573 research outputs found

    Class of Recursive Wideband Digital Differentiators and Integrators

    Get PDF
    New designs of recursive digital differentiators are obtained by optimizing a general fourth-order recursive digital filter over different Nyquist bands. In addition, another design of recursive digital differentiator is also obtained by optimizing the specified pole-zero locations of existing recursive digital differentiator of second-order system. Further, new designs of recursive digital integrators are obtained by inverting the transfer functions of designed recursive digital differentiators with suitable modifications. Thereafter, the zero-reflection approach is discussed and then applied to improve the phase responses of designed recursive digital differentiators and integrators. The beauty of finally obtained recursive digital differentiators and integrators is that they have nearly linear phase responses over wideband and also provide the choice of suitable recursive digital differentiator and integrator according to the importance of accuracy, bandwidth and the system simplicity

    Fractional order differentiation by integration with Jacobi polynomials

    Get PDF
    The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises

    Fractional Delay Digital Filters

    Get PDF

    Linear Phase Second Order Recursive Digital Integrators and Differentiators

    Get PDF
    In this paper, design of linear phase second order recursive digital integrators and differentiators is discussed. New second order integrators have been designed by using Genetic Algorithm (GA) optimization method. Thereafter, by modifying the transfer function of these integrators appropriately, new digital differentiators have been obtained. The proposed digital integrators and differentiators accurately approximate the ideal ones and have linear phase response over almost entire Nyquist frequency range. The proposed operators also outperform the existing operators in terms of both magnitude and phase response

    FIR Filter Design Using Distributed Maximal Flatness Method

    Get PDF
    In the paper a novel method for filter design based on the distributed maximal flatness method is presented. The proposed approach is based on the method used to design the most common FIR fractional delay filter – the maximally flat filter. The MF filter demonstrates excellent performance but only in a relatively narrow frequency range around zero frequency but its magnitude response is no greater than one. This ,,passiveness” is the reason why despite of its narrow band of accurate approximation, the maximally flat filter is widely used in applications in which the adjustable delay is required in feedback loop. In the proposed method the maximal flatness conditions forced in standard approach at zero frequency are spread over the desired band of interest. In the result FIR filters are designed with width of the approximation band adjusted according to needs of the designer. Moreover a weighting function can be applied to the error function allowing for designs differing in error characteristics. Apart from the design of fractional delay filters the method is presented on the example of differentiator, raised cosine and square root raised cosine FIR filters. Additionally, the proposed method can be readily adapted for variable fractional delay filter design regardless of the filter type.

    A versatile iterative framework for the reconstruction of bandlimited signals from their nonuniform samples

    Get PDF
    In this paper, we study a versatile iterative framework for the reconstruction of uniform samples from nonuniform samples of bandlimited signals. Assuming the input signal is slightly oversampled, we first show that its uniform and nonuniform samples in the frequency band of interest can be expressed as a system of linear equations using fractional delay digital filters. Then we develop an iterative framework, which enables the development and convergence analysis of efficient iterative reconstruction algorithms. In particular, we study the Richardson iteration in detail to illustrate how the reconstruction problem can be solved iteratively, and show that the iterative method can be efficiently implemented using Farrow-based variable digital filters with few general-purpose multipliers. Under the proposed framework, we also present a completed and systematic convergence analysis to determine the convergence conditions. Simulation results show that the iterative method converges more rapidly and closer to the true solution (i.e. the uniform samples) than conventional iterative methods using truncation of sinc series. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Analisi e progettazione di filtri IIR derivativi per segnali quantizzati. Analysis and design of IIR differentiator for quantized signals

    Get PDF
    The IIR differentiators are nowadays largely studied for different kind of uses, such as in Sigma-Delta modulation and data compression. However, estimation of velocity, based on quantized signals (i.e. provided by incremental optical encoder) and using differentiators is still a challenge, since the quantization process has an associated error that shows non-linearity properties. The thesis provides a complete framework on IIR digital differentiators when used for velocity estimation with quantized position signals as input: the most important is a procedure that allows everyone to calculate the mean square error at the output of the filter when the autocorrelation of the input error is known. This achievement can be also applied to every kind of IIR filter giving to it a wide range of applications. Moreover, a comparison between the real error and the white noise approximation has been made, and also a new approximation, based on the worst case, has been developed. Last, a full spectral analysis of the filters and signals has been provided. Most of the results above have been provided and tested for the constant rate case, in order to optimize the IIR differentiator for system with low frequencies rate of changeopenEmbargo per motivi di segretezza e di proprietà dei risultati e informazioni sensibil
    corecore