4,834 research outputs found

    On the Role of Mechanics in Chronic Lung Disease.

    Get PDF
    Progressive airflow obstruction is a classical hallmark of chronic lung disease, affecting more than one fourth of the adult population. As the disease progresses, the inner layer of the airway wall grows, folds inwards, and narrows the lumen. The critical failure conditions for airway folding have been studied intensely for idealized circular cross-sections. However, the role of airway branching during this process is unknown. Here, we show that the geometry of the bronchial tree plays a crucial role in chronic airway obstruction and that critical failure conditions vary significantly along a branching airway segment. We perform systematic parametric studies for varying airway cross-sections using a computational model for mucosal thickening based on the theory of finite growth. Our simulations indicate that smaller airways are at a higher risk of narrowing than larger airways and that regions away from a branch narrow more drastically than regions close to a branch. These results agree with clinical observations and could help explain the underlying mechanisms of progressive airway obstruction. Understanding growth-induced instabilities in constrained geometries has immediate biomedical applications beyond asthma and chronic bronchitis in the diagnostics and treatment of chronic gastritis, obstructive sleep apnea and breast cancer

    Computer simulations of realistic three-dimensional microstructures

    Get PDF
    A novel and efficient methodology is developed for computer simulations of realistic two-dimensional (2D) and three-dimensional (3D) microstructures. The simulations incorporate realistic 2D and 3D complex morphologies/shapes, spatial patterns, anisotropy, volume fractions, and size distributions of the microstructural features statistically similar to those in the corresponding real microstructures. The methodology permits simulations of sufficiently large 2D as well as 3D microstructural windows that incorporate short-range (on the order of particle/feature size) as well as long-range (hundred times the particle/feature size) microstructural heterogeneities and spatial patterns at high resolution. The utility of the technique has been successfully demonstrated through its application to the 2D microstructures of the constituent particles in wrought Al-alloys, the 3D microstructure of discontinuously reinforced Al-alloy (DRA) composites containing SiC particles that have complex 3D shapes/morphologies and spatial clustering, and 3D microstructure of boron modified Ti-6Al-4V composites containing fine TiB whiskers and coarse primary TiB particles. The simulation parameters are correlated with the materials processing parameters (such as composition, particle size ratio, extrusion ratio, extrusion temperature, etc.), which enables the simulations of rational virtual 3D microstructures for the parametric studies on microstructure-properties relationships. The simulated microstructures have been implemented in the 3D finite-elements (FE)-based framework for simulations of micro-mechanical response and stress-strain curves. Finally, a new unbiased and assumption free dual-scale virtual cycloids probe for estimating surface area of 3D objects constructed by 2D serial section images is also presented.Ph.D.Committee Chair: Arun M. Gokhale; Committee Member: David Frost; Committee Member: Meilin Liu; Committee Member: Burton R Patterson; Committee Member: Min Zho

    Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors

    Full text link
    Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films is investigated by a combination of scanning transmission electron microscopy, electron energy-loss spectroscopy and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni-5at.%W substrates with a {100} biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly facetted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS yielding a 1.8 \pm 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7-{\delta} coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.Comment: Accepted for publication in Superconductor Science and Technolog

    Development of strain monitoring techniques for power plant component lifetime assessment

    Get PDF
    This body of research is comprised of two main threads: determining the material properties of materials integral to the future of the power generation industry, and developing di erent techniques to measure creep strain for use within the laboratory as well as in an industrial setting. The research focusses primarily on the materials austenitic stainless steel 316H and nickel superalloy Inconel 617, although some experiments on ferritic steels have also been performed. Tests were performed to characterise the behaviour of Inconel Alloy 617 at 700 C, and tensile and creep properties have been determined and used in analyses. The validity and accuracy of a novel Alternating Current Potential Drop (ACPD) sensor has been evaluated for di erent materials. It has been shown to be able to detect the strain to within 1 x 10-3 of more widely used strain measurement techniques. Furthermore, it has shown promise in detecting tertiary creep initiation in advance of other methods, even under multiaxial stress states. The application of Digital Image Correlation (DIC) at elevated temperatures has been demonstrated to measure creep strain, and used to visualise the strain eld caused to elicit a better understanding of how a multiaxial stress state a ects deformation on a local level. Results for notched specimens of 316H have been compared to nite element (FE) simulations of creep using the Cocks-Ashby void growth model, with suggestions made to improve the existing model by making considerations for plastic damage.Open Acces

    Non-Destructive Techniques for Microstructural and Structural Characterisation

    Get PDF
    The functional quality of a material or a component is influenced by (i) microstructure (ii) flaws (physical discontinuities like cracks, pores,delaminations etc.), and (iii) the presence of stress. Non-destructive evaluation (NDE) techniques are used to control and enhance the quality at various stages of the life cycle of a material or component. In this paper, various NDE techniques are discussed. The techniques mainly discussed are ultrasonics,radiography, X-ray techniques, and acoustic emission. The principles,procedures, advantages, and limitations of each technique, as well as applications in various materials are considered

    Experimental and theoretical analyses of compression induced muscle damage : aetiological factors in pressure ulcers

    Get PDF
    Pressure ulcers form a major problem in health care. They often occur when patients are bedridden, wheelchair bound or wearing prostheses. The ulcers can be very painful for the patient and often lead to prolonged hospitalization. In addition, the huge costs involved with treatment and prevention put a heavy burden on heath care budgets. Pressure ulcers occur often: between 14% and 33% of the patients in health care institutions develop an ulcer, ranging from discolouration of the skin to severe wounds involving necrosis of epidermis, extending to underlying bone, tendon and joints. It is clear that pressure ulcers are caused by prolonged mechanical loading, applied at the interface between skin and support surfaces. However, the aetiology of pressure ulcers is poorly understood. This forms an important obstacle in decreasing the unacceptably high prevalence figures. It is anticipated that a better understanding of the mechanobiological pathways leading to cell and tissue damage can lead to a breakthrough in reducing pressure ulcer prevalence. In addition, a solid scientific base may establish tools for objective risk assessment and judgement of preventive measures. The present study focuses on deep ulcers that initiate in skeletal muscle tissue, since deep ulcers are more extensive and often difficult to prevent. To obtain insight into the aetiology of these deep ulcers, it is necessary to understand the transfer from externally applied loads at the skin, to the local conditions that the cells experience within the tissue. In addition, the question which local conditions are harmful to the cell needs to be investigated. By combining knowledge on "what a cell feels" with knowledge on potentially harmful conditions, a better judgement of dangerous situations may be achieved. Although several causes of cell damage may play a role in the initiation of pressure ulcers, the present study focussed on the impact of cell deformations. To investigate the hypothesis that prolonged cell deformations lead to cell damage at clinically relevant strains, an experimental model system was developed. A key requirement of this experimental model is the possibility to study the role of cell deformation on cell damage independently of other possible causes of damage. To achieve this, in-vitro engineered muscle tissue constructs were developed. These constructs were compressed using a newly developed compression device. A custom made incubator system was developed to allow monitoring of the constructs for extended periods of time. In addition, a novel assay was developed to determine the viability of the cells during compression. This assay provides quantitative and spatial information on cell damage throughout a construct in a non-invasive manner, making use of fluorescent dyes which are visualized by confocal microscopy. The compression of the engineered muscle tissue constructs indicated that a significant increase in cell death occurs within 1-2 hours and that higher strain levels led to an earlier increase in damage. In addition, it was demonstrated that cell damage was uniformly distributed across the indented area of the construct, without a gradient in percentage dead cells between the centre and periphery of the constructs. The results strongly suggest that prolonged cell deformation was the predominant cause of cell damage in these experiments. This puts a new light on observations in literature which suggested that ischaemia is not the sole determinant for the onset of pressure ulcers. Nevertheless, more experiments are needed to clarify the role of prolonged cell deformations on cell damage. First, it is recommended that the actual local cell deformations are quantified during compression of the constructs. Furthermore, from the present experiments it could not be excluded that the compression of the constructs decreased the permeability of the construct and hence affected cellular metabolism. In future, measuring diffusion pathways of both small molecules and larger vital molecules, may indicate whether this change in permeability is significant. A numerical model was developed to predict local cell deformations, in response to tissue compression. Since the local cell deformations cannot be a-priori determined on the basis of homogenized tissue deformations, a multilevel finite element approach was adopted. In this approach, cell deformations are predicted from detailed nonlinear finite element analyses of the local microstructures of the tissue, which consist of an arrangement of cells embedded in a matrix material. To avoid unacceptably large computational times, the multilevel model was designed to run on a parallel computer system. Application of the multilevel model showed that the heterogeneity of the microstructure of the tissue has a profound impact on local cell deformations, which highly exceeded macroscopic tissue deformations. Moreover, microstructural heterogeneity led to complex cell shapes and caused non-uniform deformations within the cells. To investigate the evolution of compression induced damage in skeletal muscle tissue, the multilevel model was extended with a damage law, which was derived from the in-vitro experiments. With this model, the compression of muscle tissue against a bony prominence was simulated. The percentage of cell damage in the microstructure of the tissue was computed, which could be extrapolated to the bulk tissue level. In the present form, a schematic geometry was considered that intended to elucidate general patterns of tissue damage evolution. The simulations confirmed that it is not feasible to predict the onset of tissue damage on the basis of externally applied loading conditions at the skin surface alone, since these externally applied loads are not indicative of the local mechanical conditions that the cells experience within the tissue. In addition, the simulations showed that it is necessary to consider the local load history of the cells, and the tolerance of the tissue. These findings may explain why a strikingly large variability in load/time threshold values was found in animal studies, which attempted to relate external mechanical to tissue damage, thereby ignoring the local mechanical conditions within the tissue. At present, it is premature to utilize the models presented in this thesis in clinical practice, since the extrapolation towards human patients requires more research. Clearly, further extensions and validation of the numerical model with experimental animal models will be required. This should finally lead to the application in more realistic cases, involving patient data on geometry and tissue properties. Nevertheless, the present models provided an essential step towards evidence based risk assessment and prevention

    Advanced radar absorbing ceramic-based materials for multifunctional applications in space environment

    Get PDF
    In this review, some results of the experimental activity carried out by the authors on advanced composite materials for space applications are reported. Composites are widely employed in the aerospace industry thanks to their lightweight and advanced thermo-mechanical and electrical properties. A critical issue to tackle using engineered materials for space activities is providing two or more specific functionalities by means of single items/components. In this scenario, carbon-based composites are believed to be ideal candidates for the forthcoming development of aerospace research and space missions, since a widespread variety of multi-functional structures are allowed by employing these materials. The research results described here suggest that hybrid ceramic/polymeric structures could be employed as spacecraft-specific subsystems in order to ensure extreme temperature withstanding and electromagnetic shielding behavior simultaneously. The morphological and thermo-mechanical analysis of carbon/carbon (C/C) three-dimensional (3D) shell prototypes is reported; then, the microwave characterization of multilayered carbon-filled micro-/nano-composite panels is described. Finally, the possibility of combining the C/C bulk with a carbon-reinforced skin in a synergic arrangement is discussed, with the aid of numerical and experimental analyses

    An Integrated Microstructural-Nanomechanical-Chemical Approach to Examine Material-Specific Characteristics of Cementitious Interphase Regions

    Get PDF
    Effective properties and structural performance of cementitious mixtures are substantially governed by the quality of the interphase region because it acts as a bridge transferring forces between aggregates and a binding matrix and is generally susceptible to damage. As alternative binding agents like alkali-activated precursors have obtained substantial attention in recent years, there is a growing need for fundamental knowledge to uncover interphase formation mechanisms. In this paper, two different types of binding materials, i.e., fly ash-based geopolymer and ordinary portland cement, were mixed with limestone aggregate to examine and compare the microstructures and nanomechanical properties of interphase region. To this end, microstructural characteristics using scanning microscopies, nanomechanical properties by nanoindentation tests, and spatial mapping of chemical contents based on the energy dispersive spectroscopy were integrated to identify and investigate the interphase region formed by the case-specific interactions between the matrix materials and limestone. The integrated microstructural-nanomechanical-chemical approach was effective to better understand links between material-specific properties of cementing phases. More specifically, the fly ash-based geopolymer paste was usually well bonded to the aggregate surface with a rich formation of NA- S-H gel, while interfacial debonding was often observed between aggregate surface and paste in ordinary portland cement concrete. However, when a good bonding between aggregate and paste is formed, interphase region in PCC didn’t show any considerable difference in nanomechanical properties compared to the bulk paste
    • …
    corecore