 
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3.4 Comparison with the discretization method 

This section compares the proposed geometrical method (GM) with a 

discretization method. This discretization method has been used by several 

researchers to obtain the workspace of a parallel manipulator [32–34, 61, 63]. 

This method is known as the grid discretization method (GDM), since it 

discretizes the workspace into points using a defined step, and finally these 

points form a grid workspace.  

 

To obtain the workspace using the GDM, an estimation of the workspace 

should be provided first. This estimation determines a bounding box which is 

the maximum possible space to cover the workspace. For a trigide, each limb 

produces a spherical workspace as shown in Equation (3-14). With this sphere, 

it is able to confirm the limit in each direction of the workspace of each limb. 

After combining the limits of all the limbs, the bounding box can be obtained. 

 

All the discretization points are generated within the bounding box. These 

points are called candidate points. The inverse kinematics of the triglide is 

used to evaluate each candidate point. If the point can be reached with the 

mobile platform of the triglide, this point is considered a grid point in the true 

workspace. The final workspace is represented using all the grid points. 

 

It is noted that both the GM and GDM need to discretize the workspace in the 

z  direction. Hence, the discretization step in z  is the same for the GM and 

GDM and it is listed in Table 3-1 and denoted using z . Since the steps of the 

GDM in the other two directions can be the same, the resolution of the GDM 
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is defined to be the discretization step in x  or y  direction. In order to 

compare the accuracy of the computation of workspace volume, the resolution 

is changed from 10mm to 0.5mm, as shown in Figure 3-8. 

 

A general triglide is used to evaluate the performances of the GM and GDM 

on solving its workspace. Table 3-1 lists the dimensions of the triglide.  

 

Table 3-1: Dimensions of a triglide and the discretization step in z  direction 

Parameters Units Value 

aR  mm 100 

bR  mm 50 

l  mm 100 

  degree 40 

z  mm 0.5 

 

Figure 3-8 plots the workspace boundary using the GM and the grid points 

obtained using the GDM on a slicing plane 100z mm  which is in the middle 

of the entire workspace along the z  direction, if the resolution of the GDM is 

1mm. The black curves depict the boundary and red stars represent the grid 

points. It can be seen that all the grid points are located inside the boundary. 

Figure 3-9 presents the workspace volume obtained using the GM and the 

GDM. This figure shows that the result obtained using the GDM is closing to 

that obtained using the GM as the resolution of the GDM is becoming higher. 

If the resolution increases to 0.5mm, the result obtained using the GDM is 

nearly equal to that obtained using the GM as shown in Figure 3-9. From 

Figure 3-8 and Figure 3-9, it can be seen that the GM provides an alternative 

way for the GDM to obtain the boundary and volume of the workspace of a 

triglide. 
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In order to compare the computation cost of the GM and GDM, each method 

is executed 100 times using MatLab installed on a Dell Optiplex 980 desktop 

incorporating one 3.2GHz Intel Core i5-650 processor and two 2GB DDR3 

SDRAM memory cards. The operating system is 32-bit Windows 7 Enterprise. 

The average computation time is shown in Figure 3-10. In this figure, the red 

columns present the computation time of the GDM with different resolutions, 

and the black columns shows the computation time of the GM. It can be seen 

that the average computation time of the GM is less than 10 seconds and 

slightly shorter than the average computation time of the GDM when the 

resolution is 10mm. If the resolution becomes higher, the computation time of 

the GDM increases significantly and are much larger than that of the GM. If 

the resolution is improved to be 0.5mm, the average computation time of the 

GDM increases to 6203 seconds. From Figure 3-9 and Figure 3-10, it can be 

stated that higher resolution can make the GDM have higher accuracy but 

longer computation time. Considering the accuracy and computation load, the 

GM is a better method to obtain the workspace boundary of a triglide, since it 

can reach higher accuracy with faster computation. 
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Figure 3-8: The workspace boundary obtained using the GM and the grid 

points obtained using the GDM on the 100z mm  plane 

 

 

Figure 3-9: The workspace volume obtained using the GM and the GDM 
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Figure 3-10: The average computation time of the GM and GDM 

 

3.5 Regular workspace 

The workspace of a triglide is usually irregular. The irregular workspace 

increases the complexity for its representation and its application in path 

planning. Since the workspace of a parallel manipulator is limited, it is 

common and necessary to check whether the task space is enclosed in its 

workspace. An irregular workspace can have difficulties to implement the 

verification of the task space. It can be found that the workspace boundary of a 

triglide is formed with several arcs. Hence, it is easy to obtain an inscribed 

circle within the workspace boundary. This section uses this inscribed circle to 

represent the approximate true workspace on a slicing plane. All the inscribed 

circles on all the slicing planes are integrated through the z  direction to form a 

regular workspace. This regular workspace will be used in Chapter 5 to 

guarantee a task space covered by the workspace of an optimized triglide.  
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Figure 3-11: The workspace boundary of the triglide obtained using the GM 

on the slicing plane 90z mm  

 

X/mm

Y
/m

m

 

Figure 3-12: The workspace boundary of a triglide on a slicing plane 

 

However, the workspace boundary on some slicing planes has several 

enclosed areas. Figure 3-11 depicts the workspace boundary of the triglide 

listed in Table 3-1 on the slicing plane 90z mm . As is shown, this 

workspace contains four independent enclosed areas. Since it is difficult to 

represent these four areas with one regular shape, the peripheral areas are 

ignored and only the central area is considered to obtain its inscribed circle. 
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Nevertheless, the central area may disappear for some other triglides on some 

slicing planes. Figure 3-12 depicts a workspace boundary without the central 

area. In this case, these peripheral areas are ignored and the workspace on the 

slicing plane is considered to be null to construct the regular workspace, since 

they are difficult to be represented and are usually quite small. 

 

3.6 Conclusion 

Although various 3-DOF pure translational parallel manipulators have been 

proposed, this chapter chooses a parallel manipulator using parallelogram-type 

limbs, since such structure has been proved to be able to constrain the 

orientation of its mobile platform successfully.  

 

This chapter uses a geometrical method to obtain the workspace boundary and 

the volume of a general triglide. After a comparison with a grid discretization 

method, it is found that the geometrical method is able to reach higher 

accuracy with faster computation for obtaining the workspace boundary and 

volume. Higher resolution can improve the accuracy of the grid discretization 

method, but cause higher computation load.  

 

Since the workspace of a triglide is usually irregular which causes its difficulty 

to be applied in path planning, this chapter uses a group of inscribed circles 

integrated through the z  direction to represent the approximate true 

workspace. 
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CHAPTER 4 STIFFNESS ANALYSIS OF THE 

PARALLEL MANIPULATOR 

 

Stiffness analyses of a linear delta and orthoglide have been reported by 

several researchers, but a general algebraic expression is still needed to obtain 

the stiffness of a triglide. More importantly, the reported algebraic methods 

have generally ignored the deformation of the mobile platform. To address this 

issue, this chapter uses a strain energy method considering the compliance of 

the mobile platform, and the limbs and the actuators of a triglide. In this 

method, the deformation of the mobile platform is integrated in the total 

deformation of the triglide.  

 

A stiffness matrix can always be derived from the stiffness analysis. In the 

optimization stage, the stiffness matrix is required to be converted to a 

stiffness index to evaluate the stiffness quality of a parallel manipulator. 

Generally, the maximum or minimum eigenvalue of the stiffness matrix is 

used as the stiffness index [106–108], since the maximum and minimum 

eigenvalues present the greatest and least rigid values in the directions 

specified by the corresponding eigenvectors. It should be noted that the 

maximum and minimum eigenvalues are used to define upper and lower 

bounds of the stiffness. They should be evaluated together and cannot be 

combined to form a single index. Besides the eigenvalues, the Euclidean norm 

of the diagonal elements of the stiffness matrix [26], the condition number of 

the stiffness matrix [83], and the determinant of the stiffness matrix [108] can 

be accepted as stiffness indices. Since the translation and orientation of a 
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parallel manipulator have different units, these indices cannot be interpreted 

easily. Additionally, these stiffness indices fail to relate the stiffness property 

of a parallel manipulator to the direction of a wrench applied on it. This 

relationship is important as a parallel manipulator presents different stiffness 

properties in different directions. A stiffness index, which can be interpreted 

easily, is used to evaluate the stiffness property of a triglide in this chapter. 

The stiffness index measures the stiffness property of the triglide along the 

direction of the wrench applied on the mobile platform during an operation. 

 

4.1 Stiffness analysis using strain energy method 

The overall stiffness matrix K  of a triglide is the mapping between the 

applied external wrench W  and the infinitesimal twist ξ  of the central point 

of its mobile platform. The wrench W  contains forces F  and moments M , 

 
T

W F M . Both F  and M  are 1 3  row vector. The twist ξ , which is a 

6 1  column vector, contains infinitesimal translation  χ  and infinitesimal 

rotation ψ . This mapping can be expressed as Equation (4-1), where K  is a 

6 6  matrix. 

 W K ξ  (4-1) 

 

According to Castigliano’s second theorem, the infinitesimal twist of an 

elastic structure is the partial derivative of the strain energy U  of the structure 

with respect to the applied external wrench, given as Equation (4-2) if iW  

denotes the ith entry of W . 
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T

U U U U U U U

W W W W W W


       
   
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ξ
W

 (4-2) 

 

If the relationship in Equation (4-3) can be found, where C  is the overall 

compliance matrix, the stiffness matrix can be obtained as Equation (4-4). 

 
U




CW
W

 (4-3) 

 1K C  (4-4) 

 

To obtain the compliance matrix C , the total strain energy of a triglide should 

be solved. This study assumes that the mobile platform, the parallelogram-type 

limbs and the actuators are flexible, while the other components are infinitely 

rigid. The strain energy of the mobile platform, the limbs and the actuators are 

solved respectively and summed to obtain the total strain energy. 

 

4.1.1 Inverse compliant Jacobian matrix 

Assuming that the mobile platform experiences an external wrench W , 

defined in the global coordinate frame  O  as shown in Figure 4-1, the 

relation between reaction forces and the applied external wrench W  may be 

written as Equation (4-5). 
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In Equation (4-5), 
ijf  denotes the reaction force exerted at the end of the side 

shaft of the parallelogram limb, 
il  denotes the unit vector of the i th limb, and 

1i
b  and 

2i
b  denote the vectors 

1iO B  and 
2iO B . 

 

If  11 12 21 22 31 32

T
f f f f f ff , and  

1 2 3 1 2 3

11 1 12 1 21 2 22 2 31 3 32 3

  
             

l l l l l l
A

b l b l b l b l b l b l
 

Equation (4-6) can be obtained from Equation (4-5), where A  is the inverse of 

the matrix 
A  and termed inverse compliant Jacobian matrix. 

 f AW  (4-6) 
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Figure 4-1: The applied external wrench and reaction forces on the mobile 

platform 

 

4.1.2 Strain energy of the mobile platform 

The internal forces and moments experienced by an arbitrary cross section of 

the mobile platform are depicted in Figure 4-2, and Figure 4-3 depicts the 

local coordinate system attached to the cross section. The z  axis is 
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perpendicular to the mobile platform and the x  axis is parallel to the shaft 

2 1i iB B . As shown in Figure 4-2, the cross section experiences an axial force 

iyf  and two shear forces 
ixf  and 

izf , given below. 

1 2 1

1 2

1 2 1

( )

( )

( ) ( )

ix i i i i

iy i i i i

iz i i i i i

f f f

f f f

f f f

  


  
    

l b

l q

l b q

 

 

The cross section experiences three moments 
ixM , 

izM  and 
i , given below. 

1 2 1

2 2 1 1 1 2 1

1 1 2 2 1
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In the above expressions, 
iq  denotes the unit vector of 

iO O , 
1ib  denotes the 

unit vector of 
1i iO B , 

1ib  and 
2ib  denote the lengths of vectors 

1i iO B  and 
2i iO B , 

and 
iv  denotes the distance of the cross section to the connection point 

between the mobile platform and the limb. 

 

izM
1if

iv

2if

i
iyf

ixM

ixf izf

 

Figure 4-2: Internal forces and moments experienced by a cross section of the 

mobile platform 
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Figure 4-3: Local coordinate system at an arbitrary cross section of the mobile 

platform 

 

With the internal forces and moments, the strain energy of the mobile platform 

can be obtained using Equation (4-7). 
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 (4-7) 

 

In Equation (4-7), 
MPE  and 

MPG  denote the elastic modulus and the shear 

modulus of the mobile platform; 
,xx MPI  and 

,zz MPI  denote the area moment of 

inertia of the cross section about the x  and z  axes; 
MPJ  denotes the polar 

moment of inertia of the cross section; and 
MPA  denotes the area of the cross 

section; 
,x MPA  and 

,z MPA  denote the effective shear area of the cross section 

along the x  and z  axes. The coefficients 
1,MP i , 

2,MP i  and 
3,MP i  are 

dependent on the geometrical properties of the cross section and the material 

properties of the mobile platform. 

 

4.1.3 Strain energy of the parallelogram limb 

The parallelogram limb consists of two bottom shafts and two side shafts. The 

bottom shaft can be separated into two parts from point 
iO  as shown in Figure 
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4-4. The internal forces and moments experienced by the part 
1i iO B  are 

analyzed first. An arbitrary cross section of 
1i iO B experiences one internal 

axial force and two shear forces 
iyf  and 

izf  given below. 
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The cross section experiences two internal moments 
iyM  and izM  which are 

given below. 
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where 
iv  denotes the distance of the cross section to the vertex 

1iB . 

 

The other part 
2i iO B  experiences similar internal forces and moments as 

shown in Figure 4-4(b). The internal axial force and shear forces are 
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iy i i i
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and the internal moments are 
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
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where 
iv  denotes the distance of the cross section to the vertex 

2iB . 
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(b) The internal force and moments experienced by 
2i iO B  

Figure 4-4: Internal forces and moments exerted in the bottom shaft 

 

Thus, the strain energy of the bottom shafts is given by Equation (4-8), where 

uPLE  and 
uPLG  denote the elastic modulus and shear modulus of the bottom 

shaft, 
,yy uPLI  and 

,zz uPLI  denote the area moment of inertia about the y  and z  

axes, 
,y uPLA  and 

,z uPLA  denote the effective area along the y  and z  axes, and 

,uPL iA  denotes the area of the cross section. 
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 (4-8) 

 

The side shaft experiences only axial force as shown in Figure 4-4. Hence, the 

strain energy of the side shafts is given by Equation (4-9), where 
,vPL iE  
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denotes the elastic modulus of the side shaft and 
,vPL iA  is the area of the cross 

section. 
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Figure 4-5: The internal force exerted in the side shaft of the limb 

 

The total strain energy of the limb is the sum of the strain energy of the side 

shafts and the bottom shafts, given by Equation (4-10), where the coefficients 

1,PL i  and 
2,PL i  are dependent on the geometrical properties of the cross 

section and the material properties of the limb. 
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4.1.4 Strain energy of the actuator 

If the actuator is translational, the slider and the frame, which constrain the 

orientations of the slider, are assumed to be infinitely rigid. The internal force 

and moments experienced by the lead screw is depicted in Figure 4-6. As 

shown in Figure 4-6, the lead screw experiences an axial force 
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1 2( )ix i i i if f f  l d  

and a torque 

1 2( )

2 2

ix i i i i i i
i

f P P f f


 

 
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l d
 

where 
id  denotes the unit vector of the lead screw and 

iP  is the lead of the 

lead screw. 
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Figure 4-6: The internal force and moment experienced by the lead screw 

 

With the internal force and moments, the strain energy of the lead screw can 

be obtained using Equation (4-11). 
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The motor experiences a torque given below, where 
iN  denotes the 

transmission ratio of the gear box in the actuator. 

i
mi

iN


   
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If 
,tor ik  is the equivalent torsional stiffness of the motor, the strain energy of 

the motor is obtained using Equation (4-12). 
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With Equations (4-11) and (4-12), the total strain energy of the actuators can 

be obtained using Equation (4-13), where the coefficients 
1,Act i , 

2,Act i  and 

3,Act i  are dependent on the physical properties of the motor and the lead screw 

of the actuator. 
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4.1.5 The total strain energy of a triglide 

With the formulations given in the previous sections, the total strain energy of 

a triglide is given by Equation (4-14), where 
1, 1, 1, 1,i MP i PL i Act i      , 

2, 2, 2,i MP i Act i     and 
3, 3, 2, 3,i MP i PL i Act i      . 
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1, 1 2, 1 2 3, 2

1

( )

MP PL Act

i i i i i i i

i

U U U U

f f f f  
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 (4-14) 

 

With infinitesimal translation 
T

x y z      χ  and infinitesimal 

rotation
T

x y z      ψ , Equation (4-2) will form the following 

Equation (4-15), where 
,i ja  denotes  the  element located in the i th row and  
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j th column of the inverse compliant Jacobian matrix A , and 
ia  denotes the  

i th row vector of the matrix A . 
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With Equation (4-3), Equation (4-16) can be obtained. 
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After obtaining the total compliant matrix C , the total stiffness matrix K  can 

be obtained easily using Equation (4-4). 
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4.2 Comparison with FEA method 

With appropriate settings, modelling and meshing, FEA methods are able to 

obtain accurate results. Since the FEA methods have been adopted by many 

researchers to evaluate their analytical results, an FEA model is built in this 

study to evaluate and compare with the proposed algebraic analysis. In this 

evaluation, the geometrical and material properties of the triglide are listed in 

Table 4-1. It should be noted that the cross sections of all the analyzed 

components of the triglide are of the same solid circular shape, and the 

materials of all the components are the same. The limbs of the triglide are 

identical and the actuators are distributed symmetrically. 

 

Besides the physical properties of the triglide, it is necessary to provide the 

configuration of the triglide, since stiffness is a local property and is 

dependent on the configuration. It is time-consuming and difficult to analyze 

the stiffness of all the configurations within the entire workspace. The 

configurations of the PTPM can be categorised into two groups based on 

whether the PTPM is rotational symmetric. Hence, this study selects a 

rotational symmetric configuration, in which the actuators have the same 

displacement, and an asymmetric configuration, in which the actuators have 

different displacements. In the symmetric configuration, two different 

wrenches are applied at the centre of the mobile platform. The first wrench is a 

force along the z  direction in which the PTPM is assumed to be stiffest and 

the second one includes random forces and moments. In the asymmetric 

configuration, the PTPM experiences a general wrench. Table 4-2 lists these 

configurations and the applied wrenches. 
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Table 4-1: The physical properties of an analyzed triglide 

Parameters Units Value 

aR  mm 10 

bR  mm 5 

l  mm 10 

n  mm 6 

  degree 40 

A
 mm

2
 3.1416 

E  GPa 210 

G  GPa 80 

N   5 

P  mm 3 

tork  N m/rad  53 10  

 

Table 4-2: The configurations of the triglide and the applied wrenches on the 

triglide 

Parameters Units Configuration 1 Configuration 2 Configuration 3 

Actuator 1 mm 1 1 1 
Actuator 2 mm 1 1 2 
Actuator 3 mm 1 1 3 

Force 
xF  N 0 19 46 

Force 
yF  N 0 -18 -1 

Force 
zF  N -100 45 30 

Moment 
xM  Nm 0 -46 -36 

Moment 
yM  Nm 0 -6 -8 

Moment 
zM  Nm 0 -12 42 

 

A commercial FEA software, Abaqus (Dassault Systèmes), is used to model 

the triglide. The actuators of the triglide are modelled using spring elements. 

Beam elements are used to model the mobile platform and the limbs of the 

triglide. All the passive joints are assumed to be non-deformable. Table 4-3 

lists the deformation of the central point of the mobile platform obtained using 

the FEA method and the algebraic method. Table 4-3 shows that 

displacements less than 
61.0 10 mm and orientations less than 

61.0 10
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radian are much smaller than the other values. These values can be attributed 

to computation errors. Therefore, values less than 61.0 10  are not used to 

compute the relative errors between the results obtained using the algebraic 

and FEA methods. 

 

From Table 4-3, it can be seen that the differences between the results from 

the FEA and algebraic methods are not obvious. The maximum relative error 

is less than 10%. With this comparison, it can be stated that the algebraic 

method can be chosen as an alternative to the FEA method in the pre-design 

stage, especially in optimization design. 

 

Table 4-3: The deformation of the central point of the mobile platform 

Configuration Method 
x  y  z  xM  

yM  
zM  

mm mm mm radian radian radian 

1 

Algebraic -4.3×10-17 2.0×10-17 -0.0148 6.1×10-19 3.7×10-18 -1.4×10-18 

FEA -3.0×10-7 1.8×10-7 -0.0141 6.1×10-8 1.5×10-10 -3.3×10-10 
Relative 

error 
  4.73%    

2 

Algebraic 0.1196 -0.1314 -0.0067 -0.0100 -0.0088 -0.0012 

FEA 0.1093 -0.1198 -0.0063 -0.0091 -0.0080 -0.0011 
Relative 

error 
8.61% 8.83% 5.79% 9% 9.09% 8.33% 

3 

Algebraic 0.3058 -0.0126 -0.0790 -0.0018 -0.0190 0.0043 

FEA 0.2770 -0.0121 -0.0716 -0.0017 -0.0172 0.0039 
Relative 

error 
9.42% 3.97% 9.37% 5.56% 9.47% 9.30% 

 

4.3 Stiffness index 

This study proposes a new stiffness index, which measures the inverse of the 

virtual work completed by a unit wrench, to evaluate the stiffness of a triglide. 

This stiffness index can be termed the virtual work (VW) stiffness index. 

 

Supposing a unit wrench W  is applied on the mobile platform of a triglide, 

the virtual work completed by the wrench is given by Equation (4-17). 
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 T

VW  W ξ  (4-17) 

 

Since the infinitesimal twist 1 ξ K W , the VW stiffness index is given by 

Equation (4-18). 

 
1

1
V T





W K W

 (4-18) 

 

With the VW stiffness index, the stiffness matrix is converted into a single 

value. This value measures the resistance of a triglide to deformation under a 

given wrench. It should be noted that the virtual work completed by the forces 

and moments of the wrench W  must have the same unit in order to compute 

the VW stiffness index. The unit wrench used in Equation (4-18) is required to 

satisfy 1W . 

 

The VW index is used as a local presentation of the stiffness property of the 

triglide defined in Table 4-1. The workspace of a PTPM is plotted in Figure 4-

7. The workspace is discretized into points with an interval of 0.25mm along 

the x , y  and z  directions. The workspace in the plane of 10z  mm, which is 

in the middle of the entire workspace along the z  direction, is selected to 

evaluate the VW index of the PTPM. In this plane, the configurations of the 

PTPM include the general configurations and a rotational symmetric 

configuration, in which the mobile platform is located at the centre of the 

plane. If the unit of the virtual work is unified to be 0.001 joule and the 

wrench  0 0 1 0 0 0
T

W , the distributions of the index in the plane 
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of 10z  mm are illustrated in Figure 4-8. It can be seen that the VW index is 

higher and increases sharply as the mobile platform is closer to the center of 

the workspace. The boundary of the workspace has the lowest value of the 

VW index. With the same applied wrench, the index measures the resistance 

to deformation. Thus, it can be stated that the triglide is the stiffest at the 

central position if the applied wrench is a force along the z  direction, and its 

stiffness becomes lower if the mobile platform is closer to the boundary of the 

workspace. 

 

 

Figure 4-7: The discretized workspace of a PTPM and its workspace in the 

plane of 10z  mm 
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Figure 4-8: The distribution of the VW index of the triglide in the plane of 

10z  mm when a unit wrench is applied 

 

The VW index is compared with two other indices, which are the determinant 

and the eigenvalues of the stiffness matrix. The determinant index uses a 

single value to evaluate the stiffness of a parallel manipulator, while the 

eigenvalues use the maximum and minimum values to define a boundary of 

the stiffness. Figure 4-9(a) plots the distributions of the determinant index in 

the plane of 10z  mm, and the distributions of maximum and minimum 

eigenvalues in the plane of 10z  mm are depicted in Figure 4-9(b) and Figure 

4-9(c). Similar to the VW index, the triglide has the largest determinant and 

minimal eigenvalues at the center of the workspace, and they become smaller 

farther away from the center as presented in Figure 4-9(a) and Figure 4-9(c). 

However, the maximum eigenvalue becomes smaller closer to the center and it 

is the largest at the boundary as shown in Figure 4-9(b). This phenomenon 

illustrates that the triglide is stiffest at the boundary with an applied wrench in 

the direction specified by the eigenvector corresponding to the maximal 

eigenvalue, while it is the most deformable at the boundary if the applied 

wrench has the same direction with the eigenvector corresponding to the 
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minimal eigenvalue. The wrenches from different directions cause the triglide 

to behave differently. Unfortunately, the determinant and the eigenvalues fail 

to relate the stiffness property with the direction of the applied wrench on the 

triglide. 

 

 

(a) 

 

(b) 
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(c) 

Figure 4-9: The distributions of the (a) determinant, (b) maximal and (c) 

minimal eigenvalues of the stiffness matrix in the plane of 10z  mm 

 

If a unit wrench  0.4082 0.4082 0.4082 0.4082 0.4082 0.4082
T

W  

is applied on the triglide, Figure 4-10 depicts the distributions of the VW 

index in the plane of 10z  mm. From Figure 4-10, it can be seen that the 

distributions are different from that depicted in Figure 4-8. The triglide is not 

the stiffest when its mobile platform is at the central position. The stiffest 

position is located between the center and the boundary of the workspace. 

Although the trigide with its mobile platform at a boundary position still 

behaves to be more deformable, the triglide becomes stiffer when the 

boundary position is nearer to the stiffest position. The comparison between 

Figure 4-8 and Figure 4-10 shows that the stiffness properties are very 

different in different directions. It is necessary to relate the value of a stiffness 

index to the direction of the wrench experienced by the manipulator. 
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Figure 4-10: The distribution of the VW index of the triglide in the plane of 

10z  mm when a different unit wrench is applied 

 

It should be noted that elementary arithmetic operation of translation and 

orientation is interpreted differently, since the units of translation and 

orientation are different. However, this operation is common to compute 

several stiffness indices. Compared with the determinant and the eigenvalue 

indices, the VW index uses virtual work to avoid the problem caused by the 

different units of translation and orientation and relates the index value to the 

direction of the wrench applied on the manipulator. With the VW index, the 

stiffness of a parallel manipulator can be optimized by changing its structural 

configuration and dimension when the wrench pplied on the mobile platform 

is known for a specified task. In addition, the VW index can be used to find 

the direction in which the manipulator is stiffest in the entire workspace when 

its structure and dimension are known. 

 

4.4 Conclusion 

Based on Castigliano’s second theorem, this study uses the strain energy 

method to deduce an algebraic expression for the stiffness of a general triglide. 
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In the proposed method, the deformations of the mobile platform, the limbs 

and the actuators of the triglide are considered, while the other components are 

assumed to be infinitely rigid. With this algebraic expression, the stiffness 

matrix can be obtained easily even when the configuration or the dimension of 

the PTPM has been changed. After a comparison with an FEA method, it is 

found that the relative error between the algebraic method and the FEA 

method is lower than 10%. The algebraic method can be considered to be an 

alternative of the FEA method and is suitable to be used in the pre-design 

stage, especially in design optimization as it requires less computation.  

 

To evaluate the stiffness of a triglide, a new stiffness index is proposed to 

measure the resistance of a parallel manipulator to deformation with an 

applied wrench. Compared with other stiffness indices, this index uses virtual 

work to avoid interpretation difficulty caused by different units of translation 

and orientation, and relates the index value to the direction of the wrench 

experienced by the manipulator during an operation This index can be used to 

optimize the structure or plan the trajectory of a parallel manipulator to 

achieve high stiffness. 
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CHAPTER 5 OPTIMIZATION OF THE PARALLEL 

MANIPULATOR 

 

Although the performance analysis of a parallel manipulator is complicated, it 

is believed that a good optimization design approach is able to bring 

significant improvements of its performance. Optimization design of a parallel 

manipulator has attracted much interest from researchers. The optimization of 

a linear delta and an Orthoglide has been presented in [30, 110, 111]. However, 

the optimization of a general triglide has not been reported. This chapter 

proposes a method aiming to provide the optimization of a general triglide 

considering its dexterity, stiffness and ratio of dimensional volume to 

workspace.  

 

Stiffness optimization has been addressed by many researchers, as in the case 

of a linear delta [28], a 5-DOF tripod [112], and a 3-DOF parallel manipulator 

[113], while they only considered the compliance of actuators and have 

ignored the compliance of limbs, mobile platforms of the manipulators. Since 

the ignored compliance has significant effects on the static stiffness of a 

parallel manipulator, this chapter includes the compliance of actuators, limbs 

and the mobile platform into the optimization study.  

 

The ratio of workspace to dimensional volume of a parallel manipulator was 

developed by Miller [114] to measure the factor of space utilization. The 

dimensional volume of the parallel manipulator is represented with a bounding 

box, which is defined to be a minimum prism containing all the actuators and 
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positions within its workspace. This ratio was also adopted by Liu [28] to 

optimize a linear delta. Liu used a cylinder enclosing the structure of the robot 

to represent its dimensional volume. These representations are easy to obtain a 

constant value of the space utilization of a parallel manipulator. However, the 

space utilization changes during the movement of the mobile platform, but the 

variable utilization is ignored by these researchers. This chapter uses a 

constant volume to obtain the basic space utilization of a parallel manipulator 

and an average variable volume to represent the variable utilization due to 

movement. 

 

This chapter first introduces three performance criteria to measure dexterity, 

stiffness and ratio of workspace to dimensional volume, followed with the 

possible constraints posed in the optimization. After the description of the 

constraints, the optimization results using the proposed method are compared 

with a reported optimal solution of a parallel manipulator, which has a similar 

structure as the triglide, and conclusions are drawn. 

 

5.1 Performance measures 

5.1.1 Dexterity 

Singularity avoidance is one important requirement of a parallel manipulator 

during an operation, since its controllability is lost in a singular configuration. 

A parallel manipulator can have three kinds of kinematic singularities, which 

are forward kinematic singularity, inverse kinematic singularity and a 

combination of the previous two singularities. In order to assess singularity 

avoidance and position accuracy, several performance criteria have been used 
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by the researchers, such as the condition number or the minimum singular 

value of kinematic Jacobian matrix, and the manipulability [115]. The global 

dexterity was defined by Altuzarra et al [32] to be an average distribution of 

the condition number of the kinematic Jacobian matrix on a given trajectory. 

Before Altuzarra et al, the global dexterity was calculated by Rao et al [29] 

and Abbasnejad et al [116] using the average distribution of the condition 

number over the workspace of a parallel manipulator. This calculation was 

also used by Stock and Miller [117] to measure the manipulability of a parallel 

manipulator. Actually, the average distribution of the condition number was 

first proposed by Gosselin and Angeles as the global conditioning index [79] 

to measure the error amplification between the joints and the Cartesian spaces. 

This index has been widely used by many researchers [24, 28, 80, 81] as a 

criterion of kinematic performance. Hence, this chapter uses a similar index 

used by Abbasnejad et al [116] to measure the global dexterity of a general 

triglide.  

 

Before the calculation of the global dexterity index (GDI), it is necessary to 

obtain the kinematic Jacobian matrix first. The structure of a general triglide is 

depicted in Figure 3-1. For more information about a general triglide, it is 

suggested to refer to Chapter 3. The Jacobian matrix can be obtained using the 

method proposed by Tsai and Joshi [25]. If 
it  denotes the unit vector of 

i iB C , 

 x  and 
iq  denote respectively the velocity of the mobile platform and the i th 

actuator, and 
is  is the unit vector of

i iA C , Equation (5-1) can be obtained. 

 T T

i i i it x t s q   (5-1) 
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Thus, the forward kinematic Jacobian matrix is obtained using Equation (5-2). 

 

1 1

2 2

3 3

T

T

q

T

 
 

  
 
 

t s

J t s

t s

  (5-2) 

 

The inverse kinematic Jacobian matrix is obtained using Equation (5-3). 

  1 2 3

T

x J t t t   (5-3) 

 

Both 
qJ  and xJ  are 3 3  matrices. Therefore, the Jacobian matrix is 

 
1

x q

J J J   (5-4) 

 

The GDI can be calculated using Equation (5-5). 

 

1

W

W

dW

dW

 



  (5-5) 

where   is the condition number of the Jacobian matrix, which can be 

obtained using 1J J  , and W  is the entire workspace of the parallel 

manipulator. 

 

Since   tends to infinity at singularities, and is equal to 1 at isotropic positions, 

the global dexterity index is within the interval  0,1  and larger value of   

gives better dexterity of the triglide. 
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5.1.2 Stiffness 

As described in Chapter 4, the strain energy method is used to obtain the 

stiffness matrix of the triglide considering the compliances of its mobile 

platform, limbs and translational actuators. As discussed in Chapter 4, the VW 

stiffness index is able to avoid the problem caused by different units of 

translation and orientation and relates the index value to the direction of the 

wrench applied on the manipulator. This index is used to evaluate the stiffness 

behavior. Larger index can make the manipulator more difficult to be 

deformed. 

 

It should be noted that the VW index presents local stiffness property. Its 

value is dependent on the configuration of the triglide. The GSI can be 

obtained using Equation (5-6). 

 
V

W

W

dW

dW



 




  (5-6) 

where 
V  is the VW index and can be obtained using Equation (4-18). 

 

5.1.3 Space utilization 

As described in Chapter 3, the workspace volume can be obtained using the 

geometrical method, which is fast and accurate. The workspace volume can be 

denoted as V . Since the triglide is a 3-identical-leg parallel mechanism, the 

volume of the triangular prism is used to represent the dimensions of the 

triglide. The volume can be separated into a constant size and a variable size 

as shown in Figure 5-1. The volume of the constant prism 
1P  remains the 
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same, while the volume of the variable prism 
2P  depends on the postures of 

the triglide. If the volume of 
1P  is denoted by 

1V , it can be obtained using 

Equation (5-7), in which 
ds  is the full stroke distance of the actuator. 

 2 2 3

1

23
(3 sin 3 sin cos sin cos )

4
a d a d dV R s R s s        (5-7) 

 

However, the variable prism 
2P  is not always a normal prism, since any two 

instances of 
1 1B C , 

2 2B C  and 
3 3B C  are not always coplanar. If 

2V  denotes the 

volume of 
2P , then it can be computed as the sum of the volumes of three 

triangular pyramids 
1 1 2 3CB C C , 

2 1 2 3BC B B  and 
1 3 2 3BB C C . Since 

2V  

changes due to the movement of the mobile platform, its average value over 

the workspace is used to represent the variable volume, and the average of 

constant volume and variable volume is used to represent the total dimensional 

volume of the triglide. As shown in Figure 5-1(a), the volumes 
1V  and 

2V  have 

an overlapped volume, which is the volume of the prism 
1 2 3 1 2 3A A A C C C . If 

the overlapped volume is denoted by 
3V , the ratio of the workspace to 

dimensional volume (RWV) can be obtained using Equation (5-8). Larger 

ratio reflects better space utilization of the manipulator. 

 
2 3

1

2

( )
V

W

W

V

V V dW

V
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



 (5-8) 
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(a) Structure of the triglide 

 

(b) The constant prism and the variable prism 

Figure 5-1: The structure of the triglide and a constant prism and a variable 

prism in its structure 

 

5.2 Constraints 

5.2.1 Motion range of passive joints 

In the design of a general triglide, some physical constraints should be taken 

into consideration, such as the motion range of passive joints. If the 

parallelogram limb is considered as one integrated part, each limb has two 

rotation DOFs, so that the rotating shaft can rotate about the frame origin 

along directions 
1n  and 

2n  as shown in Figure 5-2. Therefore, the physical 

Variable 

prism  

Constant 

prism  

1A

2A

3A

1D

3D

2D

1B

2B

3B

1C
2C
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constraint posed by the passive joints allows rotation angles about the two 

axes smaller than 
lim  and 

lim . 

 

X

Y

Z

limlim

1n

2n

 

Figure 5-2: The motion range of a parallelogram limb 

 

5.2.2 Collision-Free requirement of limbs 

Besides the constraint due to the motion range of the passive joints, collision 

among all the limbs of the triglide should be avoided in the movement of the 

mobile platform. If all the limbs are simplified as identical solid cylinders, 

collision-free movement can be achieved by ensuring that the shortest distance 

between any two limbs is larger than the diameter of the limb. 

 

5.2.3 Prescribed Task Space 

It is common to define a prescribed task space before the optimization of a 

parallel manipulator to guarantee that the manipulator can complete an 
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expected task in practice. Generally, a prescribed task space can be a sphere, 

cylinder or cuboid. As described in Chapter 3, a regular workspace can be 

used to represent approximately the true workspace of the triglide. If the 

workspace is sliced along the z  direction, the workspace boundary can be 

represented approximately using an inscribed circle. If the task space is 

defined to be a sphere or cylinder, the radius of the task space on the slicing 

plane should not be larger than that of the inscribed circle. For a cuboid task 

space, it is required that the radius of the inscribed circle is not smaller than 

that of the circumscribed circle of the rectangle task space on the slicing plane. 

To check whether the whole task space is covered in the workspace, the flow 

chart of the procedures is outlined in Figure 5-3 and the following describes 

the checking procedures. 

 

1 Obtain an approximate range of the workspace in the z  direction. Obtain 

the dimensions of the task space. Use the radius to represent a spherical 

task space, the radius and height to represent a cylindrical task space, and 

the radius of the circumscribed circle and height to represent a rectangle 

task space. Set the flag value to be 0, set the value of z  to be the minimum 

in its range and set the current height of the task space to be 0. 

2 If the value of z  is in its range, go to step 3, else go to step 8. 

3 Obtain the workspace boundary and volume on the slicing plane z . If the 

flag is larger than 0, go to step 4, else go to step 5. 

4 Increase the value of z  with a step t , and then go to step 2. 

5 Obtain the radius of the inscribed circle of the workspace on the slicing 

plane z . If the radius is larger than 0, go to step 6, else go to step 4. 
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6 If the current height of the task space is over its true height, set the flag to 

be 1 and then go to step 4, else go to step 7. 

7 Check whether the circle of the task space at the current height is larger 

than the inscribed circle of the workspace. If yes, decrease the current 

height with a step t  and continue to check until the current height is 0 or 

the checking result is no. If no or the current height is 0, increase the 

current height with a step t  and then go to step 4. 

8 If the flag is larger than 0, the task space is enveloped in the workspace, 

else the workspace cannot cover the task space. Return the workspace 

volume. 
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Figure 5-3: The flow chart of constraint evaluation of prescribed task space 

 

5.3 Architecture optimization 

5.3.1 Design Variables 

Tens of variables are necessary to describe a general parallel manipulator. The 

optimization of all these variables is complicated and time-consuming. Since 

the triglide is symmetrical, five variables can be used to construct the 

manipulator, including the radius of the base plate, 
aR , the radius of the 
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mobile platform, 
bR , the limb length, l , the tilting angle,  , and the full 

stroke of the actuator, 
ds . 

 

5.3.2 Objective functions 

As described in section 5.1, this chapter aims to maximize the GDI, GSI and 

RWV. If the GDI, GSI and RWV are denoted using  ,   and 
V , the 

optimization can be formulated into Equation (5-9), where  
T

V  F , 

tC  denotes the constraints posed by the motion range of the passive joints and 

the requirements of collision avoidance and the specified task space, and bC  

denotes the requirements of boundaries of all the design parameters. 

 

max ( )

0

0

t

b





 

F X

C

C

 (5-9) 

 

5.3.3 Solution algorithm 

The non-dominance sorted genetic algorithm (NSGA) is used to solve the 

multi-objective optimization. The populations in each generation are grouped 

into feasible and non-feasible sets based on the constraints. The members in 

the feasible set are first sorted according to the level of non-domination, and 

later sorted using the distance of the objective values of each member to its 

neighbors in the space of objective functions. A member with a higher rank of 

non-domination means there are fewer other members that are better than it, 

and a higher rank of the distance provides better diversity of the populations. 

The non-feasible set is first sorted based on the violation numbers of the 
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constraints. A member with fewer violations is assigned a higher rank. The 

following sorting procedure is the same as the feasible set. More information 

about the NSGA algorithm can be found in [89]. During the genetic operation, 

the selection follows the principles depicted in Figure 5-4. 

 

Members 

for selection

Select the 

feasible member

Belong to the 

same set?

Belong to non-

feasible set?

Same rank of 

violations?

Same rank of 

non-domination

Same rank of 

distance

Select the 

higher rank 

member

Randomly 

select one 

member

End

Yes

No

Yes

Yes

Yes

Yes

No

No

No No

 

Figure 5-4: The selection principle of the NSGA 

 

5.4 Optimization results and comparison 

In order to evaluate the proposed optimization method for a general triglide, it 

is compared to the method proposed by Li and Xu [118]. In [118], Li and Xu 

optimized a 3-PUU parallel manipulator to improve its dexterity and space 

utilization, which has the same kinematics as the triglide. The only difference 

between the 3-PUU manipulator and the triglide is the different limb structures. 

The triglide uses a parallelogram-type structure in its limb to constrain the 

orientations of its mobile platform, while the 3-PUU manipulator adopts a 

prismatic-universal-universal limb. Only if the limb satisfies the principles 

described by Tsai and Joshi in [25], the 3-PUU manipulator can have three 
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purely translational DOFs. Because of the same kinematics, the calculations of 

the GDI and RWV are not affected due to the different limbs which can cause 

different values of the GSI. Since Li and Xu only considered the optimization 

of the GDI and RWV, their optimization results can be used as a comparison 

with the method proposed in this chapter. 

 

Li and Xu aggregated the objectives into a scalar function using weight 

parameters to solve the optimization. One optimal solution, which was 

obtained using equal weight parameters of the dexterity and space utilization, 

is selected for the comparison. This solution is labelled as reference 1. The 

variable values of reference 1 are listed in Table 5-1. Since Li and Xu did not 

consider the stiffness performance, the GSI of reference 1 is obtained using 

the method introduced in Chapter 4. As discussed in Chapter 4, the stiffness 

analysis requires the geometrical and physical properties of the manipulator. 

For simplicity, the mobile platform, the limbs and the leads of the actuators 

are constructed using identical spherical solid beams. Their properties are 

listed in Table 5-2. The calculation of the GSI requires a unit wrench. The unit 

wrench can be arbitrary if the virtual work completed by the forces and 

moments contained in the wrench has the same unit. The applied wrench on 

the mobile platform is assumed to be 0 0 2 2 0 0 2 2 
 

, which 

means the triglide experiences a force in the z  direction and a moment about 

z , since the triglide is the stiffest in the z  direction at symmetrical 

configurations as shown in Chapter 4. To make the comparison convincing, 

the optimization in this study adopts the same constraints and the same design 

variables as used in [118] and they are listed in Table 5-3. The optimization 



94 

 

includes four variables, which are the radii 
aR  and 

bR  of the base plate and 

the mobile platform, limb length l  and tilting angle  . The stroke of the 

actuator is defined to be a constant and its value is set as 2. 

 

Table 5-1: Variable values of references 1, 2 and 3 

Variables aR  
bR  l     ds  

Units mm Mm mm degree mm 

Reference 1 3 1 3 45 2 

Reference 2 2.96 1.02 3.76 88.68 2 

Reference 3 4.22 1.06 4.75 89.81 5.59 

 

Table 5-2: The geometrical and physical properties of the optimized parallel 

manipulator 

Parameters Units Value 

bA  (Cross section area of the solid beams) mm
2
 3.1416 

E  (Elastic modulus of the solid beams) GPa 210 

G  (Shear modulus of the solid beams) GPa 80 

N  (Transmission ratio of the gear box used 

in actuators) 

 5 

P  (Lead of the lead screw used in actuators) mm 3 

tork  (Equivalent stiffness of the motor) N m/rad  53 10  

 

Table 5-3: Design variables and constraints 

Design 

variables 

aR /mm 1 8aR   

bR /mm 1 8bR   

l /mm 2 8l   

 /degree  0 105   

Constant 

variable ds /mm 2 

Motion 

range
 

lim /degree 40 

lim /degree 40 

Other constraints a bR R  
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In addition, the number of populations in each generation is set as 200, and the 

total generations are 1000 in the NSGA algorithm. This optimization 

algorithm is implemented using MatLab (Mathworks, Inc). 

 

Figure 5-5 depicts the Pareto front obtained in the 1000th generation and its 

projection on three coordinate planes. From Figure 5-5, it can be seen that the 

RWV is conflicting with the GDI and GSI. It is impossible to achieve optimal 

RWV, GDI and GSI simultaneously. It is also found that the GDI and GSI are 

nearly harmonious when the GDI is less than about 0.5, but they become 

conflicting as the GDI becomes larger. Due to the complex relationship among 

these three properties, the NSGA algorithm is capable of providing various 

solutions. With these solutions, the user can select the appropriate one based 

on other requirements. If the requirement is set to be better than reference 1, 

14 solutions are found from the Pareto front. The values of objective functions 

of these solutions are depicted in Figure 5-6. It can be seen that the objective 

values of all the solutions are better than those reported in reference 1. 
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Figure 5-5: The Pareto front obtained using the NSGA algorithm 

 

 

Figure 5-6: The objective values of reference 1 and 14 optimal solutions 
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Figure 5-7: The objective values of reference 2 and the seven optimal 

solutions 

 

It should be noted that the optimization compared to reference 1 does not 

include the stroke ds . However, the stroke is believed to have significant 

effect on the performance of a parallel manipulator. Thus, the stroke is 

considered in the design variables and the optimization is performed again. 

The boundary of the stroke is defined to be 2 8ds  . In this optimization, 

one of the 14 optimal solutions plotted in Figure 5-6 is selected as in reference 

2. Its variable values are listed in Table 5-1. This solution has the largest 

values of the GDI and GSI in all the 14 solutions.  

 

Compared to reference 2, seven optimal solutions are obtained from the new 

optimization. Their objective values are depicted in Figure 5-7, which shows 

that these optimal solutions are better than reference 2. From Figure 5-6 and 

Figure 5-7, it shows that the optimization proposed in this study can provide 
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better solutions as compared to the method proposed in [118], and the 

inclusion of the stroke into the design variables is able to improve the optimal 

solutions further.  

 

 

Figure 5-8: The GDI, GSI and RWV of references 1, 2 and 3 

 

One solution is selected from the seven optimal results obtained using the 

methodology considering the stroke of actuators and labelled as reference 3. 

This reference has the maximum GDI and GSI compared with the other six 

optimal results. Table 5-1 lists the variable values of reference 3 and Figure 5-

8 compares the GDI, GSI and RWV of references 1, 2 and 3. From this figure, 

it can be seen that reference 3 has the largest GDI, GSI and RWV. Comparing 

with reference 1, the GDI is improved by 75.26%, the GSI is raised by 42.79% 

and the RWV is increased by 2.44%. 
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5.5 Conclusion 

This chapter provides an optimization method for a general triglide-structure 

parallel manipulator. The optimization aims to improve the dexterity, stiffness 

and space utilization of the manipulator. The deformation of the mobile 

platform, the limbs and the actuators is considered to obtain the stiffness 

matrix. A novel stiffness index is used to measure the stiffness property 

related to applied external wrench. The variable dimensional volume due to 

the posture of a general triglide is computed to obtain its ratio of space 

utilization without using an approximate regular shape to estimate its physical 

size. This method can be used to optimize all general triglides, and it can also 

be used to optimize specific triglides, such as the linear delta and orthoglide. 

 

Comparing with published work, the method proposed in this chapter is shown 

to be capable of providing optimal designs in terms of dexterity, stiffness and 

space utilization. The inclusion of the stroke of the actuators into the design 

variables has also shown to be capable of improving the performance of a 

general triglide further. Hence, the proposed method is competent for the 

optimization of general triglides and it is highly recommended to consider the 

stroke of the actuators in the optimization of a parallel manipulator. 
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CHAPTER 6 REGISTRATION OF THE HYBRID 

ROBOT 

 

The registration of an industrial robot is crucial whenever its interaction with 

objects has to be detected by a tracking system. However, there is no reported 

solution to address this issue for a hybrid robot. As discussed in Chapter 2, 

The registration can be represented with an equation where X  is the 

transformation matrix of the relative pose of a global coordinate frame with 

respect to the end effector of the parallel manipulator, Y  is a transformation 

from a global coordinate frame to the base coordinate frame of the serial robot, 

Z  is a constant matrix that denotes the transformation from the flange of the 

serial robot to the base of the parallel manipulator. 

 AX YBZC  (6-1) 

 

Different from classical registration, the registration of a hybrid robot requires 

the need to solve an equation with three unknowns, which includes the 

transformation matrices X , Y  and Z . Two of these unknowns are coupled 

together as shown in Equation (6-1). This property makes it difficult to obtain 

a closed-form solution. To determine these unknowns, this chapter presents 

the Degradation-Kronecker (D-K) method, which provides a closed-form 

solution for the registration of a hybrid robot. Since closed-form methods were 

reported to suffer from low accuracy under perturbance [51], a pure nonlinear 

(PN) method, which uses an iterative algorithm, is proposed in this study to 

overcome this problem. The product of exponentials (POE) method is also 

used to solve this registration, since this method is able to avoid kinematic 
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singularity. The proposed methods are compared to analyze their performance 

with respect to computation time, accuracy and robustness to noise. 

 

6.1 The D-K method 

The D-K method separates the hybrid robot into two components, namely, the 

serial and parallel components. This separation allows the hybrid robot to be 

registered with respect to a tracking system using three steps. The serial 

component and the parallel component are determined individually in the first 

two steps, and the results are used to complete the registration of the hybrid 

robot in the last step.  

 

First, the parallel manipulator is locked for the registration of the serial 

component. The transformation from the tool to the flange of the serial robot 

which is described in Figure 2-4, is denoted by tX , 1 1

t

 X XC Z . Since the 

parallel manipulator is locked, tX  is a constant due to the constant C , which 

denotes the transformation from the base of the parallel manipulator to its end 

effector. Hence, Equation (6-1) is degraded to an equation that is similar to the 

HEC problem, 

 t AX YB  (6-2) 

 

In the second step, the serial robot is locked to allow the registration of the 

parallel component. The transformation from the global coordinate to the base 

of the parallel manipulator is denoted by tY , t Y YBZ . Since tY  is a 
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constant, similar to the first step, Equation (6-1) is degraded to the following 

equation. 

 tAX YC  (6-3) 

 

Many solutions have been proposed for Equations (6-2) and (6-3). Since the 

Kronecker product method is claimed to be fast and accurate, this method is 

used to obtain tX , tY , X  and Y . For arbitrary matrix A  and matrix B , their 

Kronecker product is denoted as A B . It should be noted that A B  and 

B A  are usually different. A homogenous transformation matrix A   

0 1

A A 
  
 

R t
A  

has rotation and translation components, 

1 2 3

4 5 6

7 8 9

A

r r r

r r r

r r r

 
 


 
  

R , 
T

A x y zt t t   t  

with the representation  1 2 9Vec( )
T

r r rR . 

 

With the Kronecker product method, Equation (6-2) can be reformulated to be 

a linear equation, 

 3 3

3 3

Vec( )

Vec( ) 00 0

0

t

t

X

T
YA B

T
X AB A

Y

 
 

                 
  

R

RR I I R

t tI t R I

t

 (6-4) 
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Figure 6-1: The flowchart of the D-K method 

 

Using several measurements, Equation (6-4) can be used to form an equation 

system to obtain a unique solution. Generally, 
tXR  and YR  that have been 

determined, which are the rotation components of the transformation matrices 

tX  and Y , are not orthogonal. An orthogonal constraint is necessary to 

determine appropriate rotation matrices. The SVD approach is used to obtain 

the closest orthogonal matrices of 
tXR  and YR . For example, the closest 
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orthogonal matrix 
tXΩ  of 

tXR  can be obtained from minimizing the 

Frobenius norm 
t tX XΩ R . If the SVD result of 

tXR  is 
*

t t t tX X X XR U Σ V , 

where 
tXU  is a unitary matrix, 

tXΣ  is a diagonal matrix and 
*

tXV  is the 

conjugate transpose of a unitary matrix, it can be proved that the product 

*

t tX XU V  is the solution of the minimization of the Frobenius norm 
t tX XΩ R . 

Equation (6-3) can be solved using the same procedure. After obtaining tX , 

Y , X  and tY , 1 1

1 t

 Z X XC  and 1 1

2 t

 Z B Y Y  can be obtained in the third 

step. In theory, 1 2 Z Z Z . However, noise always causes 1 2Z Z  in 

practice. Therefore, the unknown Z  is assigned the value of 1Z  or 2Z , 

whichever has the smaller registration residuals. Figure 6-1 presents the 

flowchart of the D-K method. 

 

6.2 The PN method 

Different from the D-K method, the PN method [51] solves all the unknowns, 

X , Y  and Z simultaneously. Since each rigid transformation is composed of 

one translation and one rotation, Equation (6-1) can be decomposed into 

Equation (6-5). In Equation (6-5), AR , BR , CR , XR , YR , ZR  denote the 

rotation components of the transformation matrices A , B , C , X , Y , Z , 

and At , Bt , Ct , Xt , Yt , Zt  denote their translation components. 

 
A X Y B Z C

A X Y B Y B Z Y B Z C A Y

 

     

R R R R R R R

t R t R t R R t R R R t t t
 (6-5) 

 

Correspondingly, the error function can be defined as 
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Vec( ) 

  
 

R
F

t
 (6-6) 

where F  is a row vector with 12 elements. 

 

For an arbitrary rotation matrix R , it can be represented by a normalized 

quaternion  s i j kq . If the normalization of the quaternion is defined 

as q q q , and  1 0 0 0q  if 0s  , there is only one normalized 

quaternion for an arbitrary quaternion. Thus, for a given quaternion, its 

corresponding rotation matrix can always be found. If the conversion from the 

quaternion to the rotation matrix is denoted by ( )qR , Equation (6-7) can be 

obtained from Equation (6-5). With the quaternion representations, the 

rotation components of X , Y  and Z  are always orthogonal in the iterative 

computation process. 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

A X Y B Z C

A X Y B Y B Z Y B Z C A Y

q q q

q q q q

 

     

R R R R R R R

t R t R t R R t R R R t t t
 (6-7) 

 

Assuming that the number of measurements is n , each measurement produces 

a iF  with Equations (6-7) and (6-6). The PN method aims to find optimal 

solutions of Xq , Yq , Zq , Xt , Yt , and Zt  to minimize Equation (6-8),  

 
12

2

1 1

n

j

i j

f
 

  (6-8) 

where 
jf  denotes the ith entry of the error vector F . 
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The registration has been transformed into a least-square problem. The 

Levenberg–Marquardt (L-M) algorithm can be used to obtain the optimal 

solutions. With the conversion ( )qR , the final solutions of X , Y  and Z  can 

be obtained from Xq , Yq , Zq , Xt , Yt , and Zt . 

 

6.3 The POE method 

The POE formula can be used to solve the calibration problem. This method 

has been adopted by several researchers for the calibration of a serial robot 

[119–122] or a parallel manipulator [123]. According to Okamura [122], the 

POE method can avoid kinematic singularity which always happens in the 

kinematic representations based on the Denavit-Hartenberg parameters. With 

the POE method, each rigid transformation is represented by 
ˆ
ie
 . ˆ

iξ  denotes 

the twist of the ith joint, which belongs to the Lie algebra se(3) of the special 

Euclidean group SE(3). If 
iv  denotes the position vector of the ith joint axis, 

and ˆ
iω  denotes the skew-symmetric matrix of 

iω , which is the unit directional 

vector of the ith joint axis, Equation (6-9) can be obtained,  
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ˆ
0 0

i i

i

 
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ω v
ξ  (6-9) 

where  1 2 3

T

i i i i  ω ,  1 2 3

T

i i i iv v vv , and 
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For the hybrid robot, its forward kinematics can be represented as Equation 

(6-10), if 
1

X , Y , and Z  are represented by 
ˆ
xste

 , 
ˆ
yste


 and 

ˆ
zste

 , and 
ˆ
se


B , 

ˆ
pe


A . 

 
ˆ ˆˆ ˆ ˆ
yst ps zst xstf e e e e e

   
  (6-10) 

 

Since the registration of the hybrid robot only considers errors in ˆ
xstξ , ˆ

ystξ  and 

ˆ
zstξ , The error model can be obtained as Equation (6-11). 
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If right multiplied by 1f  , Equation (6-12) can be obtained. 
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If the operator   maps ˆ (3)i se   into 6

i R , with the explicit expression 

given in [121],  
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ν ω
, and ist ist  , Equation (6-13) can be obtained. 
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If letting 1[ ]y f f    , 
ˆ ˆ ˆˆ ˆ ˆ

( ) ( )yst yst ps s zst

yst zst xstA Ad e e A Ad e e e e A
     

 
J , 

and 
T

yst zst xst     x , Equation (6-13) can be reformulated to 

Equation (6-14). 

 y  J x  (6-14) 

 

With Equation (6-14), a generic error model has been proposed. If 
nf  denotes 

the nominal pose and 
af  denotes the measured pose, Equation (6-15) can be 

obtained if 
nf  and 

af  are assumed to be sufficiently close. 

 1 1log( )a nf f f f      (6-15) 

 

The iterative L-M method can be used to solve the least-square problem. The 

process is illustrated in Figure 6-2. 
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Figure 6-2: The flowchart of POE method 

 

6.4 Simulations 

The D-K method, PN method and POE method are tested and compared with 

numerical simulations. Assuming X , Y  and Z  are known, the value of A  

can be obtained using Equation (6-1) for each joint configuration of the serial 

robot and the parallel manipulator. Shah [96] proved that at least three 

different poses are necessary to obtain a unique solution to Equation (6-2). 

Since the D-K method degrades the registration of a hybrid robot into two 

equations, the number of poses to be measured should be 6n  . It has been 

found that rotation and translation errors tend to decrease with more pose 
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measurements [52], hence a set of data with 20n   is prepared in this 

simulation with 1 10n   for the serial component and 2 10n   for the parallel 

component. This set of data is not perturbed by noise. Nevertheless, noise is 

common in practice. It is necessary to have several sets of data with noise 

included to investigate the performance of the proposed methods against 

perturbance. Hence, different magnitudes of noise are added to the nominal 

values. Noise can have normal distribution and its standard deviations are 

defined to be 0.5%, 1% and 2% of their nominal values. Since each pose 

contains a rotation component and a translation component, noise generation 

is separated into two parts. For the rotation component, the rotation matrix is 

first converted to an angle-axis representation, and the noise is added to the 

angle and every axial value of the axis. For the translation component, the 

noise is added to every axial value. 

 

To ensure that the final result is globally optimal, the methods are 

implemented several times with different initial starting points until the 

variation of the norm of the residuals is within a specified tolerance. The 

initial starting points are generated randomly with their translation 

components in a range  1000 1000 , and the tolerance is defined to be 

smaller than 
61.0 10  in this study. For visual representation, the rotation 

residual is defined to be R , and t  denotes the translation residual. 

 

Figure 6-3 shows the rotation residuals of the nominal values and the optimal 

solutions obtained using the POE method, D-K method and PN method under 
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different noise magnitudes. The box and whiskers in Figure 6-3 depict the 

distributions of the residuals of all the 20 simulated measurements. It can be 

seen that the mean values of the rotation residuals increase with increase in 

noise. Higher noise level also increases the intervals between the minima and 

the maxima of the residuals. There are larger residuals when more noise is 

included in the measurements. This phenomenon can be observed in Figure 

6-4, which illustrates the translation residuals under different noise levels. 

Figure 6-3 and Figure 6-4 show that the PN method can obtain smaller mean 

value and maximum of the residuals than the D-K method, and hence the PN 

method is more accurate than the D-K method. The low accuracy of the D-K 

method is possibly attributed to error propagation in the degradation process 

and the orthogonal regulation in the Kronecker product method. Additionally, 

it should be noted that the rotation residuals of the PN method are comparable 

to that of the nominal values, while the translation residuals of the PN method 

are smaller than that of the nominal values. From Figure 6-3, it can be seen 

that the POE method can obtain comparable rotation residuals to the PN 

method. However, the translational residuals obtained using the POE method 

are larger than that obtained using the PN method. The larger errors might be 

due to the assumption of the POE method in which the measured poses and 

computed poses are considered to be sufficiently close. Although the POE and 

D-K methods cannot decrease the residuals compared to the nominal values, 

the difference is not significant. Therefore, it can be stated that all the methods 

can succeed in solving the registration problem under different noise 

magnitudes. These methods are robust to perturbances. 
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Figure 6-3: Rotation residuals obtained from the POE, D-K and PN method 
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Figure 6-4: Translation residuals obtained from the POE, D-K and PN method 

 

To compare the computation time of these methods, they are implemented 100 

times under each noise level using the same software and hardware described 

in Chapter 3. The average computation time is listed in Table 6-1. This table 

shows that the computation time of the D-K method is not affected by noise 

since it is a closed-form approach, while noise increases obviously the average 
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computation time of the PN method since it is an iterative process. Although 

noise also increases the average computation time of the POE method, the 

effect of noise is not obvious. Without noise, the computation time of the POE 

method is the longest. It is noted that shortest computation time can be 

obtained with the PN method due to its one-step process if there is no noise. 

However, with the presence of 2% noise, the PN method requires the longest 

time compared with the D-K and POE methods. 

 

Table 6-1: The average computation time of the POE, D-K and PN methods 

under different noise levels 

 No noise 0.5% noise 1% noise 2% noise 

Units Millisecond Millisecond Millisecond Millisecond 

POE 

method 
4798.7 5392.3 5700.9 6557.8 

D-K 

method 
629.6 720.0 668.2 698.5 

PN method 409.0 5404.9 15112.2 24880.6 

 

6.5 Experiments 

In this section, the POE, D-K and PN method are compared using real data 

obtained from a hybrid robot, which comprises a serial robot Scorbot-ER VII 

(Eshed Robotec Inc.) and a self-constructed triglide, as shown in Figure 6-5. 

The dimensions of the triglide are obtained using the optimization method 

proposed in Chapter 5 with a constant stroke 50ds   and the requirement of a 

task space which is a cuboid with 60mm in length and width and 30mm height. 

The dimensions of the triglide are listed in Table 6-2. The tool pose of the 

hybrid robot is captured using an OptiTrack system (Natural Point Inc.) with 

three cameras. The computer and programming environment used for the 
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implementation of the proposed methods are the same as that described in the 

simulation section. 

 

 

Figure 6-5: The experimental setup of a hybrid robot 

 

Table 6-2: Dimensions of the triglide 

Parameters aR  
bR  l    ds  

Units mm mm mm degree mm 

Value 43.9168 18.2703 164.4371 44.5647 50 

 

In this experiment, 40 measurements are obtained by adjusting the joint 

configurations of the serial robot and the parallel manipulator. As each step of 

the first two steps of the D-K method requires the number of poses measured 

to be 3n  , and the serial robot has a much larger workspace than the triglide, 

30 poses are obtained when the parallel manipulator is locked, and the 

remaining 10 measurements are obtained when the serial robot is locked. 

Similar to the simulation, all the methods are implemented several times with 

Triglide 

Scorbot 

OptiTrack 

camera 
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different initial starting points to obtain the final results. Figure 6-6 shows the 

rotation residuals of the final result, and the translation residuals are depicted 

in Figure 6-7. Their average values are listed in Table 6-3 with the average 

computation times of these methods. The average time is obtained by 

performing each method 100 times using the same set of real data. 
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Figure 6–6: Rotation residuals obtained using the POE, D-K and the PN 

method 

 

As depicted in Figure 6-6, the rotation residuals obtained using the PN method 

overlaps significantly with the rotation residuals obtained using the D-K 

method, but the rotation residuals obtained using the POE method are larger 

than the PN and D-K method. Table 6-3 shows that the average rotation 

residual of the PN method is slightly smaller than that of the D-K method, 

while the difference of the translation residuals between them is significant, as 

shown in Figure 6-7. Figure 6-7 illustrates that all the translation residuals of 
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the PN method are located in the interval of 0 to 2mm. The average residual is 

1.1004 as listed in Table 6-3. In contrast, the D-K method produces translation 

residuals which maximum is about 10mm. Although the difference between 

rotation residuals is very small, the smaller translation residuals show that the 

PN method is more accurate than the D-K method. Table 6-3 shows that the 

computation time of the PN method is longer than that of the D-K method. 

This finding is consistent with the simulation result. However, the translation 

residuals obtained using the POE method are much larger than those obtained 

using the D-K and PN methods. The computation time of the POE method is 

also longer than the other two methods. 
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Figure 6-7: Translation residuals obtained using the POE, D-K and the PN 

method 
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Table 6-3: Average residuals and average computation time obtained with the 

POE, D-K and PN methods 

 Average rotation 

residual 

Average translation 

residual/mm 

Average 

time/ms 

POE method 0.0438 13.4540 5887.4 

D-K method 0.0113 4.8609 1322.9 

PN method 0.0109 1.1004 1873.6 

 

6.6 Conclusion 

This chapter proposes three different methods for the registration of a hybrid 

robot. Various solutions have been described by many researchers for HEC 

and RWHEC. To the best of the author’s knowledge, this chapter gives a first 

attempt to propose methods to address this issue for a hybrid robot. This issue 

can be solved using the D-K method, which is a closed-form solution, with 

three steps. Besides the D-K method, the POE and PN method can solve the 

problem using nonlinear iterative techniques. 

 

Simulation results show that these methods are capable of obtaining globally 

optimal solutions. The methods are robust to noise. With the simulation results, 

it is found that the PN method is more accurate than the other two methods. 

Due to the degradation and orthogonal constraint in the D-K method, this 

method cannot achieve better accuracy than the PN method. The assumption 

adopted in the POE method worsens its accuracy as shown in the simulation 

results.  

 

In practice, the D-K method requires shorter computation time and is not 

affected by noise, which can be attributed to its closed form. Different from 

the D-K method, better accuracy and longer computation time of the PN 
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method have been validated with an experiment. The POE method has longer 

computation time compared to the D-K method. The experiment shows that 

the result obtained using the POE method is the worst. Hence, it is not a good 

choice to select the POE method to solve this registration problem. 

 

In conclusion, the proposed methods can obtain optimal solutions of the 

registration of a hybrid robot, except for the POE method. The D-K method 

can be used to present an approximate solution under the requirement of 

shorter computation time or narrow the search area for the PN method, and the 

PN method is suitable for refining the solution. 
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CHAPTER 7 ACCURACY INVESTIGATION OF THE 

HYBRID ROBOT 

 

In order to investigate the machining quality of the hybrid robot, its machining 

accuracy is compared with a CNC machining center and the serial robot which 

is used to construct the hybrid robot in this chapter. This chapter does not 

intend to provide an exhaustive test of the machining accuracy, while several 

basic criteria of machining qualities are investigated, such as circularity of a 

circular path, straightness of a linear path and cylindricity of a drilled hole. 

 

7.1 Materials 

In order to compare the circularity, straightness and cylindricity, the 

workpiece described in Figure 7-1 is to be machined using the hybrid robot, 

the serial robot and a CNC machining center. The two straight sides plotted in 

Figure 7-1 which are denoted using L1 and L2 are used to test the straightness 

of the machines, the semi-circle platform is for the circularity and two holes 

denoted using H1 and H2 are for the cylindricity. The material of the 

workpiece is machining wax. The information of the serial robot and the CNC 

machining center is listed in Table 7-1. The accuracy of the CNC machining 

center refers to its positional uncertainty according to VDI/DGQ 3441/ISO 

230-2. 
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Figure 7-1: The top view of the workpiece 

 

Table 7-1: Information of the serial robot, the CNC machining center and the 

CMM 

 The Serial robot 
The CNC 

machining center 
The CMM 

Product name 
SCORBOT – ER 

VII 

DMU 80 P duo 

BLOCK 

DEA GAMMA 

0101 

Manufacturer 
ESHED 

ROBOTEC INC. 

DMG MORI 

SEIKI CO., LTD. 
DEA 

Accuracy 

(Claimed by 

manufacturer) 

0.2mm 0.005mm 
4+4L/1000 

(VDI/VDE 2617) 

 

After the completion of machining, a coordinate measuring machine (CMM) 

is used to obtain the quality of the machined workpieces. The information of 

the CMM is listed in Table 7-1. The accuracy of the CMM is in microns, and 

L is the measurement length in millimeters. 

 

7.2 Definitions 

7.2.1 Circularity 

The CMM is used to measure several points along a circular outline. These 

points can be fitted into a circle using the least-square method. The difference 
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between the radius of the best-fit circle and the nominal radius of the semi-

circle platform depicted in Figure 7-1 is denoted using 
dR . The distance range 

of all the measured points to the best-fit circle is denoted using 
iR . The 

circularity is represented using both 
dR  and 

iR , since 
dR  describes the 

difference between a machined circle and its nominal circle, and 
iR  describes 

the roundness of the machined circle. 

 

7.2.2 Straightness 

The positions of several points along a linear path can be obtained using the 

CMM. These sampled points can be fitted into a line using the least-square 

method. The distance range of these points to this best-fit line is denoted by 
iL , 

and 
iL  represents the straightness of a machined outline. 

 

7.2.3 Cylindricity 

The CMM can be used to obtain the positions of several points on a cylindrical 

surface. These sampled points can be fitted on a cylinder. The difference 

between the radii of the best-fit cylindrical surface and its nominal surface is 

denoted using 
RC . The distance range of all the points to the best-fit surface is 

denoted using 
iC . The cylindricity is represented using both 

RC  and 
iC . 

 

7.3 Machining Results 

Figure 7-2 plots the machined workpieces using the CNC machining center, 

the hybrid robot and the serial robot, and Figure 7-3 depicts surfaces of the 

semi-circle platforms of the workpieces. It can be seen that the machining 
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results of the CNC machining center is the best and the serial robot is the 

worst. The surface of the semi-circle platform machined using the CNC 

machining center is the flattest compared to the hybrid robot and the serial 

robot. Although the surface machined using the hybrid robot cannot be flatter 

than the CNC machining center, it is much better than the serial robot. 

 

Table 7-2: Circularity, straightness and cylindricity of workpieces machined 

using the CNC system, the hybrid robot and the serial robot 

 

The CNC 

machining 

center 

The hybrid 

robot 

The serial 

robot 

Circularity/mm 
dR  0.0178 0.1279 0.6338 

iR  [-0.0094, 

0.0128] 

[-0.0782, 

0.0671] 

[-0.4575, 

0.5948] 

Straightness/m

m 

L1 iL  [-0.0216, 

0.0145] 

[-0.1717, 

0.0966] 

[-0.4825, 

0.5853] 

L2 iL  [-0.0205, 

0.0194] 

[-0.1615, 

0.0720] 

[-0.4907, 

0.4736] 

Cylindricity/mm 

H1 
RC  0.0107 0.0988 0.5315 

iC  [-0.0298, 

0.0051] 

[-0.0669, 

0.0459] 

[-0.4644, 

0.3978] 

H2 
RC  0.0165 0.0884 0.4719 

iC  [-0.0187, 

0.0089] 

[-0.0451, 

0.0573] 

[-0.4059, 

0.5661] 

 

 

(a) The CNC machining center 
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(b) The hybrid robot 

 

(c) The serial robot 

Figure 7-2: The machined workpieces using the CNC machining center, the 

hybrid robot and the serial robot 

 

   

(a) The CNC machining 

center 
(b) The hybrid robot (c) The serial robot 

Figure 7-3: Surfaces of the semi-circle platforms machined using the CNC 

machining center, the hybrid robot and the serial robot 

 

Table 7-2 lists circularity, straightness and cylindricity of the machined 

workpieces using the CNC machining center, the hybrid robot and the serial 

robot.  
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The ranges of circularity, straightness and cylindricity are depicted in Figure 

7-4. Since straightness and cylindricity evaluates two straight sides and two 

holes specifically, the errors of the sampled points are combined to obtain the 

statistical boxes for the straightness and cylindricity in Figure 7-4. Table 7-2 

and Figure 7-4 show clearly that circularity, straightness and cylindricity of 

the workpiece machined using the hybrid robot is worse than the CNC 

machining center, but the hybrid robot improves significantly in geometrical 

errors compared to the serial robot. For example, the workpiece machined 

using the serial robot has circularity error within the interval (-0.5, 0.6), while 

the circularity of the workpiece machined using the hybrid robot is within the 

interval (-0.08, 0.07), which is at least one sixth of the error of the serial robot. 

It can be stated that the accuracy of the hybrid robot is much better than the 

serial robot. 

 

 

Figure 7-4: The error ranges of the workpieces machined using the CNC 

machine, the hybrid robot and the serial robot 
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7.4 Conclusion 

This chapter provides accuracy comparisons among a CNC machining center, 

the hybrid robot constructed in this study and the serial robot which is used to 

build the hybrid robot. After the machining of workpieces with the same 

geometry and material, the circularity, straightness and cylindricity of the 

workpieces is obtained using a CMM. Although the accuracy of the hybrid 

robot is lower than the CNC machining center, measurement results show 

clearly that the accuracy of the hybrid robot is much better than the serial 

robot. 

 

It should be noted that the hybrid robot is more flexible than the CNC 

machining center. If the dimension of the triglide is decreased further with the 

requirement of a smaller task space, and the clearance within the passive joints 

of the triglide can be minimized, and the accuracy of the hybrid robot may be 

better. 
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CHAPTER 8 CONCLUSIONS AND FUTURE WORKS 

 

8.1 Conclusions and contributions 

A hybrid robot consisting of a serial robot and a parallel manipulator has been 

constructed to achieve MOCS. The serial robot works as a rough positioner 

and the parallel manipulator carries out the machining operations. The parallel 

manipulator is a 3-DOF pure translational mechanism which uses 

parallelogram-type limbs to constrain the orientations of its mobile platform. 

This group of manipulators with similar structures is termed triglides.  

 

To improve the performance of a general triglide, its workspace and stiffness 

are analyzed. This study uses a geometrical method to obtain the workspace 

boundary and workspace volume of a general triglide, since it is faster and 

more accurate. An algebraic expression is provided to obtain the stiffness 

matrix of a general triglide, and a novel VW index is proposed to reflect its 

stiffness property considering the applied external wrench on its mobile 

platform.  

 

An optimization method is presented to improve the dexterity, stiffness and 

space utilization of a general triglide considering practical constraints, such as 

the motion range of passive joints and the requirement of task space. With the 

proposed methodology, an optimal triglide is constructed. The triglide is 

attached on a 5-axis serial robot to form a hybrid robot.  

 



127 

 

Since it is crucial to register the hybrid robot to link the robot with a tracking 

system, this study uses three different methods to address the registration 

problem. These methods are compared to evaluate their accuracy and 

computation time.  

 

Finally, in order to investigate the machining accuracy of the hybrid robot, it is 

compared with a CNC machining center and a serial robot. With the 

machining of workpieces under the same geometry and material, it is proven 

that the hybrid robot is able to achieve much better accuracy than the serial 

robot, although the accuracy of the hybrid robot is not comparable to the CNC 

machining center. 

 

The main contributions made in this study can be summarized as follows. 

 

1. A geometrical method has been proposed for the workspace analysis of a 

general triglide. Although workspace analysis of the orthoglide and the 

linear delta which belongs to the group of triglide have been reported, the 

workspace analysis of a general triglide is still lacking. With the 

comparison with a discretization method which is popular to obtain the 

workspace of a parallel manipulator, it is found that the geometrical method 

is more accurate and faster than the discretization method if high resolution 

is required. With the geometrical method, it is also more convenient to find 

regular workspace to represent approximately the true workspace, since the 

true workspace is irregular, and can cause some difficulties in path 

planning or the estimation of a task space. 
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2. An algebraic expression is provided to obtain the stiffness matrix of a 

general triglide. The stiffness analysis of parallel manipulators has been 

addressed by many researchers. However, most of them have ignored the 

deformation of the mobile platform while conducting the stiffness analysis. 

Additionally, there is no reported algebraic expression for the stiffness 

analysis of a general triglide. Comparing with an FEA method, the 

algebraic expression is able to reach comparable accuracy with FEA results, 

but the algebraic method is much faster and more convenient.  

 

3. A new stiffness index has been proposed in this study. This index uses 

virtual work to avoid interpretation difficulty caused by the different units 

of translation and orientation, which can occur in several other stiffness 

indices, such as the indices of eigenvalues and determinant. Compared to 

these indices, the proposed index can relate its value to the direction of the 

wrench experienced by a parallel manipulator in an operation, since this 

index measures the resistance of the parallel manipulator to deformation 

caused by the applied wrench. Generally, the direction of an applied 

wrench has a significant effect on the deformation of a parallel manipulator. 

 

4. The optimization methodology proposed in this study aims to improve the 

dexterity, stiffness and space utilization of a general triglide. It is a first 

attempt to consider the compliance of the mobile platform, the limbs and 

the actuators in the stiffness optimization and the variable dimensional 

volume of a parallel manipulator due to its different postures in the space 
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utilization optimization. Compared to an optimal solution obtained by other 

researchers, this optimization methodology is able to provide a better 

solution, which improves the GDI of the triglide by 75.26%, the GSI by 

42.79% and the RWV by 2.44%. 

 

5. This study proposes three different methods for the registration of a hybrid 

robot. Although various solutions have been described by many researchers 

for HEC and RWHEC, this study presents a first attempt to address this 

issue for a hybrid robot. All the proposed methods can provide globally 

robust solutions. The proposed D-K method requires the shortest 

computation time and its computation time is not affected by noise, while 

the PN method has the best accuracy but it needs longer computation time 

under perturbance, while the result obtained using the POE method is the 

worst. Hence, the D-K method can be used to present an approximate 

solution under the requirement of shorter computation time or narrow the 

search area for the PN method, and the PN method is suitable for refining a 

solution. It is not a good choice to select the POE method to solve this 

registration problem. 

 

8.2 Future works 

This study has designed and constructed an optimal hybrid robot focusing on 

performance improvement of the parallel manipulator which is used to form 

the hybrid robot and address the registration of the hybrid robot to link it with 

a tracking system. Although this study has attempted to address the workspace 
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and stiffness issues to improve the performance of the hybrid robot, additional 

studies can be undertaken in the following directions. 

 

1. The stiffness of the serial robot has important influence on the 

accuracy of the hybrid robot. Research can be carried out to improve 

the stiffness of a serial robot. It should be noted that the stiffness of a 

serial robot is in conflict with its flexibility, and it is difficult to 

achieve optimal stiffness and flexibility simultaneously. However, the 

serial robot is expected to be locked after positioning the parallel 

manipulator during an operation. Future research can focus on the 

stiffness improvement of a locked serial robot.  

2. The clearance within the passive joints in a parallel manipulator can 

affect its stiffness and accuracy. Since it is difficult to avoid clearance 

in practice, clearance analysis and modelling can help build an 

efficient compensation system to improve the accuracy of a parallel 

manipulator. 

3. Although it is challenging to set up the precise experimental 

configuration to investigate the stiffness of a multi-body robot, 

experimental methods should be used to validate the mechanical 

design. The main challenge is the isolation of the displacement caused 

by deformation from that caused by other error sources, such as 

clearance and actuator backlash. Future research can be undertaken on 

displacement investigation due to error sources. If the effect of the 

error sources can be analyzed, it will be easier to identify solutions for 

the deformation. 
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Apart from machining operations, the combined flexibility and accuracy of the 

hybrid robot is feasible to be applied in surgical operations, bearing in mind 

the stringent medical conditions which must be met. The robotic systems for 

surgical operations generally use serial robots or parallel manipulators as the 

main operation tools. The hybrid robot is able to achieve larger workspace 

than a parallel manipulator and with higher accuracy than a serial robot. Hence, 

the research in this field could improve the performance of robots applied in 

robotic surgery. 
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