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Abstract

This paper is concerned with spatial properties of linear arrays of antennas spaced less than half wavelength. Possible
applications are in multiple-input multiple-output (MIMO) wireless links for the purpose of increasing the spatial
multiplexing gain in a scattering environment, as well as in other areas such as sonar and radar. With reference to a
receiving array, we show that knowledge of the received field can be extrapolated beyond the actual array size by
exploiting the finiteness of the interval of real directions from which the field components impinge on the array. This
property permits to increase the performance of the array in terms of angular resolution. A simple signal processing
technique is proposed allowing formation of a set of beams capable to cover uniformly the entire horizon with an
angular resolution better than that achievable by a classical uniform-weighing half-wavelength-spaced linear array.
Results are also applicable to active arrays. As the above approach leads to arrays operating in super-directive regime,
we discuss all related critical aspects, such as sensitivity to external and internal noises and to array imperfections,
and bandwidth, so as to identify the basic design criteria ensuring the array feasibility.

Keywords: Uniform linear array; Dense array; Field extrapolation; Angular super-resolution; Super-directive array;
Multiple beamforming; Multipath channel; MIMO systems
1 Introduction
One of the most appealing features of multiple-input
multiple-output (MIMO) systems stands in their capability
to exploit the structure of a multipath propagation channel
to multiply the transmission rate between two multi-
antenna terminals [1, 2]. Actually, when the propagation
environment is rich of backscattering obstacles, it is likely
that there exist several independently fading paths linking
pairs of antenna elements between the transmitter and the
receiver arrays, thus potentially creating margins for spatial
multiplexing gain.
It is known that this gain cannot exceed the minimum

between the numbers of spatially orthogonal1 beams that
can be implemented by means of the transmitting and
receiving arrays. Specifically, for a uniform linear array2

(ULA) with isotropic elements, the maximum achievable
number of approximately orthogonal beams is equal to
twice the array length normalized to the wavelength,
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since the angular resolution allowed by the array, in the
directional cosine domain (−1,1) is roughly equal to the
inverse of the normalized array length [3, Chap. 7].
This bound to the number of beams can actually be

attained provided that the element spacing does not exceed
half wavelength (critical spacing). For larger-than-critical
spacing, the number of available orthogonal beams is
smaller than the above limit, while, on the other hand, for a
ULA of fixed length, the angular resolution cannot be
improved by arranging more elements at less than the
critical distance. These observations seem to suggest that
the most convenient spacing to adopt in a linear array is
the critical one.
One of the purposes of this paper is to revamp the

above issues and re-discuss the above conclusion, show-
ing that, when tighter-than-critical spacing is used along
with unconventional non-uniform element weighing,
there exist further design margins allowing the forma-
tion of a larger number of more directive beams with
respect to the conventional uniform-weighing approach.
These over-performing beams can be designed so as to
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be approximately orthogonal to one another and to
uniformly cover the entire horizon. The prospective
advantages offered by such “dense” arrays are evident in
those scenarios where the angular resolution of a con-
ventional fixed-length ULA is coarser than the angular
extension of scatterers surrounding the terminals, i.e.,
where potential margins exist for a capacity enhance-
ment, that could be achieved if only more directive arrays
were available.
With reference to a receiving array, the approach

followed here stems from the basic observation that the
field received at all points of a straight line in three-
dimensional space as a result of remote sources, viewed as
a function of a single spatial coordinate, is strictly band-lim-
ited, being limited the horizon of possible directions of
arrival of the field components. Accordingly, we can apply
to it all results known for band-limited functions, in
particular, the noteworthy property that these functions are
analytical, i.e., such that their exact knowledge in a finite-
length interval allows, in principle, their extrapolation over
the entire domain of definition, having infinite extension
[4–9], thus potentially prospecting the achievement of
unlimited angular resolution. As extensively discussed in
these references, however, the implementation aspects,
such as the need to sample the field by means of a sensor
array, with consequent loss of information due to the
finiteness of the spatial sampling frequency, and the errors
inherent in the analog-to-digital conversion and in the array
implementation, along with other limiting factors, make the
above extrapolation process reliable only within a limited
range in the vicinity of the array.
In the following, we investigate the above issues and

show that under certain conditions it is possible to
extrapolate the received field so as to obtain a virtual
(actual plus extrapolated) array significantly longer than
the real one and making it possible to improve on its
original angular discrimination capability. Resorting to
conventional Fourier transformation techniques, we
show that the virtual array thus obtained can be associ-
ated with an augmented set of narrower beam patterns
able to cover the entire horizon. Since the transform-
ation linking the actual field samples produced by the
array elements to the extrapolated data is linear, the
above narrower beam patterns can be implemented by
applying to the actual sensor array a set of weighing win-
dows represented by the transformation coefficients.
The results are also applicable to a transmit array using
an inverse beamforming scheme with the same weighing
windows.
We note that many authors have proposed algorithms

for extrapolating electromagnetic or acoustic fields, but
these schemes are commonly based on the spatial sam-
pling of a wavefront generated by a specific source and
on the application of Huygens’ principle for estimation
of the field over previous or successive wavefronts (see,
e.g., [10, 11]). Conversely, with regard to the approach
pursued here, there seem to be no examples of extrapola-
tion of the field received at the points of a straight segment
(and due to remotely distributed sources) beyond the limits
of the segment itself.
Our approach is reminiscent of techniques already

known in the literature as super-resolution or super-
directivity, even though the application framework,
the constraints, and the objectives pursued here are defin-
itely different. In the literature, the mentioned techniques
have been addressed with reference to different categories
of problems. On the one hand, super-resolution algo-
rithms have been studied extensively in the past in con-
junction with ingenious extrapolation schemes to improve
the discrimination capability of specific instrumentation,
such as optical sensors or spectrum analyzers, in response
to one- or two-dimensional band-limited signals observed
in truncated intervals [4–9]. In these references the inter-
est of researchers is mainly focused on the extrapolation
schemes and the relevant performance limits, with no
reference to their possible applications to beamforming
issues. On the other hand, the potential super-directive
properties of dense arrays are long since known, and
super-directivity is defined mathematically as the solution
to an optimization problem, namely, the search of the
weighing window maximizing the array directivity for a
fixed array response in the steering direction [12, Sect.
9.2.1 and overview notes in Sect. 9.1]. Similar concepts are
also found in the theory underlying the Capon beamfor-
mer and variants thereof [13, Chap. 6] and in the immense
literature dealing with super-directivity issues (examples
of recent papers are in [14], e.g., [15] and [16], or [17, 18],
just to cite different contexts).
Furthermore, although it is well known that super-

directivity is only viable with less-than-critical element
spacing, no specific mention was found in the litera-
ture as to the possible relationship between the super-
directive behavior of the array and its ability to extrapolate
the received field. In particular, up to the author’s know-
ledge, no approach based on field extrapolation has been
proposed thus far as an aid for the design of multi-
beam systems with a controlled degree of super-
directivity.
In any case, as mentioned earlier, when dealing with

super-directive beams, it is necessary to carefully evaluate
the impact of super-directivity on the output noise level
and on the beam bandwidth, as well as the sensitivity of
the beam response to perturbations of the weighing coeffi-
cients, since the above factors rapidly tend to deteriorate
the beam performance [12, Sect. 9]. This paper takes into
account all these aspects and formulates simple design
criteria to identify technologically feasible trade-off solu-
tions, capable to provide significant performance gains
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compared to a conventional uniformly weighted scheme.
The main conclusion is that it is possible to increase the
number of nearly orthogonal beams with which to cover
the horizon, and then ultimately boost the capacity achiev-
able by a hypothetical MIMO system incorporating the
above technique, in those cases where the environment
cooperates. We note that, although this paper has been
written having in mind wireless MIMO applications, the
proposed approach can also prove useful in different
areas, such as radar, sonar, seismic, space exploration, and
the like.
The paper is organized as follows: Section 2 provides

the system overview and illustrates the proposed novel
approach to extrapolate a receiving array, pointing out
conditions allowing extrapolation. Section 3 discusses
the main factors affecting feasibility and performance of
a super-directive beamformer based on field extrapo-
lation, while Section 4 presents the criteria to be used
for the design of a multibeam system suitable to cover the
horizon with improved angular resolution. Conclusions
are in Section 5.

2 System overview and extrapolation technique
Throughout the paper, we refer to a narrow-band
ULA made up of M identical isotropic point elements
operating at the frequency f0 and arranged along the
x-axis, whose scale is normalized with respect to the
wavelength λ (Fig. 1). In this normalized scale, the
distance between the elements is denoted as Δ and
the array effective length (accounting for its electro-
magnetic properties) is L =MΔ while its physical
length is La = (M − 1)Δ. Without loss of generality, in
the following, we consider a receiving array immersed
in the field generated by a plurality of remote sources
(ideally, located at infinite distance from the array)
distributed over the horizon.
Fig. 1 Array geometry
The above sources can be either potentially benefi-
cial as, for example, when they are due to scatterers
distributed in the environment that reflect or diffuse
useful signal components, or they may represent
sources of noise or interference, whose effect is to be
considered deleterious for the communication system.

In any case, let e
→

xð Þ denote the electrical field on
the points of the x-axis (to which we restrict our at-
tention), resulting from the combination of the cited
components.

2.1 Spectrum of e
→

xð Þ
We start from the observation that e

→
xð Þ is a band-

limited function of x, since its Fourier transform (FT)
can be nonzero only within the interval (−1,1) of the
cosines of real directions. If dv0(ψ) indicates the out-
put, in phasor notation, of a hypothetical array element

located at x = 0 in response to the electrical field d e→0 ψð Þ
arriving from the solid-angle direction ψ≡(γ, θ),

3 the
output resulting from all field components in x = 0 is
given by

v0≜v x ¼ 0ð Þ ¼ ∮dv0 ψð Þ; ð1Þ

where the integral is taken on the overall three-
dimensional (3D) horizon. In consequence, the phasor
field received at a generic point of abscissa x reads as

v xð Þ ¼ ∮ exp −j2πx i⋅u ψð Þ½ �dv0 ψð Þ ð2Þ

where i is the x-axis versor and u(ψ) is the versor
associated to the direction ψ. To be specific, we con-
sider the function v(x) for the following two note-
worthy cases, for which (2) can be easily calculated:

1. The remote sources can be modeled as a uniform
uncorrelated continuum for all directions of the 3D4

horizon. In such a case, it is known [13, Chap. 5]
that v(x) is a wide-sense stationary process and its
autocorrelation Rv(δx) depends on the difference
δx≜ x2 − x1 between the abscissas of the points
considered, as follows

Rv δxð Þ ¼ σ2v sinc 2δxð Þ ð3Þ

where sinc(x)≜ sin(πx)/(πx) and σ2 is the mean
v
square value of v(x). The FT of (3) is
Rv δxð Þ⇄F σ2v
2

rect
Ω

2

� �
ð4Þ
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where rect(x) equals unity in (−0.5,0.5) and is zero
elsewhere, and Ω = cos ϕ is the variable representing
the (transformed) domain of directional cosines.

2. The remote sources can be modeled as a uniform
uncorrelated continuum for all directions of the
horizontal plane5 Oxy, and there are no sources in
the other directions. This model could be considered
realistic when the predominant external disturbance
is interference generated by man-made devices, as
might occur for wireless telecommunication
networks distributed over the territory [19].
In such a case, the direction of arrival (DOA)
of the field components is identified by a scalar γ≡ϕ
(since ψ = (γ, 0)) (Fig. 1); and hence from (2), it is
found [13, Chap.0 5]):

Rv δxð Þ ¼ σ2vJ0 2πδxð Þ ð5Þ

where J0(⋅) is the first-kind Bessel function of zero
Fig
order and the other terms retain the same meaning
already specified for (3). The FT of (5) is now
Rv δxð Þ⇄F σ2v
π

rect Ω=2ð Þffiffiffiffiffiffiffiffiffiffiffi
1−Ω2

p ð6Þ

2.2 Extrapolation of v(x)
As pointed out in [4–9], a low-pass band-limited function
such as v(x) is analytic and therefore, in principle, it can
be extrapolated over the entire x-axis provided that it is
exactly known at all points of a finite-length interval. In
practice, this possibility is impaired by the presence of
inaccuracies (due to internal receiver noise, quantization
noise, etc.) in the knowledge of the above function and
also by the need to adopt a discrete representation of
lengths and angles suitable for application of digital signal
processing techniques.
Under certain circumstances, however, it is possible to

take advantage of the above property, as will be shown
shortly. Turning to a space-discrete representation of v(x),
we assume this function is sampled at M evenly spaced
. 2 Arrangement of elements of true and virtual arrays
points with normalized spacing Δ, just as it would be done
by the elements of a ULA, that are capable to take snap-
shots of the field present at the points where they are posi-
tioned. Our aim here is to get knowledge of v(x) over an
extended set of N Δ-spaced points, with N >M, through ex-
trapolation of the missing N −N values from the known M
samples. To proceed, we denote x = (x0 x1 ⋯ xN− 1)

t,
where the superscript t indicates transpose, the vector of
abscissas xn = n Δ, n = 0,1,⋯, N − 1, to which the
samples generated by the extrapolation algorithm are
to be orderly associated, as indicated in Fig. 2. The vec-
tor resulting from the extrapolation process is denoted as
ṽ = (ṽ0 ṽ1 ⋯ ṽN − 1)

t, and it incorporates as sub-vector
the set of the original M samples, such that ṽn = v(xn),
arranged midway in ṽ at the positions with indices com-
prised between ⌊(N −M + 1)/2⌋ and ⌊(N +M − 1)/2⌋, ⌊z⌋
denoting the greatest integer not exceeding z.
It is worth observing that the finiteness that must be

imposed on the length of any actual extrapolation window,
together with the discretization of the x coordinates,
prevents the FT of the extrapolated sequence from being
exactly zero outside the range of the real directions, due to
the spectral ripple introduced by the cited truncation. This
type of errors concurs to limit the accuracy and range of
the extrapolation algorithms to be shortly derived.
The approach we follow starts from the observation

that a ULA of N elements can be associated to N basis
directions equally spaced in the cosine domain, on any
plane containing the array (e.g., [3, Chap. 7])

Ωk≜ cosϕk ¼
1
Δ

k
N
; k ¼ −

&
N
2
−1

’
; ⋯−1; 0; 1; ⋯;

$
N
2

%
ð7Þ

where ϕk is the angle between the x-axis and the kth
direction, measured with respect to the positive direc-
tion of the x-axis (see Fig. 2) and ⌈z⌉ denotes the
smallest integer not smaller than z. The basis direc-
tions (7) are used to build the Fourier orthonormal
basis for the space of N-dimensional complex vectors,
as follows



Reggiannini EURASIP Journal on Advances in Signal Processing  (2015) 2015:72 Page 5 of 16
uk ¼ 1ffiffiffiffi
N

p 1 e−j2πΔΩk e−j2π2ΔΩk ⋯ e−j2π N−1ð ÞΔΩk

� �t
;

k ¼ 0; 1;⋯;N−1
ð8Þ

where the range of variation of the index k has been
rearranged keeping into account the periodic proper-
ties of the exponentials in (8).6 We recall that the
unit vectors (8) can be stacked so as to form the uni-
tary matrix

F≜ u0 u1 ⋯ uN−1ð Þt ð9Þ

which is recognized to be the FT matrix, mapping the
spatial domain of the discrete x coordinates onto the
domain of the discrete Ω directional cosines.
To create a useful edge for extrapolation, it is neces-

sary that the spatial sampling rate exceeds the Nyquist
critical rate of two samples per wavelength, i.e.,

1
Δ
> 2 ð10Þ

since only the fulfillment of this condition may give rise
to a dependency between the field samples that can be
exploited to achieve our purpose. Assuming (10) holds
true, it is seen that part of the cosines in (7), namely
those associated to values of k close to the ends of the
interval (−⌈N/2 − 1⌉, ⌊N/2⌋) become greater than one in
absolute value, i.e., the corresponding directions ϕk are
not real. This permits to argue that, having a snapshot
from a N-element array available, its projections on
these directions must be close to zero, even though not
exactly zero in view of the spectral leakage induced by
the finite sampling rate and array length. In other terms,
denoting as v = (v0 v1 ⋯ vN − 1)

t, with vn = v(xn), n =
0,1,⋯,N − 1, the vector of the actual field values, that
would be provided by a hypothetical N-element array,7

and as V = Fv its FT, the components of V are approxi-
mately zero at those entries corresponding to non-real
directions, i.e., the following must hold true

Vk ≈ 0; bΔNc < k < N−bΔNc ð11Þ

while the components of V are generally non-zero on
the remaining directions, identified in (8) by the values
of k such that: 0 ≤ k ≤ ⌊ΔN⌋, N − ⌊ΔN⌋ ≤ k ≤N − 1. It is
worth pointing out that conditions (11) do not depend
on the values of the received field but descend solely
from considerations based on the physical properties of
the scenario.
Defining β≜ ⌊ΔN⌋ and assuming that the components
Vk in (11) are exactly zero, it is seen that in the vector V,
there only remain Q≜ 2β + 1 degrees of freedom, equal
to the number of its left (possibly) nonzero components.
In consequence, knowledge of the field samples v(xn) on
the M central positions indicated in Fig. 2 is sufficient to
know the entire vector V, provided that

M ≥Q ð12Þ

Indeed, assuming (12) holds true and the components
Vk in (11) are zero, it is possible to formulate the
non-homogeneous linear system of M equations in Q
unknowns

�Fi �V ¼ �v ð13Þ

where �v and �V are shortened versions of vectors v and
V, respectively, as follows

�v ¼ vb N−Mþ1ð Þ=2c ⋯ vb NþM−1ð Þ=2c
� �t ð14Þ

�V ¼ V 0 ⋯ V β VN−β ⋯ VN−1
� �t ð15Þ

and �Fi is a M ×Q matrix obtained from the inverse
Fourier transform (IFT) matrix F− 1 by deleting the col-
umns of indices ranging from β + 1 to N − β − 1 and
retaining only the rows of indices between ⌊(N −M + 1)/2⌋
and ⌊(N +M − 1)/2⌋. Actually, conditions (11) only
hold approximately, so that in (13) we should replace
the vector �V containing true samples of the FT of v
with the vector ~�V, denoting an approximation of �V . For
the specific case M =Q, the system (14) has a unique
solution, i.e.,

~�V ¼ �Fi
−1
�v : ð16Þ

We observe that the inverse matrix in (16) exists being
non-zero all minors of a FT matrix deriving from circu-
larly adjacent rows or columns [20, p. 8], but it tends to
become ill-conditioned as Δ or the ratio M/N decreases.
This aspect must be carefully considered when designing
the system (Sections 3 and 4). It is also noted that (16)
actually defines a multiple beamformer, since the vector
of observations �v projected onto the rows of the matrix
at the right-hand side yields the array response to the
field components coming from the directions associated

with the entries of ~�V . This point will be pursued further
in Section 4.
If M >Q, the number of constraints in the system (13)

exceeds the number of unknowns (overdetermined prob-
lem), and in this case, a reasonable approach is to re-

place �Fi
−1 in (16) with the pseudo-inverse of �Fi , defined

as [13, p. 1371]
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�Fi
†≜ Fi

H
Fi

� �−1
Fi

H ð17Þ

where the superscript H denotes conjugate transpose.

The same considerations already made for �Fi
−1 also hold

for �Fi
†.

From the above discussion, it is possible to outline
the extrapolation procedure, envisaging the following
steps:

1. We start from a snapshot �v at the output of the
M-element ULA with normalized element spacing
Δ and effective length L =MΔ;

2. Leaving Δ unchanged, we fix the number of positions
N >M on which to obtain the vector resulting from
extrapolation, i.e., we fix the length NΔ of a
hypothetical ULA incorporating the actual ULA
(criteria for choosing N are given in Section 4);

3. From (16) to (17), we compute the Q − element
vector ~�V after pre-calculating the matrix of
coefficients �Fi

−1 or �Fi
†;

4. We construct the N − element vector Ṽ by
inserting N −Q zero entries after the first β + 1
elements of ~�V ;

5. We take the IFT so as to obtain the vector ṽ = F− 1Ṽ
representing the result of the extrapolation
procedure whose M central entries coincide with �v .
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Fig. 3 Example of field extrapolation. Arbitrary vertical scales. Upper diagram
2.3 Example
We refer to the 2D field model introduced at point 2 of
Section 2.1. Random realizations of the field are gener-
ated by combining the effects of numerous remote point
sources, whose contributions are assumed independent
identically distributed (IID) circular Gaussian RVs. We
let Δ = 0.1, M = 9, and N = 21. From the foregoing dis-
cussion, we find β = 2, Q = 5, and hence in the FT of the
received field, we have to insert N −Q = 16 central zeros.
Figure 3 shows a typical noiseless realization of the real
part of the received field v along with the FT of v taken
on 21 samples (solid lines; the vertical scales are arbi-
trary), while the diamonds represent the real part of
�v at the output of a nine-element array, i.e., a trun-
cated version of v, together with its 21-point FT, and
finally the dashed lines with triangles are the result of
the extrapolation procedure. The imaginary part of
the field has the same statistical behavior as the real
part in view of the above assumptions. As is seen
from the upper diagram, the extrapolated field closely
follows the actual field up to a certain distance from
the array ends, then it begins to exhibit some devia-
tions, mainly to be ascribed to the approximations in
(11). Such deviations tend to worsen as N/M and/or
Δ grows, and also when the observed field samples,
assumed noiseless thus far, are affected by internally
generated additive noise.
0 1 2 3 4 5
onal cosine

10 12 14 16 18 20
of element

real part of actual field
real part of measured field (9 points)
real part of extrapolated field (21 points)

modulus of FT of actual field (21 points)
modulus of FT of extrapolated field (21 points)
modulus of FT of measured field (9 points)

Ω

: field; lower diagram: spectrum. Δ = 0.1, M = 9, N = 21
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2.4 Discussion
In the foregoing example, the transformation matrix (17)
takes on the following values−
�Fi
† ¼

14:13 −13:95 −9:58 5:354 12:67 5:354 −9:58 −13:95 14:13
10:27 − j0:6065 −10:78 − j1:618 −7:598 − j0:1122 3:563 þ j1:421 9:14 þ j1:378 3:824 − j0:3073 −7:293 − j2:132 −10:77 − j1:631 9:64 þ j3:61
3:374 −j 0:4366 −4:162 − j0:828 −2:862 þ j0:4055 1:428 þ j1:435 3:734 þ j1:152 1:988 − j0:3812 −2:136 − j1:947 −3:905 − j1:66 2:54 þ j2:26
3:374 þ j0:4366 −4:162 þ j0:828 −2:862 − j0:4055 1:428 − j1:435 3:734 − j1:152 1:988 þ j0:3812 −2:136 þ j1:947 −3:905 þ j1:66 2:54 − j2:26
10:27 þ j0:6065 −10:78 þ j1:618 −7:5976 þ j0:1122 3:563 − j1:421 9:14 − j1:378 3:824 þ j0:3073 −7:293 þ j2:132 −10:77 þ j1:631 9:64 − j3:61

266664
377775

ð18Þ
whose rows can be regarded as beamforming weighing
windows with nominal looking directions π/2, ± arc
cos(1/2.1), and ± arccos(2/2.1), respectively. Inspection
of the values of the entries in (18), in particular of those
with alternating signs in the first row (associated to the
broadside direction), indicates that the array is being
operated in super-directive conditions, with a degree of
super-directivity depending on the choice of parameters
involved in the extrapolation procedure. Actually, it can
be verified (see Tables 1 and 2 in Section 4) that the
array gain associated to the rows of (18) exceeds that
achievable by uniform weighing though it does not reach
the maximum possible value envisaged in [12, Sect.
9.2.1]. This behavior is not surprising as many of the
band-limited extrapolation algorithms proposed in the
literature (e.g., [4, 6]) are actually aimed at achieving
super-resolution in the spectral domain. In our context,
this is equivalent to achieving super-directivity in the an-
gular domain by extrapolating the values taken by the
field beyond the physical extension of the array.
An interesting aspect that is worth pursuing relates to

the properties of the beam patterns that are implicitly
generated by the rows of the transformation matrix in
(16) or (17). Actually, it can be shown that through a
Table 1 Performance indices for the FE beam patterns of the examp

Parameters (M, Δ, N) Number of beam patterns GE (3D) (dB) GE (2D

9, 0.1, 21 5 5.4 6.8

8, 0.25, 12 7 6.8 7.9

3, 0.25, 4 3 3.0 4.6

5, 0.125, 8 3 3.0 4.6

5, 0.125, 16 5 5.0 6.2

6, 0.125, 16 5 5.1 6.4

7, 0.125, 16 5 5.2 6.6

8, 0.125, 16 5 5.3 6.7

9, 0.125, 16 5 5.4 6.9

10, 0.125, 16 5 5.6 7.1

7, 0.25, 8 5 6.0 7.7

13, 0.125, 24 7 6.4 7.4

16, 0.125, 24 7 7.0 8.4
proper choice of the parameters M, Δ, and N, the
number Q of these beams and their directivity can
easily exceed those achievable through uniform-weighing
beamforming applied to critically spaced arrays of equal
length. It seems therefore appropriate to investigate the
conditions under which these beams retain the properties
of being approximately orthogonal and capable to cover
the entire horizon. Prospectively such an augmented set of
beams can boost the spatial multiplexing properties of the
MIMO communication system, provided that the environ-
ment surrounding the array antennas is sufficiently rich of
obstacles with angular size comparable to or smaller
than the enhanced angular discrimination capability
of the array. This approach to beamforming will be
referred to in the following as field extrapolation (FE)-
based beamforming.
As mentioned earlier, an array operating in super-

directive mode has to face peculiar issues, such as a
pronounced sensitivity to electro-mechanical imper-
fections and errors in the implementation of the
beamforming weights, as well as increased vulnerability
to internal noise, in comparison with a conventional uni-
formly weighted beamformer. In addition, when a super-
directive array is operated in the active mode, the
les

) (dB) Gn (dB) γE (3D) γE (2D) γn Qbw (3D) Qbw (2D)

−17.5 0.13 0.20 0.45 200 270

−11.7 0.07 0.13 0.22 71 92

3.0 0.0039 0.0050 0.014 1 1.4

3.2 0.0054 0.0071 0.024 0.96 1.4

−37.5 1.4 2.4 3.3 18,000 24,000

−27.0 0.39 0.68 1.1 1600 2200

−19.0 0.14 0.26 0.47 260 360

−12.3 0.061 0.11 0.23 58 80

−6.4 0.029 0.055 0.12 15 22

−1.25 0.015 0.029 0.070 4.8 6.8

7.8 0.0026 0.0054 0.0082 0.66 0.97

−19.2 0.28 0.50 0.66 360 450

−4.2 0.035 0.070 0.13 13 18



Table 2 Performance indices for the FE beam patterns of the examples (end-fire beam)

Parameters (M, Δ, N) Number of beam patterns GE (3D) (dB) GE (2D) (dB) Gn (dB) γE (3D) γE (2D) γn Qbw (3D) Qbw (2D)

9, 0.1, 21 5 12.2 8.4 −5.3 0.069 0.036 0.11 56 24

8, 0.25, 12 7 14.0 9.3 −1.1 0.041 0.022 0.061 32 11

3, 0.25, 4 3 7.4 5.8 3.0 0.011 0.0066 0.014 2.8 1.9

5, 0.125, 8 3 7.7 6.0 4.2 0.011 0.0065 0.019 2.25 1.51

5, 0.125, 16 5 12.7 8.7 −24.1 0.43 0.22 0.71 4700 1900

6, 0.125, 16 5 12.5 8.6 −14.8 0.16 0.087 0.27 540 220

7, 0.125, 16 5 12.4 8.5 −8.2 0.082 0.044 0.13 110 47

8, 0.125, 16 5 12.2 8.4 −3.2 0.048 0.026 0.079 34 14

9, 0.125, 16 5 11.9 8.3 0.79 0.031 0.017 0.051 13 5.6

10, 0.125, 16 5 11.6 8.1 4.0 0.021 0.012 0.035 5.8 2.6

7, 0.25, 8 5 10.1 7.2 7.8 0.01 0.0064 0.0082 1.7 0.87

13, 0.125, 24 7 8.2 8.1 −11.8 0.071 0.037 0.11 67 22

16, 0.125, 24 7 8.1 8.1 0.4 0.027 0.015 0.041 7.6 2.7
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radiation resistance of the elements tends to be smaller
than in a conventional array [12, Chap. 7], and it may
therefore be necessary to resort to unconventional tech-
nology to mitigate the impact of thermal dissipation. It is
also worth pointing out that the approximations inherent
in the FE procedure (notably in (11)) limit the extrapo-
lation range and the quality of the corresponding
super-directive beam patterns. Most of the above issues
are discussed in Section 3, where we finally end up with
some design guidelines.

3 Discussion of performance factors
The main aspects to be considered for the assessment of

the FE multiple beamformer defined by the rows of �Fi
−1

or �Fi
† in (16)–(17) are as follows: (1) the shape and regu-

larity of beam patterns, in particular their suitability to
cover the entire horizon without significant overlap; (2)
the array gain associated to each beam, i.e., the improve-
ment it warrants, with respect to an isotropic antenna,
in the ratio between the useful signal power, supposed to
arrive from the direction of maximum beam response,
and that of the external noise: (3) the self-noise gain as-
sociated to each beam, i.e., the ratio between the useful
signal power at the beam output and that of internal
noise, generated by the dissipative components of the
receiver; (4) the sensitivity of the above parameters to
errors in the implementation of the array and the beam-
forming weights; (5) the bandwidth of each beam.

3.1 FE beam patterns

We denote as wk the kth row of the matrix �Fi
−1 or �Fi

†,
taken for convenience with normalized norm: ‖wk‖ = 1,
k = 0, 1,⋯,Q − 1. Each of these rows defines a beam
pattern, as follows
gk ϕð Þ ¼ wH
k u ϕð Þ; k ¼ 0; 1;⋯;Q−1 ð19Þ

where u(ϕ) is the unit-norm vector associated to the
direction ϕ (see Fig. 2)

u ϕð Þ≜ 1ffiffiffiffi
N

p 1 e−j2πΔ cosϕ e−j2π2Δ cosϕ ⋯ e−j2π N−1ð ÞΔ cosϕ
� �t

ð20Þ
Recalling how the weighing vectors were obtained, it is

expected that the associated beam patterns are similar,
albeit not identical, to those that would be obtained
from a vector of N actual array elements, and the more
so the less the required extrapolation effort, in particular,
the smaller the difference N −M. This conjecture was
confirmed by extensive evaluations, which showed that
for moderate extrapolation length the FE beams have a
regular shape with a main lobe and moderate secondary
lobes. Also, the main lobes are arranged in the angular
domain so as to cover the entire horizon uniformly, and
their orientation and angular width are such that they
intersect approximately at the same level. Examples of
beam patterns obtained through the described approach
are presented and discussed in Section 4.

3.2 Array gain vs. external noise
We recall from our earlier discussions that samples of
the noise field taken by the array elements are generally
correlated. One exception is the 3D isotropic uncorre-
lated noise with half-wavelength spaced elements (see
(3)). When the noise field is 2D horizontal isotropic then
(5) holds, i.e., the noise field is correlated even when the
elements are spaced by half-wavelength. In any case, the
noise field is correlated if the elements are spaced tightly
(Δ < 1/2). Curiously this aspect is often overlooked in the
literature, notably when formulating the noise vector
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model at the output of a receiving array,8 but actually it
cannot be neglected since it explains why the gain of a
fixed-length uniformly weighted ULA with Δ < 1/2 does
not grow with the number of elements, while con-
versely it warrants the achievement of large array gains in
super-directive regime. Given a M-element ULA with
weights w = (w0 w1 ⋯ wM − 1)

t, we define the array
gain GE with respect to the external noise as the inverse
of the ratio between the beam output power due to exter-
nal noise sources and the noise power that would be
obtained at the output of an isotropic antenna having in
all directions a response equal to the maximum beam
response. In this way GE also represents the increase in
signal-to-external-noise ratio when the signal source is on
the beam steering direction. As is known, the above defin-
ition leads in general to a result depending on the relative
angular distribution of noise sources with respect to the
beam steering direction. Exceptions to this rule are for the
two limiting cases of isotropic 3D and 2D angular noise
distributions considered at points (1) and (2) of Section 2,
for which the array gain turns out to be respectively [12]:
Array gain vs. 3D isotropic noise

GE ¼ wH P Δ;ϕ0ð Þw
wH S Δð Þw ð21Þ

Array gain vs. 2D isotropic noise9

GE ¼ wH P Δ;ϕ0ð Þw
wH J0 Δð Þw ð22Þ

where ϕ0 is the steering direction and P, S, and J0 are
Hermitian M ×M matrices, with entries

P Δ;ϕ0ð Þ½ �i;k ¼ e−j2π i−kð ÞΔ cosϕ0 ð23Þ

S Δð Þ½ �i;k ¼ sinc 2 i−kð ÞΔ½ � ð24Þ

J0 Δð Þ½ �i;k ¼ J0 2π i−kð ÞΔ½ � ð25Þ

The gains achievable through the above approach are
evaluated numerically for some examples in Section 4.

3.3 Array gain vs. internal noise
When the array is used in reception, each element is
connected to front-end hardware affected by self noise
that can be modeled as AWGN with two-sided power
spectral density 2N0.

10 The contribution of these internal
sources of noise to the beam output is a combination of
IID processes weighted by the beamformer coefficients.
As we have done for the external noise, we are inter-
ested to formulate a reasonable definition of the array
gain with respect to the internal noise. As already
pointed out, most literature on MIMO systems does not
distinguish between external and internal noise, al-
though their statistical behavior is different and the
definition of array gain in a strict sense should only take
into account the external sources of disturbance. In any
case, the mechanisms through which the two mentioned
types of noise—internal and external—impact the system
performance are definitely different, and for our pur-
poses, it seems adequate to treat them separately.
As is known, a uniform-weighing beamformer has an

intrinsic capability to combat the effects of internal noise
since the useful signal components at the output of the
array elements add coherently, while the noise terms
add up incoherently. Instead a super-directive array
tends to reduce the signal level compared to that of self
noise in view of the sign variations occurring in the
beamformer weights (an example is given in Section 2.4),
and this tendency must be carefully kept under control by
a proper choice of the design parameters, so as to ensure
the array feasibility.
To proceed, we compare the performance of a receiver

employing an M − element array antenna with that of a
receiver relying on a single-element antenna. Denoting

as SNR 1ð Þ ¼ Es=N
1ð Þ
0 , the received-energy-per-symbol-to-

self-noise-spectral-density ratio for the single-element
antenna, it is easily found that this ratio at the output of
a beam employing the weighing vector w with steering
direction ϕ0 coincident with the signal DOA becomes

SNR Mð Þ ¼ Es

N Mð Þ
0

wH P Δ;ϕ0ð Þw
wH w

ð26Þ

where P(Δ, ϕ0) is given by (23) and N Mð Þ
0 is the equiva-

lent self-noise spectral density of each receiving channel
of the array11 and represents a design parameter, not
necessarily to be taken equal to N 1ð Þ

0 : We observe that in
(26) Es denotes the received signal energy at the output
of the generic array element; and hence, it is the same
physical parameter involved in the definition of SNR(1).
It seems reasonable to require that SNR Mð Þ >e SNR 1ð Þ ,

i.e., that the beamformer does not deteriorate the signal-
to-self-noise ratio with respect to the single-element
antenna receiver. This leads to the design criterion of
choosing the self-noise level for each array channel such
that the following condition holds

N Mð Þ
0 <e N 1ð Þ

0 Gn ð27Þ

where Gn is the self-noise gain, defined as

Gn≜
wHP Δ;ϕ0ð Þw

wH w
ð28Þ

Actually, the index Gn (also referred to in the litera-
ture with different names, e.g., white noise gain in
[13, p. 1366], [17] and [21]) can be regarded as a
margin offered by the array to counteract its own
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noise, that can be exploited to reduce complexity and
cost of the front-end low-noise amplifiers. Now, while for
a uniform-weighing beamformer the parameter Gn is in-
deed greater than unity (and equal to M for the specific
case of uniform-weighing vector), thus representing a true
gain, instead for a super-directive array Gn may occur to
be less than one, and even far smaller than one as the
array super-directive properties get more and more pro-
nounced. For instance, it is found that the first row of
the matrix (18), relevant to the broadside beam, yields
Gn ≈ − 17.5 dB, a very small value, possibly incompatible
with other design constraints. In fact, it is apparent that
taking Gn less than unity entails a more stringent require-
ment on the self noise of the array elements in compari-
son with the single-element antenna receiver, and this
seems acceptable only if the implied technological effort is
reasonably mild, say of the order of a few decibels. This is
one of the criteria to be taken up again in Section 4.

3.4 Sensitivity to array imperfections
To assess the sensitivity of the main performance indices
to small perturbations δw occurring in the implementa-
tion of the beamformer-weighing vector (perturbations
to which, up to a first approximation, we will also ascribe
the impact of inaccuracies in the mechanical positioning
of the array elements), we expand the above indices into a
Taylor series around the nominal weights, truncated at the
linear terms. We then proceed carrying out a statistical
error analysis, under the assumption that the perturba-
tions can be modeled as random variables. Starting from
expression (21) of the 3D array gain, we have to evaluate
([13, Sect. A.7.4], [22, Eq. (2.8)])

δGE≈
∂GE

∂wt

∂GE

∂w�t

	 

δw
δw�

	 

¼ GE

wHP
wH Pw

−
wH S
wH Sw

� �
δw

þ GE
wHPð Þ�
wH Pw

−
wH Sð Þ�
wH Sw

	 

δw�

ð29Þ

where the derivative with respect to w is taken under
the assumption that w* remains constant and vice
versa, and we dropped the dependency on Δ and ϕ0.
It follows that

δGE

GE
≈2Re bHδw

� � ð30Þ

where

bH≜wH B ð31Þ

B≜
P

wH Pw
−

S
wH Sw

ð32Þ

As expected, for small perturbations of the beamform-
ing weights, the relative variation of GE turns out to be a
combination of the relative variations of the numerator
and the denominator of (21). Assuming for the com-
ponents of δw a complex-valued IID Gaussian model
with zero mean and variances of the real and imaginary
components all equal to σ2

w , after some elaboration, we
are led to

E δGEf g
GE

≈0 ;
E δG2

E

� �
G2

E

≈4σ2
w bk k2 ð33Þ

where from (31)

bk k2 ¼ bHb≜wHBBHw ð34Þ
Denoting as �w ¼ w= wk k the unit-norm-weighing

vector, the relative RMS deviation of GE in (33) can be
written as

γE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E δG2

E

� �q
GE

≈2σ �w
�b

  ð35Þ

with σ2�w ¼ σ2w= wk k2 and
�b

 2 ¼ bk k2 wk k2 ¼ �wH �B�BH
�w ð36Þ

and

�B ¼ B wk k2 ¼ P
�wH P �w

−
S

�wH S �w
¼ P

Gn
−
GE

Gn
S: ð37Þ

Following the same line of reasoning, the relative RMS
deviation of the gain GE over the 2D external isotropic
noise is again given by (35)–(37), the only difference
being that the matrix S in (37) is replaced by J0(Δ) given
by (25). Finally, a similar result applies to the self-noise
gain (28), for which the matrix S in (37) is replaced by
the identity matrix, leading to

γn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E δG2

n

� �q
Gn

≈2σ �w
�bn

  ð38Þ

where

�bn

 2 ¼ �wH �Bn�B
H
n �w ¼ �wHPPH �w

�wHP�wð Þ2 −1 ð39Þ

Noting that PPH =MP, from (38)–(39) we find

γn≈2σ �w
�bn

  ¼ 2σ �w

ffiffiffiffiffiffiffiffiffiffiffiffi
M
Gn

−1

r
ð40Þ

This result indicates that the relative RMS variation of
the self-noise gain in response to a relative RMS vari-
ation

ffiffiffi
2

p
σ �w of the normalized weights is proportional to

the latter variation, the proportionality factor being
greater than unity when Gn < 2M/3.
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Collecting the above, the sensitivity of the array gains
to perturbations of the weighing vector is given by (35)
and (40). These equations represent useful design tools
when dealing with super-directive arrays since the
relative errors occurring in the implementation of the
beamformer weights usually map onto amplified relative
errors on the array gains. Therefore, use of these equa-
tions allows us to identify the degree of super-directivity
that can be safely assigned to the array without having
to tackle substantial feasibility issues. For instance, using
as beamforming vector, the first row of matrix (18), we
find that the broadside array gains with respect to the
2D and 3D isotropic noises are 6.8 and 5.4 dB, respect-
ively, while the self-noise gain is −17.5 dB. This pro-
nounced super-directivity reflects in a rather high
sensitivity to array imperfections: actually, using (35)
and (40), we find from simulations that a 1 % relative
RMS perturbation on the beamformer weights entails
relative RMS variations close to 33 and 27 % for the 2D
and 3D array gains, respectively, and even larger devia-
tions for Gn. To limit the impact on the array gains to
just a few percent, we should constrain array imperfec-
tions not to exceed say 0.1 % or so, a rather demanding
requirement. The design criteria for jointly obtaining ad-
equate super-directive properties and robustness against
array imperfections are discussed in Section 4.

3.5 Bandwidth
A further aspect to be considered when dealing with FE
super-directive arrays is the sensitivity of the array response
to a mismatch of the frequency of signals actually handled
by the arrays with respect to the nominal array (center) fre-
quency. Indeed, it is well known that super-directivity can
greatly restrict the array fractional bandwidth, defined as the
ratio between the actual bandwidth and the array nominal
center frequency. It is therefore appropriate, to avoid signal
distortion, that the bandwidth of the signals received or
transmitted by the array is smaller than the array bandwidth.
The array fractional bandwidth for 3D isotropic reception is
the inverse of the Qbw factor given in [12] Eq. (9.23)] as

Qbw≜
wH w

wHS Δð Þw ð41Þ

which, recalling (21) and (28), also reads as

Qbw ¼ GE;3D

Gn
ð42Þ

where we designate as GE,3D the array gain vs. the 3D
isotropic noise. A result similar to (42) also applies when
the parameter Qbw is defined with reference to 2D
isotropic reception, with GE,3D replaced by the 2D array
gain. With reference to the example in Section 2.3, from
(42) we find for the broadside beam Qbw ≈ 200, i.e., a
fractional bandwidth around 0.5 %. For the 2D case, we
get Qbw ≈ 270, or a fractional bandwidth close to 0.4 %.
If the center frequency is in the order of a few gigahertz,
this implies a bandwidth around a few tens megahertz.
Larger bandwidths can be attained with different choices
of the design parameters (see Tables 1 and 2 in Section 4),
such to ensure compatibility with existing wireless
standards. In other application areas, such as aero-
and underwater acoustics, the relative bandwidths of
signals may occur to be so large as to enforce the use of
complex equalization techniques in conjunction with
super-directive arrays [17, 23]. In this respect, it is noted
that end-fire beams seem to offer improved robustness
and larger bandwidths than broadside beams (see discus-
sion in [23] and results in Section 4.2).

4 Beamformer design
4.1 Design criteria
Based on the results in the foregoing sections, we now
outline a procedure for the design of a FE-based super-
directive multiple beamformer and for assessment of its
practical feasibility. We start by fixing the normalized
effective array length L, a parameter commonly subject
to practical limitations. Given the number of array
elements M and the inter-element spacing Δ, such that
L =MΔ, the basis directions associated to the array are

�Ωk≜ cosϕk ¼
k
L
¼ 1

Δ

k
M

; k ¼ −

&
M
2
−1

’
;⋯−1; 0; 1;⋯;

$
M
2

%
ð43Þ

among which the real directions are those satisfying |k|/
(ΔM) ≤ 1, whose number is 1 + 2⌊ΔM⌋. To achieve ex-
trapolation and related angular super-resolution, we
have to select a number N >M of elements of a longer
virtual ULA incorporating the actual array as described
in Section 2.2. The basis directions associated to this
array are given by (7), and the number of real directions
is Q = 1 + 2⌊ΔN⌋, that we require to exceed that relevant
to the actual array, i.e., ⌊ΔN⌋ > ⌊ΔM⌋, so as to achieve
super-resolution. A further condition is given by (12),
allowing to solve the system of equations (13). Summing
up, we have the following constraints

bΔNc > bΔMc ð44Þ
1þ 2bΔNc≤M ð45Þ

From (45), we also find ⌊ΔN⌋ ≤ (M − 1)/2 and substi-
tuting in (44) produces

M−1
2

≥bΔNc > bΔMc ð46Þ

confirming that to achieve angular super-resolution, it is
strictly necessary that Δ < 1/2. Use of (46) permits to
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identify the lower and upper limits for the length N of
the extrapolated vector. For the example in Section 2.2,
it is easily found that these limits are Nmin = 10 and
Nmax = 49, respectively. However, not all values of N in
this wide interval are acceptable in view of their impact
on the array self-noise gain and array response sensitiv-
ity to perturbations in the weighing vector, as discussed
in Section 3. As we already observed, the choice N = 21
leads to severe implementation issues, that tend to
worsen further at larger values of N.
Collecting the above, a possible approach to search

good trade-off solutions in the design of a FE-based
super-directive multiple beamformer is as follows:

1. Given the effective length L, choose the number
M of elements such that Δ < 1/2, keeping in mind
that the larger M is, i.e., the more demanding is
the array implementation, the easier is to achieve
super-directive properties from the array, as well as
robustness to self noise and implementation errors;

2. From (46), find the range of possible design values
for N and select N as close as possible to Nmin and
such to achieve the desired number Q = 1 + 2⌊ΔN⌋
of super-directive beams, taking into account that
the beamformer implementation complexity grows
with Q; a further condition that may be desirable to
introduce is that N is an integer multiple of 1/Δ, so
as to achieve two beams pointed exactly at the
end-fire directions (see (7));

3. Calculate the unit-norm weighing vectors of the
FE multiple beamformer from the rows of the
matrices �Fi

−1 or �Fi
†;

4. For each weighing vector, from (21) or (22), evaluate
the array gain GE and the associate beam pattern;

5. For each weighing vector, from (28) and (35), (38),
(42) verify that the self-noise gain, the beam
sensitivity to array perturbations and the bandwidth
take on affordable values.

It was found that the procedure outlined above can
lead to a significant increase of the number of approxi-
mately orthogonal beams, in comparison with a uniformly
weighted array of equal length. On the other hand, beyond
a certain degree of super-directivity, the FE beam patterns
may suffer from excessive degradation in view of the ap-
proximations inherent in (11). The above properties are
discussed further in the next section by means of specific
examples.
It is also worth observing that, for a given number

and spacing of the array elements, the beams synthe-
sized by means of the above approach do not generally
achieve the largest possible amount of (super-) directiv-
ity, i.e., the maximum array gain vs. external noise for a
fixed array response in the steering direction. The upper
limit to this gain is established by the Capon weighing
window [13, Sect. 6.2.1.1], but application of this win-
dow without additional constraints often leads to un-
satisfactory results, e.g., to beam patterns with very
large side lobes. However, as shown in the examples
of Section 4.2, the above limit can be closely approached
using an adequate extrapolation effort.

4.2 Examples
We limit our consideration to arrays of small length, up
to about 2λ. To fix a benchmark, Fig. 4a–d shows the
sets of beam patterns associated to the (all real) basis
directions of standard uniform-weighing λ/2-spaced arrays
of physical lengths La = λ/2, λ, 3λ/2, 2λ (i.e., with M =2, 3,
4, 5), respectively. The patterns are plotted using different
line styles. As is known, for even M, one of the patterns
exhibits two antipodal main lobes looking at the end-fire
directions, while for odd M, the end-fire directions are not
included in the set (43). Table 3 shows the number of
beams and the array gains at broadside achievable for
these arrays. Also shown are the array gains for the end-
fire beams where applicable.
Turning to FE beamforming, we consider first the case

M = 3, Δ = 1/4 yielding an actual array length La = λ/2. In
this case, from (43), it is seen that a single real basis dir-
ection exists (broadside). Application of the procedure
outlined above leads to a single compatible value of N,
namely N = 4, yielding the set of three beam patterns
depicted in Fig. 5a, that should be compared with the
two beams in Fig. 4a. These three beams are slightly
super-directive as is confirmed by the self-noise gain
of 3 dB (see Tables 1 and 2), but they do not pose
feasibility issues.
In an attempt to further boost the array directivity, we

may select smaller values for Δ without changing the array
length. Letting M = 5, Δ = 1/8, we find Nmin = 8, Nmax = 16;
using N = 8 yields the three beams of Fig. 5b, which are
quite similar to those in Fig. 5a, except some reduction in
the side lobe level, and related beneficial impact on the
performance indices (Tables 1 and 2). Here, the gain of
broadside and end-fire beams vs. the 3D isotropic noise is
3.0 and 7.7 dB, respectively. For comparison, from [13,
Eqs. (6.14)–(6.15)], we find that the gain achieved by the
Capon beamformer for the same values of M and Δ in the
same directions is 5.5 and 13.8 dB, respectively, i.e., 2.5
and 6.1 dB higher than those achieved by the FE beamfor-
mer, thus indicating the existence of sizable margins to
further increase the array directivity. Actually, if we
let N = 16 instead of N = 8, we are led to the five
beams depicted in Fig. 5c achieving a substantial di-
rectivity boost. However, even ignoring the presence
of significant side lobes for the broadside beam pat-
tern, these sharper beams prospect severe feasibility
issues, as the system sensitivity to self noise and other
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perturbations grows considerably (see Tables 1 and 2,
showing that the self-noise gain at broadside and end-fire
drops down to −37.5 and −24.1 dB, respectively!). It is
worth pointing out that in this case, the gains of broadside
and end-fire beams vs. the 3D isotropic noise turn out to
be 5.0 and 12.7 dB, respectively, i.e., fairly close to the
performance of the Capon beamformer (the distance is
now 0.5 and 1.1 dB for broadside and end-fire, respect-
ively). Similar results and conclusions apply to the 2D
noise gains.
To mitigate the effect of self noise, we can slightly

increase the array length, adding elements without chan-
ging their spacing. Retaining Δ = 1/8, N = 16 and select-
ing M = 6, 7, 8 leads to the patterns of Fig. 6a–c that
look all similar to Fig. 5c, but actually their feasibility
constraints get looser and looser with M. For instance,
the self-noise gain for the broadside beam pattern of
Fig. 6c is −12.3 dB (Table 1), and it could be further
increased to around −6.4 and −1.3 dB by letting M = 9
Table 3 Main performance parameters for standard uniform-weighi

Parameters (M, Δ) Number of beam patterns GE (3D) (dB) broadside GE (

2, 0.5 2 3.0 4.6

3, 0.5 3 4.8 6.1

4, 0.5 4 6.0 7.7

5, 0.5 5 7.0 8.6
and M = 10, respectively. In these conditions, the FE
approach permits to approximately double the array
length (from around M = 8 ÷ 10 to N = 16, i.e., to obtain
a virtual array length close to 2λ from an actual length
around λ.
This property was found to hold true for longer arrays

as well. In general, the FE technique seems to permit,
with reasonable effort and good quality of the resulting
beam patterns, the achievement of virtual lengths ex-
ceeding the actual size by approximately one wavelength
or slightly more. This is not surprising, however, as simi-
lar results are mentioned in the literature dealing with
band-limited signal extrapolation. Indeed, in [9], it is
shown that a band-limited signal after truncation in the
time domain can be extrapolated, with reasonable effort
and accuracy, over an interval exceeding the truncation
window by a very few times the inverse of the signal
bandwidth. Attempts to do better soon conflict with
feasibility issues. From the above, we can argue that the
ng λ/2-spaced arrays

2D) (dB) broadside GE (3D) (dB) end-fire GE (2D) (dB) end-fire Gn (dB)

3.0 1.9 3.0

4.8

6.0 3.5 6.0

7.0



Fig. 5 FE beam patterns for a M = 3, Δ = 0.25, N = 4; b M = 5, Δ = 0.125, N = 8; c M = 5, Δ = 0.125, N = 16
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benefits of FE are especially valuable for relatively small
arrays, with size say up to a few wavelengths, when add-
ing a further (albeit virtual) wavelength to the array size
produces a significant directivity upgrade.
It is also worth observing (Figs. 4, 5, and 6) that the

beam patterns generated by the FE approach are subject
to some distortion with respect to the patterns achiev-
able from a standard array of actual length N. Notably,
some of the FE patterns have more pronounced side
lobes and their angular widths and looking directions
are somewhat perturbed, even though their arrangement
over the horizon appears rather uniform, with adjacent
patterns overlapping approximately at the same level.
The cited distortions are to be ascribed to the approxi-
mations implicit in the FE procedure. We believe they
could be mitigated by introducing adjustments in the
generation of the weighing windows, but this aspect is
not pursued here being out of the paper scope. We limit
ourselves to point out that, as far as MIMO applications
are concerned, the exact shape of the beam patterns is
not of primary interest, a more useful objective being a
Fig. 6 FE beam patterns for Δ = 0.125, N = 16. a M = 6, b M = 7, c M = 8
set of beams uniformly arranged in the angular domain
with small overlap on one another. Simulations showed
that the correlation coefficient between the outputs of
properly designed FE beams in response to a 2D iso-
tropic noise field does not exceed 0.2 ÷ 0.3, not far
from the values encountered in conventional multiple
beams.
As a further example, we consider an array of physical

length La = 3λ/2, corresponding to M = 4 for the stand-
ard spacing Δ = 1/2 (Fig. 4c). Using M = 7, Δ = 1/4, N = 8
leads to a slightly super-directive set of beams as shown
in Fig. 7a. Letting M = 13, Δ = 1/8, N = 24 (same actual
length as previous) produces the more critical set of
beams of Fig. 7b (the self-noise gain at broadside is
now −19.2 dB) while, allowing the array to be slightly
extended to M = 16, Δ = 1/8, N = 24 yields the beams of
Fig. 7c, with self-noise gain at broadside around −4.2 dB.
These results substantially confirm that the array can be
virtually extended by around one wavelength with reason-
able effort. We observe that the solution in Fig. 7c pro-
vides seven beams of good quality against the four or five



Fig. 7 FE beam patterns for a M = 7, Δ = 0.25, N = 8; b M = 13, Δ = 0.125, N = 24; c M = 16, Δ = 0.125, N = 24
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beams of the uniform-weighing approach shown in
Fig. 4b, c.
Finally, to ease the comparison of results, we sum-

marize in Table 1 the main performance indices for
all combinations of FE parameters considered so far,
with reference to the beams looking at broadside.
Gain margins for off-broadside looking directions are
found to be even wider. This is confirmed by Table 2,
showing the values of the same indices for the end-
fire beams and for the same parameter combinations
considered in Table 1.

5 Conclusions
It was shown that the bandwidth finiteness of the field
sampled by a densely spaced ULA can be exploited to
extrapolate the field beyond the array extension and
enhance the array angular resolution. One of the results
of the paper is that it is possible, with reasonable effort,
to achieve accurate extrapolation of the field over a
length of the order of a wavelength, equally partitioned
at the array ends, thus allowing a significant increase of
the virtual array size and its angular discrimination cap-
ability when the actual array length is in the order of a
few wavelengths or smaller. The proposed technique
permits to build approximately orthogonal beams, nar-
rower than those achievable through a conventional
uniform-weighing approach, and featuring about the
same properties as those obtained from an actual array
of length equal to the extrapolation window. In scatter-
ing environments, this may boost the spatial multiplex-
ing capability of array antennas for MIMO applications.
The price to be paid is an increased implementation
complexity of the antenna front-ends, notably the need
to arrange more elements within the array spatial aper-
ture, along with a greater sensitivity to self noise
and to mechanical and electrical perturbations of the
array elements. In the paper, we have indicated design cri-
teria leading to a significant enhancement of array
angular resolution with reasonable implementation
constraints.
Endnotes
1We define two beams as spatially orthogonal when

the cross-correlation of their outputs in response to an
isotropic uncorrelated noise field is zero.

2The term “uniform” means that the array elements
are evenly spaced.

3We observe that, since the array elements are as-
sumed isotropic, the (random uniform) polarization of
the received field components is immaterial here.

4In more precise terms, the field components gener-
ated by all ∞ 2 elements of solid angle making up the 3D
horizon are assumed to be zero-mean, of equal intensity,
and uncorrelated.

5In more precise terms, the field components gener-
ated by all ∞ angular elements making up the 2D hori-
zon are assumed to be zero-mean, of equal intensity,
and uncorrelated.

6Actually the generic element of uk can be written in
the familiar form uk½ �n ¼ exp −j2πnk=Nð Þ= ffiffiffiffi

N
p

.
7We momentarily admit that there is no internal noise

in the receiving array, deferring a discussion of the im-
pact of internal noise to a later step.

8A very common assumption in papers dealing
with MIMO applications is that the noise vector at
the receiving array is uncorrelated, irrespective of
the element spacing and of the noise field spatial
properties.

9The beam maximum response axis is assumed to be-
long to the horizontal plane for the 2D noise distribution.

10We assume this incorporates all sources of internal
noise, from RF to baseband stages as well as the ADC
quantization noise.

11For simplicity N Mð Þ
0 is assumed here equal for all

channels, but actually the self-noise levels across the
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array could be optimized according to the values assumed
for the entries in w.
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2D, 3D: two- or three-dimensional; ADC: analog-to-digital conversion;
AWGN: additive white Gaussian noise; DOA: direction of arrival; FE:
field-extrapolation; IID: independent identically distributed; MIMO:
multiple-input multiple-output; RF: radio frequency; RMS: root mean square;
ULA: uniform linear array.
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