7,592 research outputs found

    Emerging technologies for learning (volume 2)

    Get PDF

    Emerging technologies for learning report (volume 3)

    Get PDF

    Smartphones

    Get PDF
    Many of the research approaches to smartphones actually regard them as more or less transparent points of access to other kinds of communication experiences. That is, rather than considering the smartphone as something in itself, the researchers look at how individuals use the smartphone for their communicative purposes, whether these be talking, surfing the web, using on-line data access for off-site data sources, downloading or uploading materials, or any kind of interaction with social media. They focus not so much on the smartphone itself but on the activities that people engage in with their smartphones

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Mobile Cloud Computing Model and Big Data Analysis for Healthcare Applications

    Get PDF
    Mobile devices are increasingly becoming an indispensable part of people\u27s daily life, facilitating to perform a variety of useful tasks. Mobile cloud computing integrates mobile and cloud computing to expand their capabilities and benefits and overcomes their limitations, such as limited memory, CPU power, and battery life. Big data analytics technologies enable extracting value from data having four Vs: volume, variety, velocity, and veracity. This paper discusses networked healthcare and the role of mobile cloud computing and big data analytics in its enablement. The motivation and development of networked healthcare applications and systems is presented along with the adoption of cloud computing in healthcare. A cloudlet-based mobile cloud-computing infrastructure to be used for healthcare big data applications is described. The techniques, tools, and applications of big data analytics are reviewed. Conclusions are drawn concerning the design of networked healthcare systems using big data and mobile cloud-computing technologies. An outlook on networked healthcare is given

    Media Culture 2020: collaborative teaching and blended learning using social media and cloud-based technologies

    Get PDF
    The Media Culture 2020 project was considered to be a great success by all the partners, academics and especially the students who took part. It is a true example of an intercultural, multidisciplinary, blended learning experience in higher education that achieved it goals of breaking down classroom walls and bridging geographical distance and cultural barriers. The students with different skills, coming from different countries and cultures, interacting with other enlarges the possibilities of creativity, collaboration and quality work. The blend of both synchronous and asynchronous teaching methods fostered an open, blended learning environment, one that extended the traditional boundaries of the classroom in time and space. The interactive and decentralized nature of digital tools enabled staff and students to communicate and strengthen social ties, alongside participation in the production of new knowledge and media content. For students and lecturers, the implementation of social media and cloud platforms offered an innovative solution to both teaching and learning in a collaborative manner. By leveraging the interactive and decentralised capabilities of a range of technologies in an educational context, this model of digital scholarship facilitates an open and dynamic working environment. Blended teaching methods allow for expansive collaboration, whereby information and knowledge can be accessed and disseminated across a number of networked devices

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Evolving as a Digital Scholar

    Get PDF
    "What does it take to become a digitally agile scholar? This manual explains how academics can comfortably navigate the digital world of today and tomorrow. It foregrounds three key domains of digital agility: getting involved in research, education and (community) service, mobilising (digital) skills on various levels, and acting in multiple roles, both individually and interlinked with others. After an introduction that outlines the foundations of the three-dimensional framework, the chapters focus on different roles and skills associated with evolving as a digital scholar. There is the author, who writes highly specialised texts for expert peers; the storyteller, who crafts accessible narratives to a broader audience in the form of blogs or podcasts; the creator, who uses graphics, audio, and video to motivate audiences to delve deeper into the material; the integrator, who develops and curates multimedia artefacts, disseminating them through channels such as websites, webinars, and open source repositories; and finally the networker, who actively triggers interaction via social media applications and online learning communities. Additionally, the final chapters offer a blueprint for the future digital scholar as a professional learner and as a “change agent” who is open to and actively pursues innovation. Informed by the authors’ broad and diverse personal experience, Evolving as a Digital Scholar offers insight, inspiration, and practical advice. It equips a broad readership with the skills and the mindset to harness new digital developments and navigate the ever-evolving digital age. It will inspire academic teachers and researchers with different backgrounds and levels of knowledge that wish to enhance their digital academic profile.
    • 

    corecore