View metadata, citation and similar papers at core.ac.uk

brought to you by i

provided by Abertay Research Portal

Digital Investigation 24 (2018) S29—-S37

journal homepage: www.elsevier.com/locate/diin

Contents lists available at ScienceDirect

Digital Investigation

DFRWS 2018 Europe — Proceedings of the Fifth Annual DFRWS Europe

OpenForensics: A digital forensics GPU pattern matching approach for = g

the 21st century
E. Bayne', RI. Ferguson, A.T. Sampson

School of Design and Informatics, Abertay University, Dundee, Scotland, United Kingdom

Check for
updates

ABSTRACT

Keywords:

Digital Forensics
Processing model
Pattern matching
Asynchronous processing

Pattern matching is a crucial component employed in many digital forensic (DF) analysis techniques,
such as file-carving. The capacity of storage available on modern consumer devices has increased sub-
stantially in the past century, making pattern matching approaches of current generation DF tools
increasingly ineffective in performing timely analyses on data seized in a DF investigation. As pattern

GPU matching is a trivally parallelisable problem, general purpose programming on graphic processing units

GPGPU

(GPGPU) is a natural fit for this problem. This paper presents a pattern matching framework — Open-

Forensics — that demonstrates substantial performance improvements from the use of modern paral-
lelisable algorithms and graphic processing units (GPUs) to search for patterns within forensic images

and local storage devices.

© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

DF investigation has struggled to remain effective in recent
times, as the capacity of storage devices seized as part of a DF
investigation has grown substantially in the past 10 years. The
continuing increase in capacity of consumer storage devices re-
quires similar improvements to the performance of pattern
matching techniques employed by DF tools used to analyse forensic
data. Recently, in 2015, a report by Her Majesty's Inspectorate of
Constabulary (HMIC) found that delays of up to 12 months or more
were “not uncommon” after the inspection of 124 cases from six UK
police forces (Her Majestys Inspectorate of Police, 2015).

It could be argued that processing approaches within DF have
been a largely neglected research area since the conception of the
first generation of commercial DF analytical tools. Whilst pattern
matching algorithms and use of massively-parallel hardware have
provided significant breakthroughs in other data analysis areas
(Bellekens et al., 2014; Hung et al., 2014), the tools that drive DF
investigation have largely failed to incorporate recent innovative
advances in pattern matching techniques and processing technol-
ogy. The most current systematic reviews of the field have
acknowledged that processing of DF corpora remains one of the

* Corresponding author.
E-mail addresses: e.bayne@abertay.ac.uk (E. Bayne), ian.ferguson@abertay.ac.uk
(R.I. Ferguson), a.sampson@abertay.ac.uk (A.T. Sampson).

https://doi.org/10.1016/j.diin.2018.01.005

greatest challenges of the field at the time of writing (Raghavan,
2013; Garfinkel, 2010; Beebe, 2009), yet the problem has attrac-
ted little research or commercial interest. Pattern matching is a
technique that underpins many DF analysis techniques, such as file-
carving—where disk images are analysed in the rawest form to find
and reproduce files when a partition table or other metadata is
corrupted or missing.

This paper presents a processing approach for conducting
pattern matching within a DF context to perform file-carving. The
processing approach incorporates asynchronous parallelisation of
available central processing unit (CPU) and GPU devices and con-
ducts string searching with the aid of the Parallel Failureless Aho-
Corasick (PFAC) algorithm (Lin et al., 2013) to significantly reduce
the time required to perform pattern matching on raw data.

The proposed methods discussed in this paper are intended to
provide effective techniques for performing complete analysis of DF
corpora for the next 10 years, due to their scalable approach with
the processors available on the analyst's machine. By making use of
all usable compute resources, processing speed is evidenced to be
notably improved—reducing the time required to analyse large
amounts of forensic evidence.

Background

The file-carving process is conducted in several phases, each of
which can impact directly on performance. Processing can be
analysed in three areas: the detection and processing method, the

1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

https://core.ac.uk/display/228178253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:e.bayne@abertay.ac.uk
mailto:ian.ferguson@abertay.ac.uk
mailto:a.sampson@abertay.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2018.01.005&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.01.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2018.01.005
https://doi.org/10.1016/j.diin.2018.01.005

S30 E. Bayne et al. / Digital Investigation 24 (2018) S29—S37

data reading method, and the file reproduction method. Current
research in the field has proposed achieving enhancements to the
detection and processing task through novel ideas, such as
employing low-cost clusters of commodity PCs to process data
(Ayers, 2009), or through applying Bloom filter hashing algorithms
to detect known file hashes in raw data (Penrose et al., 2015). This
paper will present potential improvements to the physical inves-
tigation of a storage device, assuming the requirement that all
forensic data requires analysis with 100% false-negative pattern
matching accuracy.

File detection and processing method

Performing pattern matching on data is the most time-
consuming processing task in any file-carving operation once
data has been loaded to memory. The two important factors for
performing pattern matching are the processor and algorithm used.
Most free and commercial file-carvers rely on CPUs to conduct
pattern matching. However, as pattern matching is a trivially-
parallelisable problem, GPGPU approaches are a natural fit.
Currently, only some of the research in employing GPGPU has been
transferred to the field of DF (Marziale et al, 2007; Zha and
Sahni, 2011), of which, a closed-source GPGPU framework was
used—Complete Unified Device Architecture (CUDA) (Nvidia).
Findings from these earlier studies have found that local storage
devices from which data is read present an insurmountable per-
formance bottleneck. This research aims to reinstate GPGPU pro-
cessing techniques as a well-suited approach to performing
pattern-matching in a modern DF context.

The algorithm employed to conduct pattern matching can have
a significant effect on the time taken to perform file-carving on
forensic data. Pattern matching algorithms search for one — or
more — patterns within a corpora of data. Today, popular open-
source file-carvers — Scalpel (Richard and Roussev, 2005) and
Foremost (Kendall et al.) — still employ a modified Boyer-Moore
(BM) algorithm (Boyer and Moore, 1977) to conduct pattern
matching for multiple patterns.

The BM algorithm searches for a pattern with the aid of a skip
table to accelerate searching. This skip table operates by calculating
when the next potential match could occur in a serial read of data.
Research that measures the effectiveness of pattern matching al-
gorithms (Skrbina and Stojanovski, 2012) recognises the BM algo-
rithm as an effective method for single-pattern searching, but less
efficient for multi-pattern searching. In the same study, it was
proposed that the Aho-Corasick (AC) algorithm (Aho and Corasick,
1975) was the most suitable approach when searching for multi-
ple patterns. The PFAC algorithm is an extension of AC that adapts
the algorithm for massively-parallel execution (Lin et al., 2013).

Data reading method

The method used to read data from storage device is an aspect of
file-carving that is rarely discussed. However, we propose that this
is an important aspect that should be considered when discussing
file-carving performance—in particular, the method that file-
carvers use to read data from the analysed storage device to
memory. Furthermore, many existing studies often fail to present
performance metrics of the storage devices used, which arguably
weakens their argument when concluding that file-carving per-
formance is limited by the storage device's I/O transfer speeds. We
do not argue that this is not the case; rather, we propose that any
research that discuss file-carving performance should measure the
potential data throughput of the storage devices tested. Through
the presentation of these metrics, the reader will have more finite
detail on the effectiveness of the proposed processing solution.

Reading data from storage devices is an accepted component of
testing performance in other DF file-carving studies (Richard and
Roussev, 2005; Marziale et al., 2007; Zha and Sahni, 2011). When
reading data from a storage device, threads and queue-depth are
equally important factors here as they are in processing data—if
not, more so, as storage devices are recognised as the most probable
area to present a processing bottleneck in file-carving. Threads —
akin to how they function elsewhere — relate to how many pro-
cessing threads are allocated to read data from the storage device.
Queue-depth specifies how many read instruction tasks are queued
at a single point for the storage device to process. Typically, in order
to achieve a storage device's maximum I/O data throughput, a file-
carver must exploit the use of threading and queue-depth.

File reproduction method

File reproduction is considered to be another important factor
when discussing file-carving performance. Specifically, when in the
file-carving process that files are reproduced from the data ana-
lysed. One of the most basic methods of reproducing files is to
simply save any data found between two points — a file header and
file footer — to a new file.

File-carvers may adopt further processing tasks to enhance ac-
curacy and ensure integrity of reproduced files. For certain file types,
there are further possible checks that could be completed to ensure
that files are reproduced using the correct start and end point in
data. It is also possible to include optional checks to check the file
integrity of certain file types, such as looking for defining features of
afile's structure. There has been research that incorporates intuitive
methods of accounting for fragmentation (Garfinkel, 2007); how-
ever, it is important to acknowledge a potential trade-off of pro-
cessing speed to make more advanced checks.

Many existing file-carvers employ a two-pass approach to file-
carving—the first pass to identify potential files and locations in
data, and the second pass to reconstruct files from data. A two-pass
approach to file-carving can be computationally expensive, as data
has to be read from the storage device twice. However, if the file-
carver performs additional processing — such as file verification
processing or fragmentation checks — the two-pass approach may
have performance advantages, as pattern matching is less likely to
be halted by overlapping I/O and computation tasks.

Methodology

In this section, we outline and discuss the approach taken with
our proposed solution—OpenForensics. OpenForensics is a file-
carving application that was produced in C# to demonstrate the
advantages of the pattern matching approach outlined in this pa-
per. For validation of these techniques, the OpenForensics binaries
and source code are freely available from GitHub (Bayne).

File carving approach

This research focuses on investigating and improving the pro-
cessing speed of pattern matching in a file-carving context. In order
to achieve this, fundamental changes were made to the three
aforementioned processing stages of file-carving. The following
subsections will outline and discuss the changes presented.

File detection and processing method

In our solution, we propose a scalable asynchronous approach
for performing pattern matching on data. We define this approach
as employing processing threads that act independently from each
other to queue, read, and process data. The advantage of this pro-
cessing approach is hypothesised to scale well with the level of

E. Bayne et al. / Digital Investigation 24 (2018) S29—S37 S31

processing power available on analysts’ computers when tasked to
perform file-carving on data. Through employing all available
processing resources, processors would be less likely to be bot-
tlenecked when performing analysis on high data-throughput
storage devices.

Our solution employs two approaches to file detection and
processing—GPU and CPU processing. The processing approach
undertaken can be seen in Fig. 1.

When performing GPU processing, forensic data is processed on
graphics processors using Open Computing Language (OpenCL)
(Khronos Group). The GPU operation is able to scale with the
amount of available graphics processors present on the system,
which enables the searching to employ all of the available pro-
cessing power on the system. During this operation, the GPU de-
vices available on the system perform pattern matching processing,
whilst the CPU is tasked with validation and recording of files
found.

In GPU operation, the available CPU threads are divided equally
between the usable GPUs—e.g. on a system with 2 GPUs and an 8
logical core processor, each GPGPU device is allocated 4 indepen-
dent CPU processing threads. The level of threading employed,
however, is limited by the amount of system memory available, as
each processing thread employed requires around 150 MiB of RAM
and VRAM to run.

Performing processing on the CPU — intended for systems that
do not have any form of graphics processor — employs concurrency
on multi-threaded CPUs to accelerate searching. In CPU operation, a
thread is employed per each logical core available on the CPU. Each
thread performs both pattern matching and file matching pro-
cessing sequentially for each allocated data segment.

CPU GPU

H Forensic data

Read data with x
MiB overlap

100MiB data segments

o — — —

// <<concurrent>>

Perform pattern
matching

results

® [else]

headers found
[g AN

>

Pair headers with
footers

(
I
I
I
I
I
I
I

Display found files

Fig. 1. The OpenForensics pattern matching process.

OpenForensics employs the PFAC algorithm to accelerate GPU
and CPU pattern matching operations. The implementation of the
PFAC algorithm entails two entities; the pre-processing of
searched-for file headers and footers (patterns) to formulate a state
transition table (STT), and the processing steps that both CPU and
GPU devices followed.

The PFAC STT generation — as shown in Algorithm 1 — generates
a state machine that is processor agnostic, in that both CPU and
GPU implementations can follow the STT to look up their next
instruction.

Algorithm 1. PFAC STT generation.

Algorithm 1 PFAC STT generation

. patterns is a 2D array of byte

. STT is a variable-length array of integer

. row is an array[256] of integer

. sort patterns array by byte length, a <b

: add fail state row to STT (STTI0])

: for i =0 to num of patterns do

add row to STT (pattern found state)

: end for

9: add initial state row to STT

10: State < num of patterns +1

11: for =0 to num of patterns do

12: walkindex < num of patterns + 1

13: if ST T[walkindex][target{i][0]] = 0 then
14: ST T[walkindex][target[i][0]] < state
15: state += 1

16: end if

17. walkindex «— ST T [walkindex][target[i][0]]
18: forj =0 to patterns|i] length do

© N O AN

19: if STT length <= walkindex then
20: add row to STT (transition state)
21: end if

22: if ST T[i[patterns[il[j]] = 0 then
23: if j |= patterns|i] length — 1 then
24: STTlil[patternslil[j]] < state
25: state +=1

26: else

27: STTlil[patterns[i[j]] « i+ 1
28: end if

29: end if

30: walkindex <« ST T[il[patterns[i][j]]
31: end for

32: end for

33: return STT

The generation of the PFAC STT is completed by the CPU before
searching begins. It requires an input of the patterns searched in the
format of a byte array and returns an output of the STT. The STT
used by OpenForensics is a 2D array of integers (Fig. 2). Within this
2D array, rows are referred to as states and columns represent input
value. The STT consists of four key state types. The fail state (row 0)
signals that no pattern matches have been found. After the fail
state, a pattern state is created in the 2D array to provide a unique
identifier for each pattern searched for. Following this, an initial
state is created and used as an initial search state for each byte of
data. Lastly, transition states are used by the processor to decide the
next state based on the data value read. The number of transition
states generated by the STT varies depending on the number and
length of patterns searched. Each row of the STT has a column for

S32 E. Bayne et al. / Digital Investigation 24 (2018) S29—S37

Input value

0 1 2 3 4 . 255
Fail state { ololo]o]ol|lo]o
J’ oloflolo]ofo]o
Pattern state 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0
Initial state { 5 8 5 0 0 0 0
(16 oo ofo]o]o
1 0 0 3 0 0 0

Transition state <

9 0 0 0 0 0 0
. 0 0 0 2 0 0 0

Fig. 2. OpenForensics state transition table (STT).

the number of possible inputs that the processor can read when
searching—in this application, 256 columns are created that
represent each possible value for a byte read in data.

The processing steps shown in Algorithm 2 present the logic
used by the CPU and GPU to accomplish searching for patterns
using the generated STT. The algorithm begins on the initial state
row of the STT for each individual byte of data analysed. The STT is
used by the processor to transition state depending on the value
read from each following byte. This process continues until the byte
value read has a state value of 0 — which indicates a fail state — or
until the state value is less than the initial state with no further
transitions available, indicating a pattern match. If a pattern is
matched by the STT, the starting byte is flagged in memory as being
a match for the pattern.

The 100 MiB segments of data processed by OpenForensics are
allocated to a unique asynchronous GPU or CPU processing thread.
Whilst the CPU and GPU methods of OpenForensics utilise the same
PFAC approach to processing, the GPU operation is able to analyse
significantly more bytes simultaneously, achieving greater pro-
cessing efficiency than CPU methods.

Algorithm 2. PFAC processing steps.

Algorithm 2 PFAC processing steps
1: n «— segment length
2: initial state «— num of patterns + 1
3: fori=0tondo
4: state < initial state
5 poS<«i
6
7
8

while pos <n do
state = ST T[state, segment[pos]]
: if state = 0 then
o: break

10: end if

11: if state < initialstate then

12: record position / as match for pattern state
13: end if

14: end while

15. end for

16: return found patterns

It is envisioned that the PFAC algorithm employed by Open-
Forensics would benefit CPU and GPU processing when tasked with
searching for multiple patterns within data, as all defined patterns
are searched with a single read of the target source. The algorithm
is expected to significantly reduce the time taken to complete
searches for large amounts of patterns when compared to alter-
native algorithms, such as the modified BM algorithm that Fore-
most and Scalpel employs.

The file detection method adopted by OpenForensics is inten-
tionally basic, as the focus of this research aims to measure and
improve the processing rate of file-carving. A two-stage approach is
adopted for searching. The first pass marks files found within data,
and the second pass optionally performs file-carving of found files.
On the first pass, searching is conducted for patterns and locations
are stored in an array. The locations found from the search are then
passed to the CPU, which scans the result array for a file header,
then pairs it with a matching file footer. This is repeated until all
100 MiB segments of the target file or storage device have been
scanned.

To account for partial patterns that may occur at the end of
segments, the search utilises a windowed technique, where each
segment is overlapped by a frame that is the size of the maximum
defined file-size (10 MiB by default). The windowed technique is
performed by OpenForensics by storing the frame of bytes from the
end of each segment in memory and attaching to the start of the
next segment.

Data reading method

To take full advantage of storage devices, an investigation was
carried out to discover the optimal settings to perform data reading
in a DF context. As part of this investigation, many factors were
considered and benchmarked. The data reading method was
greatly improved through analysing the behaviour of storage de-
vice benchmarking tools. Threads and queue depth were princi-
pally the largest influencing factors to performance. However, other
variables that may impact the performance of reading the storage
device were also considered as part of this investigation, such as the
size of the stream buffer and the amount of data read by each read
instruction queued.

It was decided to allocate a single thread to read the data with a
queue depth of 32 read instructions, akin to the default settings of
CrystalDiskMark (CrystalMark)—a popular storage device perfor-
mance benchmarking software. Only a single thread was used so
that it would not interfere with the performance of other asyn-
chronous threads employed for processing. For multi-threaded CPU
operation, where all logical cores of the CPU were used to process
data, employing more threads to read data may have disadvantaged
active pattern matching threads when employed with smaller-
levels of parallelism. However, allowing a queue depth of 32 read
instructions provided the single read thread enough queued read
instructions to make efficient use of the possible transfer-rate of the
storage devices analysed. The thread and queue-depth settings
were trialled with a range of storage devices—traditional hard disk
drives (HDDs), solid state drives (SSDs), and NVMe SSDs. The set-
tings achieved data transfer rates similar to the sequential read
performance stated by the storage device manufacturer.

The stream buffer is a setting which specifies the size of buffer to
use to read data from the physical storage device to memory. As the
data from the storage device is transferred into memory by the CPU
using the .NET library FileStream method, the size of the stream
buffer defined is largely limited by the size of the internal cache of
the CPU. Both CPUs tested in this study possessed a fairly large
internal cache, so it was assumed that increasing the stream buffer
size may have had a positive effect on data transfer speed. However,
experiments that expanded the stream buffer to 8, 16 and 32 KiB

E. Bayne et al. / Digital Investigation 24 (2018) S29—S37 S33

showed that larger stream buffer sizes did not produce faster
transfer rates of data on storage device to memory. In conclusion, it
was found that maintaining a small stream buffer size of 4 KiB
remains effective, whilst maintaining a wider compatibility with
processors equipped with smaller memory caches.

Further benchmarking was performed to find the optimal
queued read instruction length to read forensic data from storage
devices. Data read by each queued task was tested in sizes of 32, 64,
128, 256, 512, 1024, and 2048 KiB segments respectively. Results
from testing the various sizes of data read by each queued task
revealed that sizes smaller than 256 KiB performed significantly
slower than larger sizes when reading the forensic file from the
storage device; additionally, larger segment sizes of 1024 and 2048
KiB were found to produce the most consistent results when
reading the storage device multiple times. From the observations of
the trial, a segment size of 1024 KiB was found to be optimal for
each queued read task.

Fig. 3 outlines the data reading method of how OpenForensics
reads data from storage devices. Illustrated are how the compo-
nents, as previously discussed in this section, all work together. The
storage device is read by the CPU with a stream buffer size of 4 KiB
to fill the 1 MiB queued read task; which builds up the 100 MiB data
segment requested by the method invoked to fetch the next
segment of forensic data.

File reproduction method

OpenForensics performs file reproduction by performing a
second pass on the data analysed. This pass specifically extracts
data between two points on the storage device that has been
flagged to contain a file. This pass behaves differently from the first
pass as it does not read all data from the storage device to memory
to perform file-carving. Instead, only the data between matched file
headers and footers are read. All data found between paired
headers and footers are saved to new files within the directory set
by the investigator. Once all found files have been reproduced, the
file-carving process is complete.

During the second pass, the files are read using similar methods
to the first pass. This phase employs an asynchronous thread for
each logical core on the CPU. For each file, an available thread is
tasked to read the data between file header and footer locations.
The thread queues 1 MiB read instructions to read the file from the
storage device.

It is important to note that, as the focus of this research is
specifically aimed at accelerating pattern matching in DF, Open-
Forensics does not conduct any additional file processing or veri-
fication tasks other than extracting data between found headers
and footers. It is, therefore, reasonable to assume that Open-
Forensics would have a processing advantage over file-carvers that
may incorporate more complex file reproduction methods.

Testing methodology

To compare the performance of the OpenForensics searching
methodology, this research has presented performance results of

Data Segment (100 MiB)

O0QOOYH OO
QOOOOIQO0

Storage Device

Stream buffer Read instruction

size (4 KiB) length (1 MiB)
o m (ool [B33833653
lolele 000I000I00T
0O 0000
QO0000O00

Fig. 3. Design of data reading method.

performing pattern matching on connected hard disk drives and a
forensic image file. The performance achieved by OpenForensics
v.1.5.1b has then be compared with other currently available
open-source and commercial file-carving software — Foremost
v.1.5.7—6 and Recover My Files v.6.1.2 (2375) — in performing the
same tests.

Testing was conducted with a high-end workstation PC (test
platform A) and a high-end laptop (test platform B), specifications
of both test platforms are given in Table 1. Both test platforms are
configured to dual-boot Windows 10 Pro and Ubuntu GNOME
17.04, located on storage device 2. Both OpenForensics and Recover
My Files are Windows binaries and were tested with Windows 10
Pro. Foremost, on the contrary, was tested under Linux using
Ubuntu GNOME 17.04.

Measurements were taken on the time required to search for
predetermined patterns outlined in Table 2. For Foremost and
OpenForensics, two groups of patterns were searched for each test.
The first test involves performing pattern matching for all 45
unique patterns. The second group involves searching for a smaller
group of 10 unique patterns — highlighted on the table — to show
relationships between defined search patterns and time taken.
Recover My Files cannot explicitly be instructed to search for spe-
cific patterns. To achieve a reasonable comparison, Recover My Files
was instructed to search for a set of 19 file types in a many pattern
test and 4 file types in a lesser pattern test. Tests were repeated 5
times each and a mean average time taken to perform each test was
used for analysis.

Two types of test were performed. The first test type is a raw
forensic file analysis, where a dd image of an external storage de-
vice is analysed from the slowest storage device on the test bed-
s—storage device 1. On test platform A, storage device 1 is a
software RAIDO array consisting of 2 SSD storage devices operating
over a SATA3 bus. On test platform B, storage device 1 is a single SSD
storage device operating over SATA3. We hypothesise with this test
that storage device transfer speeds would limit the possible rate of
analysis.

The methodology behind creating the forensic image for the
first test was not to simulate a realistic scenario, but rather to
know the ground truth of how many files of each format were
contained in the image used. The files loaded on the 20 GB drive
also exhausted the space available, leaving little unused space on
the drive. Whilst the data on the storage device is not deemed to
be a realistic case, the tests performed within this research was
interested in the comparative performance and accuracy be-
tween the proposed and existing processing methods. It is
assumed that the observed performance differences when per-
forming string searching or file-carving operations on the
simulated forensic data would not vary significantly when tasked
with different data.

The second test performs pattern matching on storage device 2
of each platform, where the data is physically accessed from the
storage device to memory. With both test platforms, NVMe storage
devices are used, which communicate over a PCle bus. The PCle bus
allows storage devices to benefit from significantly faster read and
write speeds than storage devices operating over the more preva-
lent SATA3 bus. We hypothesise that this test would highlight
limitations of current string searching approaches adopted in DF
file-carving tools.

Contrary to the first test, the physical storage devices used in the
second test mimic a realistic test scenario, where both storage
devices have been used for over a year with a Windows 10 oper-
ating system. No ground truth is known about the files contained
on either storage device; however, both storage devices report that
greater than 80% of the overall capacity is used within the Windows
disk management utility.

S34

E. Bayne et al. / Digital Investigation 24 (2018) S29—S37

Table 1
Test platform specifications.
Test Platform A B
Type Desktop Laptop
Operating System Windows 10 Pro & Ubuntu GNOME 17.04 Windows 10 Pro & Ubuntu GNOME 17.04
Processor Intel Core i7-5820K Intel Core i7-7700HQ
Processor Specification 6 Core/12 Thread @ 3.8 GHz 4 Core/8 Thread @ 3.8 GHz
Memory 16 GiB DDR4 2400 MHz 32 GiB DDR4 2400 MHz
GPU Nvidia Titan XP (12 GiB GDDR5X) Nvidia 1070 (8 GiB GDDR5)

GPU Specification
Storage Device 1
Storage Device 2

3584 Cuda cores @ 1417 MHz
2x Samsung Evo 940 250 GB SATA3 SSD (RAIDO)
Samsung Evo Pro 256 GB NVMe PCle SSD

2048 Cuda cores @ 1442 MHz
SanDisk Ultra Il 960 GB SATA3 SSD

Toshiba THNSN5256GPUK NVMe 256 GB SSD

Table 2
Defined search patterns.

File Type

File Header (File Footer)

mpg 0x000001BA (0x000001B7)
mpg 0x000001B3 (0x000001B7)
docx 0x504B030414000600 (0x504B0506)

idf 0x25504446 (0x0A2525454F46

wim 0x4D5357494D

mp4 0x000000146674797069736F6D

mp4 0x000000186674797033677035

mp4 0x0000001C667479704D534E56012900464D534E566D703432
mov 0x000000146674797071742020

m4v 0x00000018667479706D703432

wmv 0x3026B2758E66CF11A6D900AA0062CE6C
mkv 0x1A45DFA3934282886D6174726F736B61
wma 0x3026B275

m4a 0x00000020667479704D344120

doc 0xDOCF11E0A1B1

zip 0x504B0304

zip 0x504B0506

zip 0x504B0708

zip 0x504B030414000100630000000000

rar 0x526172211A0700

rar 0x526172211A070100

xar 0x78617221

Xz 0xFD377A585A00

jar 0x4A4152435300

jar 0x5F27A889

iso 0x4344303031

cso 0x4349534F

img 0x504943540008

img 0x514649FB

img 0x53434D49

cas 0x5F434153455F

rpm 0xEDABEEDB

mof 0xFFFE23006C0069006E00650020003100

Results and discussion

This section presents the results from conducting pattern
searching with the test platforms.

Analysis of a raw forensic dd file

The first test analyses a 20 GiB forensic image file on storage
device 1 of each test platform. On both test platforms, the solid-
state storage devices used as storage device 1 perform relatively
faster than traditional mechanical storage devices, but also
considerably slower than the NVMe storage device present on each
test platform.

Fig. 4 presents the mean time taken to analyse the forensic
image on test platform A with the respective file-carvers. Open-
Forensics finished analysis in 22 s for both 10 and 45 pattern tests.
Furthermore, OpenForensics completed these tests with no varia-
tion in results between repetitions. Recover My Files managed to
complete the analysis in 79 s for the lesser pattern test, and 121 s
for the many pattern test. Lastly, Foremost completed analysis in
322 and 919 s for the 10 and 45 pattern tests respectively, signifi-
cantly slower than the two aforementioned file-carvers. Foremost
and Recover My Files shown little variation in search time between
test repetitions (<5%).

The same forensic image was then analysed using the same file-
carvers on the laptop—test platform B. Fig. 5 illustrates a similar
order of speed to perform pattern matching. OpenForensics, pro-
cessing with both test platform B's discrete GPU and integrated IGP,
took 45 s to perform analysis for both 10 and 45 pattern searching.
Recover My Files completed the lesser pattern analysis in 161 s and
completed the many pattern analysis in 306 s. Foremost was seen
to be slowest in this test, finishing the 10 pattern analysis in 198 s
and taking 826 s to complete the 45 pattern analysis.

The OpenForensics time to complete analysis on test platform B
was around double that of test platform A, which collates to the
theoretical read speed limits that the storage devices can read data.
This indicates that the laptop may have been able to analyse much
faster storage devices with the employed pattern matching approach.

Analysis of a physical storage device

The second trial conducted involved searching an entire physical
drive. Although both Foremost and OpenForensics were both able

—e— Foremost - ®- Recover My Files -#- OpenForensics

1,000] ‘ T : -
fg\ 800 |- |
a
B 600| |
5
g
S 400 |
@
£
'_

200 | |

_________________ -
S
0L—frmmrmmn — po-===--- r---@
10 20 30 20

Defined patterns

Defined patterns Foremost Recover My Files OpenForensics
10 322 79 22
45 919 121 22

Fig. 4. Test platform A: Mean time taken to conduct pattern matching on raw forensic
dd file (secs.) with 95% confidence intervals.

E. Bayne et al. / Digital Investigation 24 (2018) S29—S37 S35

—e— Foremost - #- Recover My Files - -#- OpenForensics

800

600

400

Time required (secs.)

200

Defined patterns

Defined patterns Foremost Recover My Files OpenForensics
10 198 161 45
45 826 306 45

Fig. 5. Test platform B: Mean time taken to conduct pattern matching on raw forensic
dd file (secs.) with 95% confidence intervals.

to target the full physical drive, Recover My Files was only able to
target visible partitions. On both test platforms, this limitation
signifies that Recover My Files is only analysing the size of each test
platform’'s largest partition—194.3 GiB on test platform A and 193.8
GiB on test platform B. OpenForensics and Foremost, on the con-
trary, analyse the full physical drive size—256 GiB on both test
platform A and B. The following charts may favour Recover My Files
due to this limitation, as no adjustments were made to the times to
account for the size difference between partition and drive size.

Fig. 6 presents the time required to perform pattern analysis on
storage device 2 of test platform A. Similarly to the previous
forensic image tests, OpenForensics manages to perform analysis
the quickest and shows no variation in time when searching for 10
or 45 patterns. Interestingly, however, Recover My Files shows
greater deterioration from its lesser and many pattern test than the
previous forensic image analysis. Foremost analyses data the
slowest in this test, however, maintains a similar performance
pattern between its 10 and 45 pattern searches.

Analysing storage device 2 on test platform B (Fig. 7) shows
similar results, with the exception of Recover My Files, which
performed slower in its few pattern test on the large partition than

—e— Foremost - ®- Recover My Files - - OpenForensics

8,000
£ 6,000
el
o
=
g 4,000
(0]
£ USSR
o200 .- N
S
0 L D ek et @
10 20 30 40

Defined patterns

Defined patterns Foremost Recover My Files OpenForensics
10 3460 1464 203
45 8203 2789 203

Fig. 6. Test platform A: Mean time taken to conduct pattern matching on physical
storage device (secs.) with 95% confidence intervals.

—e— Foremost - w- Recover My Files - a- OpenForensics

10,000
a
3 8,000
K22
kel
£ 6,000
=]
o
@
o 4,000
£
'_
2,000
0 | eteteteteteteletetetetet tulsttutetsttetetsttets atututetelstutetetututetete niatslstetel *

Defined patterns

Defined patterns Foremost Recover My Files OpenForensics
10 2148 2805 226
45 10211 5916 231

Fig. 7. Test platform B: Mean time taken to conduct pattern matching on physical
storage device (secs.) with 95% confidence intervals.

Foremost did in a 10 pattern test on the full drive. Unfortunately, as
Recover My Files is a closed-source commercial application, further
analysis of this outcome was difficult. OpenForensics managed
times of 226 and 231 s to search for 10 and 45 patterns on test
platform B.

Processing speed analysis

In the proceeding section, pattern matching was completed
against a 20 GiB forensic image and a physical drive. From the re-
sults, it was clear that OpenForensics was fastest to conduct pattern
matching. This section aims to analyse the speed that pattern
matching was done to establish the rate of analysis, and whether
the fastest pattern matching method — OpenForensics — achieves
the maximum possible throughput from the storage devices tested.

To begin, Table 3 shows the measured maximum sequential read
rate of the storage devices tested in Mebibytes per second (MiB/s).
These measurements were taken from measuring sequential read
performance of each storage device with the Microsoft Diskspd
utility (Microsoft) using a single thread and a queue depth of 32. We
assume that the maximum recorded sequential read speed of the
storage device is the maximum rate that analysis can be done.

Figs. 8 and 9 shows the rate of analysis for all three file-carvers
tested. The rate of analysis was calculated from the size of data
analysed divided by the time taken to complete analysis. The graph
provides a 10% positive deviation across tests to reflect the
windowed searching technique configured by OpenForensics and
Foremost to conduct pattern matching. The windowed technique
employed by the file-carvers in these tests overlaps 10 MiB in every
100 MiB of data analysed to check for partial matches at the end of
segments.

Due to the limitations of specifying patterns with Recover My
Files, the results cannot be fairly compared to the specific pattern
conditions of Foremost or OpenForensics. However, test results can
serve as an indicate the possible performance achievable with

Table 3
Test platform storage device sequential read performance measured by Microsoft
DiskSpd utility.

Test Platform A B
Storage Device 1 943 MiB/s 521 MiB/s
Storage Device 2 1378 MiB/s 1562 MiB/s

S36 E. Bayne et al. / Digital Investigation 24 (2018) S29—S37

E a Foremost NIN

Bm OpenForensics = Theoretical Maximum

Recover My Files

1,500
1,378 1,378
lqu:; lqu:;
0
@
g 1,000 943 g} 943 1,@
[0}
2
@
£
20
=]
8
g 500
2
a9
259
169 163
64 9o 69 29 86
0 V/A 7Zza zzzz
- 0 o o
e xee et e
e 30 P o A9 P 10 ©% 55 %
e g}‘x\?’ O{\«JB O‘We

Fig. 8. Test platform A file carver rate of analysis with 90% confidence intervals.

Recover My Files when searching for fewer and greater patterns.
OpenForensics and Foremost have been tested with identical
search parameters, therefore, direct comparisons can be made be-
tween the performance of both file-carvers.

In all test cases, OpenForensics is able to achieve the greatest
rate of analysis, achieving a processing rate close to the sequential
read performance of most storage devices tested. OpenForensics
used 98.7% of the measured storage device sequential read per-
formance at best, and 85.4% on average across all tests from the two
test platforms. The commercial tool trialled — Recover My Files —
managed to utilise 27.4% of the storage device performance at best,
and 13.6% when averaged across all tests. In this analysis, Foremost
appears to take least advantage of the available storage device
performance. On average, Foremost uses 6.8% of the potential read
performance of storage devices. Foremost's best result — on test
platform B conducting pattern matching for 10 patterns — utilises
19.8% of the sequential read performance.

PB Foremost NN
BN OpenForensics =

Recover My Files

Theoretical Maximum

1,562 1,562

1,500
i
)
2 1,980 1,057
< 1,000
g
E
&0
5]
b
172
[9)
8 521 521

—_—
Q;: 500
103 12 o 114 g-
7N BRSNS P
N7 — % rrrn SN
et ™ S ke xet™
10 96& A pat o 9ot A e
e e O‘A‘\'e D;'ﬁa

Fig. 9. Test platform B file carver rate of analysis with 90% confidence intervals.

The measured performance of OpenForensics demon-
strate the advantages of employing modern pattern matching
techniques and recent technological developments to the area of
DF analysis methods.

OpenForensics tests on platform A, which utilises a single Nvidia
Titan XP graphics card to accelerate processing, were seen to pro-
vide the highest throughput on the storage device tests. Open-
Forensics results from test platform A proved to better utilise the
measured sequential read speed than test platform B, which
approached processing using a combination of the laptop's discrete
GPU and IGP. However, whilst test platform A only adopted a single
GPU to conduct analysis, the platform was able to adopt more levels
of concurrency than what was applied on test platform B (12 vs. 8
concurrent threads). Digressing, the speed achieved by test plat-
form B presents compelling evidence that physical analysis could
be performed quickly on a mobile platform utilising the proposed
processing technique.

We hypothesised that storage device transfer speeds would
limit the possible rate of analysis when analysing the forensic im-
age from storage device 1 of each test platform. This hypothesis
evidenced to be true. OpenForensics was seen to be limited by the
maximum recorded sequential read speed of the storage device. It
was also noted that performance derived from Foremost and
Recover My Files were not limited by the storage devices.

We also hypothesised that analysing the storage device 2 of each
test platform would highlight limitations of current string search-
ing approaches adopted in DF. This hypothesis was also evidenced
to be true. Analysing the performance achieved by Foremost and
Recover My Files, it was evident that performance remained rela-
tively similar to the forensic image tests. Contrary to this finding,
OpenForensics was demonstrated to perform faster on the NVMe
storage devices, utilising a significant portion of the storage de-
vice's maximum sequential read speed.

Conclusion

This paper has presented OpenForensics—an open-source
implementation of an asynchronous GPU PFAC solution for
pattern matching of data in a DF context. Results show that Open-
Forensics is able to perform pattern analysis close to the maximum
theoretical sequential read speed performance of storage devices in
most tests, providing substantial performance advantages over the
searching techniques employed by Foremost and Recover My Files.

The paper further highlights the inadequacies of current DF
tools in being able to perform analysis on modern consumer
hardware. It is hoped that the methods and technique shared by
this research serve as a framework to improve upon, or create, the
next generation of DF tools used by professionals internationally.

Acknowledgements

We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan X Pascal GPU used for this research.
The authors would also like to thank Abertay University's R-LINCS
initiative for the funding of a compute server that was used in the
development of this processing model.

References

Aho, A.V., Corasick, M.J., 1975. Efficient string matching : an aid to bibliographic
search. Commun. ACM 18 (6), 333—340.

Ayers, D., 2009. A second generation computer forensic analysis system. Digit.
Invest. 6, S34—S42. https://doi.org/10.1016/j.diin.2009.06.013.

E. Bayne, OpenForensics. URL https://github.com/ethanbayne/OpenForensics.

Beebe, N., 2009. Digital forensic research: the good, the bad and the unaddressed.
Adv. Digit. Forensics V 17—36. https://doi.org/10.1007/978-3-642-04155-6_2.

http://refhub.elsevier.com/S1742-2876(18)30037-9/sref1
http://refhub.elsevier.com/S1742-2876(18)30037-9/sref1
http://refhub.elsevier.com/S1742-2876(18)30037-9/sref1
https://doi.org/10.1016/j.diin.2009.06.013
https://github.com/ethanbayne/OpenForensics
https://doi.org/10.1007/978-3-642-04155-6_2

E. Bayne et al. / Digital Investigation 24 (2018) S29—S37 S37

Bellekens, X.J.A., Tachtatzis, C., Atkinson, R.C., Renfrew, C., Kirkham, T., 2014. GLoP:
enabling massively parallel incident response through GPU log processing. In:
Proceedings of the 7th International Conference on Security of Information and
Networks - SIN "14, pp. 295—301. https://doi.org/10.1145/2659651.2659700.

Boyer, R.S., Moore, |.S., 1977. A fast string searching algorithm. Commun. ACM 20
(10), 762—772.

CrystalMark, CrystalDiskMark. URL http://crystalmark.info/software/CrystalDiskMark/
index-e.html.

Garfinkel, S.L., 2007. Carving contiguous and fragmented files with fast object vali-
dation. Digit. Invest. 4 (Suppl. 1), 2—12. https://doi.org/10.1016/j.diin.2007.06.017.
http://linkinghub.elsevier.com/retrieve/pii/S1742287607000369.

Garfinkel, S.L., 2010. Digital forensics research: the next 10 years. Digit. Invest. 7,
S64—S73. https://doi.org/10.1016/j.diin.2010.05.009.

Her Majestys Inspectorate of Police, July 2015. Online and on the Edge: Real Risks in
a Virtual World. Technical Report. https://www.justiceinspectorates.gov.uk/
hmicfrs/wp-content/uploads/online-and-on-the-edge.pdf.

Hung, C-L, Lin, C.-Y.,, Wang, H.-H. 2014. An efficient parallel-network packet
pattern-matching approach using GPUs.]. Syst. Architect. 60, 431—439. https://
doi.org/10.1016/j.sysarc.2014.01.007.

K. Kendall, J. Kornblum, N. Mikus, Foremost. URL http://foremost.sourceforge.net/.

Khronos Group, OpenCL. URL http://www.khronos.org/opencl/.

Lin, C.-H., Liu, C.-H., Chien, L.-S., Chang, S.-C., 2013. Accelerating pattern matching
using a novel parallel algorithm on GPUs. IEEE Trans. Comput. 62 (10),
1906—1916. https://doi.org/10.1109/TC.2012.254.

Marziale, L., Richard, G.G., Roussev, V., 2007. Massive threading: using GPUs to in-
crease the performance of digital forensics tools. Digit. Invest. 4, 73—81. https://
doi.org/10.1016/j.diin.2007.06.014.

Microsoft, TechNet Diskspd Utility: A Robust Storage Testing Tool (superseding
SQLIO). URL https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-
6cd2f223.

Nvidia, CUDA. URL http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.
html.

Penrose, P., Buchanan, W.J., Macfarlane, R., 2015. Fast contraband detection in large
capacity disk drives. Digit. Invest. 12 (S1), S22—S29. https://doi.org/10.1016/
j.diin.2015.01.007.

Raghavan, S., 2013. Digital forensic research: current state of the art. CSI Trans. ICT 1
(1), 91-114. https://doi.org/10.1007/s40012-012-0008-7.

Richard III, G.G., Roussev, V., 2005. Scalpel: a frugal, high performance file carver. In:
Proceedings of the 2005 Digital Forensics Research Workshop (DFRWS ’'05),
pp. 1-10.

Skrbina, N., Stojanovski, T., 2012. Using parallel processing for file carving. In:
Proceedings of the Nineth Conference on Informatics and Information Tech-
nology, 19-22 April, Web proceedings, pp. 175—179. ISBN 978-608-4699-01-9.
http://ciit.finki.ukim.mk/data/papers/9CiiT/9CiiT-36.pdf. arXiv:1205.0103.

Zha, X, Sahni, S., 2011. Fast in-place file carving for digital forensics, lecture notes of
the institute for computer sciences. Soc. Inform. Telecommun. Eng. 56, 141-158.
https://doi.org/10.1007/978-3-642-23602-0_13.

https://doi.org/10.1145/2659651.2659700
http://refhub.elsevier.com/S1742-2876(18)30037-9/sref6
http://refhub.elsevier.com/S1742-2876(18)30037-9/sref6
http://refhub.elsevier.com/S1742-2876(18)30037-9/sref6
http://crystalmark.info/software/CrystalDiskMark/index-e.html
http://crystalmark.info/software/CrystalDiskMark/index-e.html
https://doi.org/10.1016/j.diin.2007.06.017
http://linkinghub.elsevier.com/retrieve/pii/S1742287607000369
https://doi.org/10.1016/j.diin.2010.05.009
https://www.justiceinspectorates.gov.uk/hmicfrs/wp-content/uploads/online-and-on-the-edge.pdf
https://www.justiceinspectorates.gov.uk/hmicfrs/wp-content/uploads/online-and-on-the-edge.pdf
https://doi.org/10.1016/j.sysarc.2014.01.007
https://doi.org/10.1016/j.sysarc.2014.01.007
http://foremost.sourceforge.net/
http://www.khronos.org/opencl/
https://doi.org/10.1109/TC.2012.254
https://doi.org/10.1016/j.diin.2007.06.014
https://doi.org/10.1016/j.diin.2007.06.014
https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223
https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223
http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html
http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html
https://doi.org/10.1016/j.diin.2015.01.007
https://doi.org/10.1016/j.diin.2015.01.007
https://doi.org/10.1007/s40012-012-0008-7
http://refhub.elsevier.com/S1742-2876(18)30037-9/sref20
http://refhub.elsevier.com/S1742-2876(18)30037-9/sref20
http://refhub.elsevier.com/S1742-2876(18)30037-9/sref20
http://refhub.elsevier.com/S1742-2876(18)30037-9/sref20
mailto:http://ciit.finki.ukim.mk/data/papers/9CiiT/9CiiT-36.pdf
https://doi.org/10.1007/978-3-642-23602-0_13

	OpenForensics: A digital forensics GPU pattern matching approach for the 21st century
	Introduction
	Background
	File detection and processing method
	Data reading method
	File reproduction method

	Methodology
	File carving approach
	File detection and processing method
	Data reading method
	File reproduction method

	Testing methodology

	Results and discussion
	Analysis of a raw forensic dd file
	Analysis of a physical storage device
	Processing speed analysis

	Conclusion
	Acknowledgements
	References

