914 research outputs found

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Cost-effective aperture arrays for SKA Phase 1: single or dual-band?

    Full text link
    An important design decision for the first phase of the Square Kilometre Array is whether the low frequency component (SKA1-low) should be implemented as a single or dual-band aperture array; that is, using one or two antenna element designs to observe the 70-450 MHz frequency band. This memo uses an elementary parametric analysis to make a quantitative, first-order cost comparison of representative implementations of a single and dual-band system, chosen for comparable performance characteristics. A direct comparison of the SKA1-low station costs reveals that those costs are similar, although the uncertainties are high. The cost impact on the broader telescope system varies: the deployment and site preparation costs are higher for the dual-band array, but the digital signal processing costs are higher for the single-band array. This parametric analysis also shows that a first stage of analogue tile beamforming, as opposed to only station-level, all-digital beamforming, has the potential to significantly reduce the cost of the SKA1-low stations. However, tile beamforming can limit flexibility and performance, principally in terms of reducing accessible field of view. We examine the cost impacts in the context of scientific performance, for which the spacing and intra-station layout of the antenna elements are important derived parameters. We discuss the implications of the many possible intra-station signal transport and processing architectures and consider areas where future work could improve the accuracy of SKA1-low costing.Comment: 64 pages, 23 figures, submitted to the SKA Memo serie

    The Performance and Calibration of the CRAFT Fly's Eye Fast Radio Burst Survey

    Full text link
    Since January 2017, the Commensal Real-time ASKAP Fast Transients survey (CRAFT) has been utilising commissioning antennas of the Australian SKA Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in fly's eye mode. This is the first extensive astronomical survey using phased array feeds (PAFs), and a total of 20 FRBs have been reported. Here we present a calculation of the sensitivity and total exposure of this survey, using the pulsars B1641-45 (J1644-4559) and B0833-45 (J0835-4510, i.e.\ Vela) as calibrators. The design of the survey allows us to benchmark effects due to PAF beamshape, antenna-dependent system noise, radio-frequency interference, and fluctuations during commissioning on timescales from one hour to a year. Observation time, solid-angle, and search efficiency are calculated as a function of FRB fluence threshold. Using this metric, effective survey exposures and sensitivities are calculated as a function of the source counts distribution. The implied FRB rate is significantly lower than the 3737\,sky−1^{-1}\,day−1^{-1} calculated using nominal exposures and sensitivities for this same sample by \citet{craft_nature}. At the Euclidean power-law index of −1.5-1.5, the rate is 10.7−1.8+2.7 (sys) ± 3 (stat)10.7_{-1.8}^{+2.7}\,{\rm (sys)} \, \pm \, 3\,{\rm (stat)}\,sky−1^{-1}\,day−1^{-1} above a threshold of 57±6 (sys)57\pm6\,{\rm (sys)}\,Jy\,ms, while for the best-fit index for this sample of −2.1-2.1, it is 16.6−1.5+1.9 (sys) ±4.7 (stat)16.6_{-1.5}^{+1.9} \,{\rm (sys)}\, \pm 4.7\,{\rm (stat)}\,sky−1^{-1}\,day−1^{-1} above a threshold of 41.6±1.5 (sys)41.6\pm1.5\,{\rm (sys)}\,Jy\,ms. This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them.Comment: 21 pages, 15 figures, 2 tables, accepted for publication in PAS

    In-situ measurement methodology for the assessment of 5G NR massive MIMO base station exposure at sub-6 GHz frequencies

    Get PDF
    As the roll-out of the fifth generation (5G) of mobile telecommunications is well underway, standardized methods to assess the human exposure to radiofrequency electromagnetic fields from 5G base station radios are needed in addition to existing numerical models and preliminary measurement studies. Challenges following the introduction of 5G New Radio (NR) include the utilization of new spectrum bands and the widespread use of technological advances such as Massive MIMO (Multiple-Input Multiple-Output) and beamforming. We propose a comprehensive and ready-to-use exposure assessment methodology for use with common spectrum analyzer equipment to measure or calculate in-situ the time-averaged instantaneous exposure and the theoretical maximum exposure from 5G NR base stations. Besides providing the correct method and equipment settings to capture the instantaneous exposure, the procedure also comprises a number of steps that involve the identification of the Synchronization Signal Block, which is the only 5G NR component that is transmitted periodically and at constant power, the assessment of the power density carried by its resources, and the subsequent extrapolation to the theoretical maximum exposure level. The procedure was validated on site for a 5G NR base station operating at 3.5 GHz, but it should be generally applicable to any 5G NR signal, i.e., as is for any sub-6 GHz signal and after adjustment of the proposed measurement settings for signals in the millimeter-wave range
    • …
    corecore