16,353 research outputs found

    OpenForensics:a digital forensics GPU pattern matching approach for the 21st century

    Get PDF
    Pattern matching is a crucial component employed in many digital forensic (DF) analysis techniques, such as file-carving. The capacity of storage available on modern consumer devices has increased substantially in the past century, making pattern matching approaches of current generation DF tools increasingly ineffective in performing timely analyses on data seized in a DF investigation. As pattern matching is a trivally parallelisable problem, general purpose programming on graphic processing units (GPGPU) is a natural fit for this problem. This paper presents a pattern matching framework - OpenForensics - that demonstrates substantial performance improvements from the use of modern parallelisable algorithms and graphic processing units (GPUs) to search for patterns within forensic images and local storage devices

    Digital Forensics Tool Interface Visualization

    Get PDF
    Recent trends show digital devices utilized with increasing frequency in most crimes committed. Investigating crime involving these devices is labor-intensive for the practitioner applying digital forensics tools that present possible evidence with results displayed in tabular lists for manual review. This research investigates how enhanced digital forensics tool interface visualization techniques can be shown to improve the investigator\u27s cognitive capacities to discover criminal evidence more efficiently. This paper presents visualization graphs and contrasts their properties with the outputs of The Sleuth Kit (TSK) digital forensic program. Exhibited is the textual-based interface proving the effectiveness of enhanced data presentation. Further demonstrated is the potential of the computer interface to present to the digital forensic practitioner an abstract, graphic view of an entire dataset of computer files. Enhanced interface design of digital forensic tools means more rapidly linking suspicious evidence to a perpetrator. Introduced in this study is a mixed methodology of ethnography and cognitive load measures. Ethnographically defined tasks developed from the interviews of digital forensics subject matter experts (SME) shape the context for cognitive measures. Cognitive load testing of digital forensics first-responders utilizing both a textual-based and visualized-based application established a quantitative mean of the mental workload during operation of the applications under test. A t-test correlating the dependent samples\u27 mean tested for the null hypothesis of less than a significant value between the applications\u27 comparative workloads of the operators. Results of the study indicate a significant value, affirming the hypothesis that a visualized application would reduce the cognitive workload of the first-responder analyst. With the supported hypothesis, this work contributes to the body of knowledge by validating a method of measurement and by providing empirical evidence that the use of the visualized digital forensics interface will provide a more efficient performance by the analyst, saving labor costs and compressing time required for the discovery phase of a digital investigation

    Data reduction and data mining framework for digital forensic evidence: storage, intelligence, review and archive

    Get PDF
    With the volume of digital forensic evidence rapidly increasing, this paper proposes a data reduction and data mining framework that incorporates a process of reducing data volume by focusing on a subset of information. Foreword The volume of digital forensic evidence is rapidly increasing, leading to large backlogs. In this paper, a Digital Forensic Data Reduction and Data Mining Framework is proposed. Initial research with sample data from South Australia Police Electronic Crime Section and Digital Corpora Forensic Images using the proposed framework resulted in significant reduction in the storage requirements—the reduced subset is only 0.196 percent and 0.75 percent respectively of the original data volume. The framework outlined is not suggested to replace full analysis, but serves to provide a rapid triage, collection, intelligence analysis, review and storage methodology to support the various stages of digital forensic examinations. Agencies that can undertake rapid assessment of seized data can more effectively target specific criminal matters. The framework may also provide a greater potential intelligence gain from analysis of current and historical data in a timely manner, and the ability to undertake research of trends over time

    A Survey of Techniques for Improving Security of GPUs

    Full text link
    Graphics processing unit (GPU), although a powerful performance-booster, also has many security vulnerabilities. Due to these, the GPU can act as a safe-haven for stealthy malware and the weakest `link' in the security `chain'. In this paper, we present a survey of techniques for analyzing and improving GPU security. We classify the works on key attributes to highlight their similarities and differences. More than informing users and researchers about GPU security techniques, this survey aims to increase their awareness about GPU security vulnerabilities and potential countermeasures

    The utilization of forensic corpora in validation of data carving on sata drives/

    Get PDF
    The field of digital forensics has become more prevalent in the court of law due to the increase of availability of technology. With digital evidence coming up in court consistently, digital forensics and its tools are coming under scrutiny and being held against disciplines that are more standardized. Validation and Verification of tools is vital to maintaining the integrity of the evidence received by them. Utilizing standardized data sets, or forensic corpora, as a part of validation and verification techniques has shown to be effective. The goal of the study is to assess the use of forensic corpora in the validation and verification of one of the most commonly used digital tools

    Use of forensic corpora in validation of data carving on solid-state drives.

    Get PDF
    The need for greater focus on the validation and verification of tools has become more evident in recent years. The research in this area has been minimal. Continued research regarding the validation of digital forensics tools is necessary to help meet demands from both the law enforcement and scientific communities and to bring digital forensics in line with other forensic disciplines (as cited in Guo, et al., 2009). One of the most effective ways to perform validation and verification of digital forensics tools is to enlist the use of standardized data sets, also known as forensic corpora. This study focused on the use of forensic corpora to validate the file carving function of a common digital forensics tool, Access Data's Forensic Tool Kit (FTK). The study centers specifically on FTK's ability to recover data on solid-state drives (SSDs). The goal of this study was to both evaluate the use of forensic corpora in the validation and verification of digital forensic tools, as well as a serve as a validation study of FTK's carving function on solid-state drives
    corecore