58 research outputs found

    A Stochastic Conjugate Gradient Method for Approximation of Functions

    Get PDF
    A stochastic conjugate gradient method for approximation of a function is proposed. The proposed method avoids computing and storing the covariance matrix in the normal equations for the least squares solution. In addition, the method performs the conjugate gradient steps by using an inner product that is based stochastic sampling. Theoretical analysis shows that the method is convergent in probability. The method has applications in such fields as predistortion for the linearization of power amplifiers.Comment: 21 pages, 5 figure

    Finding Structural Information of RF Power Amplifiers using an Orthogonal Non-Parametric Kernel Smoothing Estimator

    Full text link
    A non-parametric technique for modeling the behavior of power amplifiers is presented. The proposed technique relies on the principles of density estimation using the kernel method and is suited for use in power amplifier modeling. The proposed methodology transforms the input domain into an orthogonal memory domain. In this domain, non-parametric static functions are discovered using the kernel estimator. These orthogonal, non-parametric functions can be fitted with any desired mathematical structure, thus facilitating its implementation. Furthermore, due to the orthogonality, the non-parametric functions can be analyzed and discarded individually, which simplifies pruning basis functions and provides a tradeoff between complexity and performance. The results show that the methodology can be employed to model power amplifiers, therein yielding error performance similar to state-of-the-art parametric models. Furthermore, a parameter-efficient model structure with 6 coefficients was derived for a Doherty power amplifier, therein significantly reducing the deployment's computational complexity. Finally, the methodology can also be well exploited in digital linearization techniques.Comment: Matlab sample code (15 MB): https://dl.dropboxusercontent.com/u/106958743/SampleMatlabKernel.zi

    Iterative pre-distortion of the non-linear satellite channel

    Full text link
    Digital Video Broadcasting - Satellite - Second Generation (DVB-S2) is the current European standard for satellite broadcast and broadband communications. It relies on high order modulations up to 32-amplitude/phase-shift-keying (APSK) in order to increase the system spectral efficiency. Unfortunately, as the modulation order increases, the receiver becomes more sensitive to physical layer impairments, and notably to the distortions induced by the power amplifier and the channelizing filters aboard the satellite. Pre-distortion of the non-linear satellite channel has been studied for many years. However, the performance of existing pre-distortion algorithms generally becomes poor when high-order modulations are used on a non-linear channel with a long memory. In this paper, we investigate a new iterative method that pre-distorts blocks of transmitted symbols so as to minimize the Euclidian distance between the transmitted and received symbols. We also propose approximations to relax the pre-distorter complexity while keeping its performance acceptable

    Modelação comportamental e pré-distorção digital de transmissores de rádio-frequência

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaNos atuais sistemas de telecomunicações, os transmissores de rádio-frequência são desenvolvidos tendo maioritariamente em conta a eficiência da conversão da potência fornecida da fonte em potência de rádio-frequência. Este tipo de desenho resulta em amplificadores de potência com características de transmissão não-lineares, que distorcem severamente o envelope de informação no processo de amplificação, gerando distorção fora da banda. Para corrigir este problema utiliza-se um processo de compensação não linear, sendo que a pré-distorção digital se tem favorecido pela sua flexibilidade e precisão. Este método é tipicamente aplicado de uma forma cega, por força bruta até se obter a compensação desejada. No entanto, quando o método se mostra ineficaz, como se verificou em amplificadores de potência baseados em transístores de nitreto de gálio, é difícil saber o que modificar nos sistemas para os tornar de novo úteis. De forma a compreender e desenhar sistemas de pré-distorção digital robustos é necessário, por um lado, perceber o comportamento dos amplificadores de rádio-frequência, por outro, perceber as limitações e relações entre os modelos digitais e o comportamento real do amplificador. Nesse sentido, esta tese explora e descreve estas relações de forma a suportar a escolha de modelos de pré-distorção, desenvolve novos modelos baseados no comportamento dos transístores, e propõe métodos de caracterização para os amplificadores de RF.In current telecommunication systems, the main concern when developing the radio frequency transmitter is power efficiency. This type of design generally leads to a highly nonlinear transmission characteristic, mainly due to the radio frequency power amplifier. This nonlinear transmission severely distorts the information envelope, leading to spectral regrowth, out-of-band distortion. To correct this problem a nonlinear compensation process is employed. For this application, digital predistortion is generally favored for its flexibility and accuracy. Digital predistortion is mostly applied in a blind manner, using brute force until the desired compensation is achieved. Because of this, when the method fails, as it has in gallium nitride based power amplifiers, it is difficult to modify the system to achieve the desired results. To understand and design robust predistortion systems, it is both necessary to have knowledge of the power amplifiers’ behavior, on one hand, and understand the limitations and relations between the digital models and these behaviors, on the other. To do this, this thesis explores and describes these relationships, granting support to the digital predistortion model choice, it further develops new predistortion models based on the physics of the transistors’ behaviors, and it proposes methods for the characterization of radio frequency power amplifiers

    ワイヤレス通信のための先進的な信号処理技術を用いた非線形補償法の研究

    Get PDF
    The inherit nonlinearity in analogue front-ends of transmitters and receivers have had primary impact on the overall performance of the wireless communication systems, as it gives arise of substantial distortion when transmitting and processing signals with such circuits. Therefore, the nonlinear compensation (linearization) techniques become essential to suppress the distortion to an acceptable extent in order to ensure sufficient low bit error rate. Furthermore, the increasing demands on higher data rate and ubiquitous interoperability between various multi-coverage protocols are two of the most important features of the contemporary communication system. The former demand pushes the communication system to use wider bandwidth and the latter one brings up severe coexistence problems. Having fully considered the problems raised above, the work in this Ph.D. thesis carries out extensive researches on the nonlinear compensations utilizing advanced digital signal processing techniques. The motivation behind this is to push more processing tasks to the digital domain, as it can potentially cut down the bill of materials (BOM) costs paid for the off-chip devices and reduce practical implementation difficulties. The work here is carried out using three approaches: numerical analysis & computer simulations; experimental tests using commercial instruments; actual implementation with FPGA. The primary contributions for this thesis are summarized as the following three points: 1) An adaptive digital predistortion (DPD) with fast convergence rate and low complexity for multi-carrier GSM system is presented. Albeit a legacy system, the GSM, however, has a very strict requirement on the out-of-band emission, thus it represents a much more difficult hurdle for DPD application. It is successfully implemented in an FPGA without using any other auxiliary processor. A simplified multiplier-free NLMS algorithm, especially suitable for FPGA implementation, for fast adapting the LUT is proposed. Many design methodologies and practical implementation issues are discussed in details. Experimental results have shown that the DPD performed robustly when it is involved in the multichannel transmitter. 2) The next generation system (5G) will unquestionably use wider bandwidth to support higher throughput, which poses stringent needs for using high-speed data converters. Herein the analog-to-digital converter (ADC) tends to be the most expensive single device in the whole transmitter/receiver systems. Therefore, conventional DPD utilizing high-speed ADC becomes unaffordable, especially for small base stations (micro, pico and femto). A digital predistortion technique utilizing spectral extrapolation is proposed in this thesis, wherein with band-limited feedback signal, the requirement on ADC speed can be significantly released. Experimental results have validated the feasibility of the proposed technique for coping with band-limited feedback signal. It has been shown that adequate linearization performance can be achieved even if the acquisition bandwidth is less than the original signal bandwidth. The experimental results obtained by using LTE-Advanced signal of 320 MHz bandwidth are quite satisfactory, and to the authors’ knowledge, this is the first high-performance wideband DPD ever been reported. 3) To address the predicament that mobile operators do not have enough contiguous usable bandwidth, carrier aggregation (CA) technique is developed and imported into 4G LTE-Advanced. This pushes the utilization of concurrent dual-band transmitter/receiver, which reduces the hardware expense by using a single front-end. Compensation techniques for the respective concurrent dual-band transmitter and receiver front-ends are proposed to combat the inter-band modulation distortion, and simultaneously reduce the distortion for the both lower-side band and upper-side band signals.電気通信大学201

    Dynamic nonlinear behavioral modeling and adaptive predistortion for RF transmitters

    Get PDF
    Motivation -- Nonlinear dynamic behaviour, two-and three-box models -- Objectives and outline of the thesis -- Two-Box models, de-embedding nonlinearities and dynamic memory effects -- Transmitter prototype -- Hammerstein and Wiener model construction -- Three-box oriented nonlinear model -- Three-box model's two-stage identification procedure -- Adaptive predistortion construction using single tone signal -- Hypothetical model and adaptive predistortion -- Construction of the complete predistorted system with a two-box model -- Complete predistorted system and linearization validation with CDMA signal

    Millimetre-wave and Terahertz Electronics

    No full text
    Overview: The basic thesis for the advancement of millimetre-wave and terahertz electronics is represented in four sections: Signal Processing, Component Design and Realization, Modelling and Materials, and Paradigm Shift. The first section is at system and circuit levels and reports on complex signal process functions that have been performed directly on the millimetre-wave carrier signal, intended for realizing low-cost and adaptive communications and radar systems architectures. The second section is at circuit and component levels and reports on techniques for the design and realization of low-loss passives for use at millimetrewave frequencies. The third section is at component and material levels and reports on modelling techniques for passives for use at both millimetre-wave and terahertz frequencies. Finally, the fourth section introduces a revolutionary new technology that represents a paradigm shift in the way millimetre-wave and terahertz electronics (i.e. components, circuits and systems) can be implemented. As found with the new generation of mobile phone handsets, a fusion of two extreme technologies can take place; here, complex signal processing operations could be performed both directly on the carrier signal and with the use of a spatial light modulator. Based on a selection of 20 papers (co-)authored by the candidate †b, and published over a period of 15 years, it will be seen that a coherent theme runs throughout this body of work, for the advancement of knowledge in millimetre-wave and terahertz electronics

    Nonlinear Interference Generation in Wideband and Disaggregated Optical Network Architectures

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore