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Recent trends show digital devices utilized with increasing frequency in most crimes 

committed.  Investigating crime involving these devices is labor-intensive for the 

practitioner applying digital forensics tools that present possible evidence with results 

displayed in tabular lists for manual review. This research investigates how enhanced 

digital forensics tool interface visualization techniques can be shown to improve the 

investigator’s cognitive capacities to discover criminal evidence more efficiently.  This 

paper presents visualization graphs and contrasts their properties with the outputs of The 

Sleuth Kit (TSK) digital forensic program. Exhibited is the textual-based interface 

proving the effectiveness of enhanced data presentation. Further demonstrated is the 

potential of the computer interface to present to the digital forensic practitioner an 

abstract, graphic view of an entire dataset of computer files. Enhanced interface design of 

digital forensic tools means more rapidly linking suspicious evidence to a perpetrator.  

Introduced in this study is a mixed methodology of ethnography and cognitive load 

measures.  Ethnographically defined tasks developed from the interviews of digital 

forensics subject matter experts (SME) shape the context for cognitive measures.  

Cognitive load testing of digital forensics first-responders utilizing both a textual-based 

and visualized-based application established a quantitative mean of the mental workload 

during operation of the applications under test.  A t-test correlating the dependent 

samples’ mean tested for the null hypothesis of less than a significant value between the 

applications’ comparative workloads of the operators.  Results of the study indicate a 

significant value, affirming the hypothesis that a visualized application would reduce the 

cognitive workload of the first-responder analyst.  With the supported hypothesis, this 

work contributes to the body of knowledge by validating a method of measurement and 

by providing empirical evidence that the use of the visualized digital forensics interface 

will provide a more efficient performance by the analyst, saving labor costs and 

compressing time required for the discovery phase of a digital investigation.                                 
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Chapter 1 

 

Introduction 

 

Background 

     Osborne, Turnbull, and Slay (2010) chronicle digital forensics tools as vital for 

providing analysts the utility for detecting and discovering digital evidence of a crime, 

identifying two such industry-standard tools as the EnCase Forensics (Guidance 

Software) and the AccessData Forensic Toolkit (FTK).  However, these forensic tools 

require an inordinate amount of human intervention for evidence value to be determined. 

The most recently released upgrade of the FTK introduces a visualization module—

although it is accompanied by no supporting empirical visualization documentation. As 

these existing forensic tools provide little guidance in the discovery of evidence, their 

effectiveness depends upon the experience of the practitioner (Jankun-Kelly, Franck, 

Wilson, Carver, Dampier, & Swan, 2008). Additionally, ever-increasing numbers of 

cases of computer-generated crime render inversely proportionate the resource of 

professionals available to detect and solve the infractions and those cases to be solved 

(Neufeld, 2010).  Compounding the problem of this disadvantageous position of 

professionals aiming to detect evidence and solve cases are methodologies that prove 

inadequate as they do not scale to the increasing volumes of crimes and digital evidence.  

Efficacy of forensic software tools such as those mentioned above potentially depends 
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more upon the tool interface and less upon cognitive decisions of the analyst whose 

access to information visualization will enhance the process of evidence discovery.  

Integrating visualization into the interface design of forensic tools condenses the analysis 

phase of investigations by utilizing the practitioner’s visual sensing abilities, thereby 

improving the incident rate of detection and discovery of valuable evidence (Ayers, 2009; 

Osborne et al.).     

 

Problem Statement  

     The problem to be resolved is that forensic tools currently in use require an inordinate 

amount of human effort for value of evidence to be determined.  At the root of this 

problem is the fact that computer forensic technologies’ textual-based interfaces, as 

described by Osborne et al. (2010), overburden the investigator's cognitive capacity to 

gather evidence rapidly and efficiently from the information systems suspected of having 

been used with criminal intent. Moreover, Osborne et al. and Hargreaves and Patterson 

(2012) surmise that the circumstance of the continually increasing storage capacity of 

computer systems compounds with that of additional, varied types of digital devices to 

thwart forensic analysts’ attempts to discover forensics evidence with their obsolete 

manual analysis processes.  Whereas, previously, a forensics analyst had to comb through 

mere megabytes of information to locate evidence of inappropriate acts and behaviors, 

one may now have to look through terabytes of data to retrieve evidence.  Visually 

enhanced tools could provide the opportunity to amplify thousands or millions of files—

currently consigned to painstaking analysis by textual-based tools—in the process of 

locating relevant evidence, according to Osborne et al.  Yet the arduousness and 
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limitations of this process diminish the effectiveness of law enforcement, government, 

and other organizations that need to function in the domain of computer forensics.  This 

study has provided subjects a prototype visualized interface forensics tool and contrasted 

their results with those of their use of textual-based interface utilizing The Sleuth Kit 

(TSK) program, an open-source digital forensics tool with a textual-based interface. TSK 

has been utilized to measure the effectiveness of enhanced data presentation.  Resolving 

the problems introduced by textual-based interfaces was expected to elevate the 

investigator's capabilities so as to expedite the discovery of digital evidence (Ayers, 

2009; Osborne & Turnbull, 2009; Osborne et al.).  

 

Dissertation Goal  

     The questions presented below were intended to guide the research and to suggest 

appropriate research methods, such as ethnographic observations, for discovery of a 

novel solution to the problem of the analyst’s overburdened cognitive capacity in relation 

to digital forensics tools currently in use. Enhanced user interface of forensics tools’ 

analysis presentation through visualization techniques achieves a dual goal: it not only 

presents a solution to optimize the digital investigator’s cognitive capacity but also 

develops best practices in contemporary approaches to the application of human–

computer interaction (HCI) visualization tactics. This study was developed partly to 

verify Osborne and Turnbull’s (2009) suggestion that HCI techniques applied to develop 

practices based on visualization have proven capable of enhancing the user interfaces of 

intrusion detection systems (IDS), antivirus tools, and other anti-malicious software 

solutions. Visualization facilitates the discovery of evidence from large volumes of data 
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during the detection process by minimizing the element of human interaction (Osborne & 

Turnbull). 

     Ayers (2009) identified the requirements for the next generation of forensics analysis 

systems as having 1) increased investigation speed, 2) better accuracy, 3) established 

workflow,  and 4) an advanced abstraction layer that improves human capabilities. The 

current generation of forensics tools presents the file system hierarchy whereby 

information visualization displays an abstract view of all data under investigation so that 

a user may obtain knowledge or so that he or she may discover digital evidence. Osborne 

et al. (2010) explained visualization as an enabler for the investigator to understand large 

amounts of data.  However, they pointed out that few published works detail visualization 

techniques intended for the frameworks of investigative tools.  Presented in this research 

are a detailed review of relevant contemporary literature and reports of product testing 

and software prototyping of a visualization solution.  

 

Research Questions  

     Answers to research questions develop concepts of other researchers, such as Ayers 

(2009); Osborne and Turnbull (2009); and Osborne et al. (2010).  The following 

questions were meant to guide this research effort and to lead, ultimately, to answers that 

will begin to resolve the problem of an exorbitant amount of human intervention needed 

currently in the discovery of digital forensics evidence determination.   

1. What are the investigator’s primary tasks for evidence identification while operating a 

traditional digital forensics tool set? Answer is determined by techniques employed in 

the analysis phase of an investigation for cataloging purposes and by observed 
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methods of a digital forensics user group for the purpose of ethnographic discovery 

(Fetterman, 2010). 

2. What is the cognitive load of an assessment of human working memory beyond just 

time and accuracy measures while performing ethnographically discovered 

techniques of a predefined set of tasks to establish a baseline of evidence 

identification? Answer is determined by application of predefined, relevant standard 

tasks identified as ethnographic and implemented for the measurement of a prototype 

visualized application intended to improve the effectiveness of a digital forensics 

investigation (Çakir, 1997; Fetterman; Huang, Eades, & Hong, 2009; Saraiya, North, 

& Duca, 2010).  

3. What efficiency level may be attained for a digital investigation improved for the 

benefit of analysis by application of visualization to predefined tasks? Answer is 

determined by comparing/contrasting the results of the users’ surveys (Çakir, 1997; 

Fetterman; Huang, Eades, & Hong; Saraiya, North, & Duca).  

      The working hypothesis of the research is that—by application of advanced graphical 

or visualization technology to digital forensics tools—the workload of digital forensics 

analysts will be reduced, enabling them to discover digital evidence more expeditiously 

during the analysis phase of an investigation than is currently possible.  Employing 

visualization techniques allows analysts not only to view an entire data set under 

investigation but also to zoom and filter items of interest and then to gain—via the 

interface—access to specific details on demand of the data under examination 

(Shneiderman, 2008; Shneiderman, 1996). 
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Relevance and Significance 

     The Regional Computer Forensics Laboratories (RCFL) program of the Federal 

Bureau of Investigation (FBI) provides critical digital forensics expertise, services, and 

training to thousands of law enforcement officers and hundreds of agencies nationwide. 

Membership in the RCFL, which is composed of 130 participating agencies from 17 

states, requires an investigator to earn FBI certification as a computer forensics examiner. 

As documented in the RCFL 2012 fiscal year (FY) report, released in May 2013, nearly 

all criminal investigations involve digital evidence availing prosecutors a window into 

events that occurred before, after, and sometimes during the execution of criminal acts.  

Committed by tech-savvy perpetrators, these crimes involve financial schemes, terrorism, 

child pornography, and gang-related activities—among other types.  While digital storage 

capacity technologies increase annually for consumers, the cost of enhancement of 

computer electronics decreases; such affordability permits computer use by the masses, 

including the criminal element. Usually, apprehended criminals are associated with a 

computer with volumes of information that must be labor-intensively examined by an 

investigator.  Effectiveness of current digital forensic techniques’ search approaches is 

regarded by experts as “poor” (Beebe, Clark, Dietrich, Ko, & Ko, 2011; Al-Zaidy, Fung, 

& Youssef, 2011; RCFL, 2013).  

     Within the RCFL, digital crime is known to be far-ranging at home as well as 

overseas, involving terrorists intent on killing thousands of innocent civilians and 

destroying valuable infrastructure.  According to Richard and Roussev (2006), improved 

digital forensics tools advance investigating authorities’ ability to safeguard property and 
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even life, especially in time-sensitive situations wherein the examination of digital 

evidence is critical to solving a crime in progress. 

     Despite commercial digital forensics tool vendors’ introductions of equipment 

operations and database archives, attempts at improving digital forensics technology have 

left the architecture of the present generation of tools relatively unchanged from that of 

earlier versions.  While advances may have proven effective wherever sufficient human 

resources have been made available, neither efficiency nor reliability has improved for 

the single investigator (Ayers, 2009).  

     At risk is the populace—through investigators’ inabilities to safeguard them from 

perpetrators utilizing computer systems as a medium for their crimes. Contemporary 

researchers such as Ayers (2009), Osborne and Turnbull (2009), and Osborne et al. 

(2010) called for the development of improved methods of visualizing digital forensics 

data. This work contributes to the knowledge base of digital forensics by developing 

visualization techniques with measurable outcomes synthesized from methodologies used 

in the domains of HCI and information security. Findings apply to the field of digital 

forensics—with resulting presentation techniques and measures not yet determined or 

known to the domain.  The project’s results and measures are general enough, however, 

to apply to other domains within which the presentation of large volumes of data is 

needed for system users to function with measurable outcomes.  

     The goal here has been to discover means by which to improve digital forensics 

interfaces, to identify how implementing visualization enhances interfaces, and to focus 

on contemporary approaches for the application of HCI visualization tactics.  The paper 

identifies a problem with computer forensics tools currently in use, for which it presents a 
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potential solution.  The problem may be defined as forensics tools’ stopping short in the 

computer forensics evidence-gathering process and leaving evidence validation to human 

intervention.  Endicott-Popovsky and Frincke (2007) stated that the first discoverers of 

evidence are often network administrators who have applied their cognitive skills to a 

digital crime scene by combing through textual evidence. The digital forensics crime 

scene is most often a functional computer network supporting a business operation.  

Endicott-Popovsky and Frincke refered to these network administrators as “first 

responders,” for it is they who must decide whether to respond to network users or to 

pursue investigations. Such conditions sometimes overlook prosecutable crimes 

(Endicott-Popovsky & Frincke).  

     This work expands the digital forensics science knowledge base by establishing digital 

forensics processes gained from an ethnographic study and empirical evidence from 

cognitive measures, offering recommendations for the domain of digital forensics, and  

demonstrating enhancement of the investigator’s final analysis of digital evidence by 

exploitation of visualization characteristics in support of interface capabilities, having 

retrieved values and filtered data graphically, as suggested by Ahn, Plaisant, and 

Shneiderman (2011). Tufte (1990) finely analyzed large amounts of multi-dimensional 

information and illustrated it graphically in the two-dimensional print medium.  His 

printed images yielded complex timetables of dense patterns of information, exhibiting 

four or five variants of information for audiences.  Richard and Roussev (2006) identified 

primary operations of a digital forensics investigation depending mostly upon the capture 

of file-centric evidence. This study presents visually the multi-dimensional attributes of a 
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file system to aid the investigator in a manner that allows him or her to analyze and 

identify digital forensics evidence expeditiously.  

     Researchers such as Ayers (2009) called for advancements in the abstraction of 

relevant data to comprise an approach outside the viewing of the hierarchical file system 

currently used in forensics tools.  Findings of this research—when utilized as 

enhancements to digital forensics applications—explain how the investigator’s capability 

to identify evidence may be improved through visualization. Moreover, this work serves 

as a resource for other domains, such as data mining and information security that may 

benefit from visualization-enhanced interfaces.  

 

Barriers and Issues  

     Despite the introduction of paralleled equipment operations and database archives, 

attempts at improving digital forensics technology have left the architecture of the present 

generation of tools relatively unchanged (Ayers, 2009). Advances have proven effective 

only in instances where sufficient human resources have been available, but they have not 

improved efficiencies or reliability of factors such as audit capabilities.   

     Technical barriers include the sheer volume of data to be analyzed, a condition 

attributed to the increase in both storage technology advances and digital device 

ownership. Difficulty in research is exacerbated by variety in devices; for example, the 

Microsoft operating systems feature many different files, bins, and categories for data 

storage, such as the recycle bin and event logs.  Accommodating the many categories and 

locations of varying file system metadata compounds the forensics analyst’s workload.  

Digital forensics investigations, per se, are not particularly technically challenging; 
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rather, such projects prove to be time-intensive. Hence, automation of the workload on 

digital forensics professionals proves critical for reducing the time required for digital 

evidence discovery (Hargreaves & Patterson, 2012). 

     Increasing the workload of analysts investigating the digital crime scene is the variety 

of types of digital devices owned by individuals, such as data-capable mobile devices, 

now found at practically every crime scene and manufactured at an ever-increasing rate. 

Additionally, these mobile devices, being network devices, introduce concomitant 

challenges, including privacy issues and technical issues as the devices move into and out 

of their networks (Mislan, Casey, & Kessler, 2010). 

     Several papers are dedicated to visualization of digital forensics temporal evidence, 

such as those of Hargreaves and Patterson (2012) and Olsson and Boldt (2009).  

However, timelines are just one file attribute evaluated during an investigation. 

According to the National Institute of Justice Special Report (2004), digital forensics 

analysis also requires examination of file data: file name, size, and path as well as 

correlation of relationships among files.  

     Lastly, the paucity of courses and programs related to digital forensics education 

creates a shortage of trained investigators (Kessler & Ramsay, 2014). Varying 

communities of interest—such as business and education as well as law enforcement, 

judicial departments, policy makers, and other government agencies—are adversely 

impacted, for each depends upon the identification and delivery of digital evidence.  

Urgently needed is digital forensics education supporting students of both career 

development and degree-granting programs (Cooper, Finley, & Kaskenpalo, 2010).    
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     Examination of large amounts of data burdens the practitioner. Glatz (2010) suggested 

that the cognitive load on the analyst can be reduced through visualization, which 

provides a method for making accumulated data easier to read.  Hargreaves and Patterson 

(2012) further suggested that applied visualization will reduce the volumes of data to be 

analyzed through timeline analysis, thereby improving file system metadata examination.    

 

Assumptions, Limitations, and Delimitations 

     Existing digital forensics research findings clearly imply that using visualization in 

interface design will reduce the cognitive workload of the digital forensics analyst, as 

suggested by Osborne, Turnbull, and Slay (2012).  An example presented by Jones 

(2008) illustrated the principle that an investigator must examine each file of a computer 

system.  He suggested that resources are conserved in performing these digital forensics 

investigations through visualization. Moreover, the digital forensics discipline lacks clear, 

empirically supported research data proving efficiencies gained through visualized digital 

forensics tool sets. This study assumes that data yielded by its examination of study 

participants in the forensics field prove such efficiencies gained. 

     Beyond the control of this study were resource constraints, such as the schedule 

availability of digital forensics investigators to participate in the study, a circumstance 

realized by Barbara (2013) as well. Likewise limiting was unavailability commercially 

available tools such as FTK do not offer trial versions for testing or for research purposes. 

Tools used in this study are those freely available as open sources for both digital 

forensics and visualization demonstrations.  Tufte (1990) mentioned numerous options 

for presenting multi-dimensional data attributes and density of data to illustrate 
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information techniques.  Covering all visualization techniques and technologies possible 

for the presentation of digital forensics information would have been impossible.       

That digital evidence presented graphically requires less cognitive effort to be understood 

by the analyst—as contrasted with evidence derived from textual displays—is the 

hypothesis of this study, a concept advanced by Osborne, Turnbull, and Slay (2012). 

Simulated forensics data functioned to preserve the right of confidentiality of both an 

alleged perpetrator and a victim and to preserve the custody chain of evidence. The 

hypothesis is demonstrated by one tool’s textual representation of digital evidence and by 

another tool’s graphic representation of digital evidence. Limiting the number of tools to 

two narrows the scope of the study for purposes of manageability and precludes 

generalizations in results of the study. 

     Conti (2007) introduced a visualized file system’s multi-dimensional attributes 

acquired by application of the freely available SequoiaView, which features a treemap 

format, providing big-picture context enabled with interactive application controls for 

drilling down to file system items of interest. SequoiaView is the graphic interface tool 

for this study demonstrating visualization. Demonstrating a fully functional digital 

forensics tool with textual display, this study utilized The Sleuth Kit (TSK) with the 

Autopsy user interface, an open-source tool usable for in-depth analysis of multiple file 

system images (Sleuth Kit, 2012).  

 

Definition of Terms  

Analyst — Collects, understands, and determines collected digital events as legally 

admissible evidence (Peisert, Bishop, Karin, & Marzullo, 2007) 
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 Autopsy — The graphical interface to The Sleuth Kit digital forensics tool (Sleuth Kit, 

2012).   

 

Cognitive Capacity — The extent of an individual's allocation of cognitive resources 

used for  analytic processing, the primary component being one’s working memory 

(Stanovich & West, 2000)  

 

Cognitive Load Measures — The assessment of cognitive load by measuring mental load, 

mental effort, and performance (Paas, 1992)  

 

Cognitive Load Theory (CLT) — Developed for the improvement of instructional 

methods utilizing the learner’s limited cognitive processing capacity in acquiring 

knowledge based on one’s limited working memory for processing visual/spatial and 

auditory/verbal information (Paas, Tuovinen, Tabbers, & van Gerven, 2003) 

 

Digital Evidence — Data preserved that have been identified through discovery by their 

attributes or recovered deleted files or other information captured from digital media and 

used to ascertain the truth in the proof or disproof of a crime (Osborne et al., 2010) 

 

Digital Forensics or Computer Forensics — Analysis of an electronic device’s current 

state of stored information in order to solve crimes (Osborne et al., 2010; Peisert, Bishop, 

& Marzullo, 2008) 

 

Digital Forensic Tools — Software/hardware used by investigators for viewing files or 

directories as well as unallocated files of a suspect computer system (Carrier, 2003) 

 

Electronic Fingerprint — Result of a hashing algorithm utilized to authenticate that the 

digital evidence has not been tampered with or altered since being captured during a 

digital forensics investigation (Kruse & Heiser, 2002). 

 

Ethnography — Originating in anthropology, fieldwork that studies cultural and societal 

norms from inside their operations (Ormerod et al., 2005) 

 

First-Responder — Practitioner, often a network administrator, who collects digital crime 

scene data (Endicott-Popovsky & Frincke, 2007)  

 

Graph Visualization — Data presented graphically with nodes representing information 

intersects and intersect attributes, such as connectors that may be represented by node 

color and shape (Hansen, Shneiderman, & Smith, 2010; Huang et al., 2005) 

 

Hash — The encryption result of a mathematical algorithm procedure conducted on a 

device or file utilized as a digital fingerprint, which provides authenticity of evidence 

gathered during a digital forensic investigation (Kruse & Heiser, 2002)    

 

Human–Computer Interaction (HCI) — A multidisciplinary science focused on social 

and behavioral sciences, including computer and information technology, concerned with 
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how devices and systems can be more useful and more readily usable by people (Carroll, 

2003) 

 

Information Visualization — “The use of computer-supported, interactive, visual  

representations of abstract data to amplify cognition” (Carroll, 2003, p. 468)  

 

Parallel Coordinate Visualization — A method of visualization presenting 

multidimensional data items and displaying data along a polygonal line intersecting the 

horizontal dimension axes at the position corresponding to the value for the 

corresponding dimension (Keim, 2002) 

 

SequoiaView — An open-source visualization computer application employing the 

cushion treemap technique to present the entire content of a hard drive or file system in a 

single view (SequoiaView, 2014) 

 

SleuthKit — An open-source digital forensics tool utilized to investigate computer disk 

images for in-depth analysis of a file system (Sleuth Kit, 2012)  

 

Subject Matter Expert (SME) — Specialized practitioners in their domain of expertise; in 

this study, law enforcement's digital forensics practitioners (Peterson, Raines, & Baldwin, 

2007) 

 

Summary   

     Digital forensics tools are software and other devices that provide analysts an 

instrument to assist in the discovery of digital evidence located in an array of computer 

systems. The RCFL 2012 FY report revealed that nearly all current criminal 

investigations involve such a device. This research builds upon previous works to 

demonstrate enhancement of the discovery phase of the evidence-identification process 

through the use of visualization. It illustrates the impact of visualization integrated into 

the user interface of the digital forensics tool and upon the digital investigation itself.  

However, as digital forensics remains in its infancy, further development is needed to aid 

the analyst who may need to assess thousands, millions, or even billions of files to 

identify digital evidence, an inordinately cognitively challenging task.   
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     Such development is promoted by proof of the impact of visualization on the digital 

forensics tool to analyze and discover evidence read digitally rather than merely 

cognitively.  Additionally heightened is the understanding of the process whereby 

visualization reduces analysts’ cognitive workload, thereby proving digital evidence 

detection more efficient. 
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Chapter 2 

 

Review of the Literature 

 

Theory and Research  

     Three primary domains of study are included in the research topic: digital forensics, 

visualization, and HCI.  Research methods cannot possibly cover every topic from each 

of the domains.  Regarding the domain of digital forensics alone, Ray and Bradford 

(2007) provided four models of digital forensics activities pertaining solely to case 

development.  The primary focus for this research is validation of types of improvements 

to digital forensics tools.          

     Garfinkel (2010) identified research challenges of digital forensics tools as evidence-

oriented design, visibility, filtering and report modeling, the difficulty of reverse 

engineering, and monolithic applications. Further, he advocated digital forensics tools’ 

displaying all evidence data in a tabular form.  Concentration upon evidence visibility 

presented by the digital forensics tool suggests that the use of a graphical interface for 

presentation of evidence will reduce the cognitive load of the investigator, for example, 

by testing a data store simulating digital evidence.   

     The ubiquity of suspected digital devices used in crime is explicable by their 

affordability and the fact that the increasingly vast storage capacity of binary data has 

outpaced the capabilities of digital forensics toolsets and the analysts who operate them.  
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These key issues, as suggested by Osborne, Turnbull, and Slay (2012), challenge 

investigations of large quantities of data yet are countered by application of information 

visualization techniques, which can highlight patterns in digital evidence by both 

technical analysts and nontechnical investigators. Graphical views condense and present 

millions of data points of interest in a single display. Such abstract presentations reduce 

the cognitive demand upon analysts to assimilate data sets vastly larger than those of 

textual displays (Osborne, Turnbull, & Slay, 2010, 2012).            

     Visualization’s objective is to aid users in the examination, organization, and 

discernment of large amounts of data (Card & Mackinlay, 1997). Through interactive 

presentations, visualization boosts the cognitive capability of the analyst to gain 

knowledge in data being studied. Interactive visualization reveals the existence of 

relationships within a digital collection of information (Card, Mackinlay, & 

Shneiderman, 1999).  Interaction between increasingly vast abstract datasets and their 

inherent attributes requires awareness and observations absorbed mainly through the 

visual sense; information is said to be attained more commonly through the visual sense 

than through all other senses combined (Card & Mackinlay; Card et al.; Osborne et al., 

2012).  Card et al. asserted that visualization improves the user’s cognition by increasing 

his or her memory and processing speed, decreasing the time required to search 

information, using patterns to enhance the detection of information, enabling inference 

operations by use of perceptual mechanisms for monitoring, and encoding information in 

an adjustable medium. Information visualization utilizes the capabilities of the human’s 

visual sense, thereby enhancing an analyst’s awareness and understanding of abstract 
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information found in the immense sets of data prevalent in today’s computing 

environments (Heer, Card, & Landay, 2005).      

     Comer, Gries, Mulder, Tucker, Turner, and Young (1989) referred to human-computer 

communication as one of the primary disciplines in the academic field of computer 

science. Today this field of study, referred to as HCI, is dedicated to design, evaluation, 

and implementation of interactive systems through education and planning. HCI is multi-

disciplined, including areas such as psychology, ergonomics, and cognitive sciences.  The 

primary role of HCI in research is to improve the human’s experience when interfacing 

with computing devices.  State-of-the-art interfaces improve the user’s cognitive abilities 

by implementation of appealing visual presentations, enabling capabilities through the 

human’s visual perception. The amount of multidimensional data in the modern 

information system challenges usability and, thus, drives current and future interface 

design (Ebert, Gershon, & van der Veer, 2012). 

     The method of study employed in this research draws upon ethnography and cognitive 

load theory. Ethnography is a strategy providing the researcher insight into the natural 

environment of the study participants (Creswell, 2009). The first phase of this study was 

conducted in order to document how textual-based tools are used in the process of 

evidence collection, and the second phase to demonstrate the application of cognitive 

load theory to produce empirical information about how a participant’s cognitive load has 

been reduced when he or she has been provided with a visualized display of simulated 

digital evidence, as recommended by Huang, Eases, and Hong (2009). 

     According to the literature, digital forensics tools have been outdone by variations of 

computing devices such as cell phones and these devices’ ever-increasing storage 
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capabilities. Enhanced capabilities of these devices to store digital evidence—combined 

with faster networking and Internet speeds—result in increasing numbers of digital 

appliance owners with affordable, high-capacity devices (Beebe, Clark, Dietrich, Ko, & 

Ko, 2011; Osborne, Turnbull, & Slay, 2010).  The aforementioned challenges prompt 

researchers to suggest information visualization methods as a means of resolution, for 

such techniques include interface designs that are adjustable as well as interactive, visual, 

quantitative representations of data featuring shapes, colors, and animation (Osborne, 

Turnbull, & Slay, 2012).  

     Information visualization aids the user in exploring, managing, and understanding the 

increasing quantities of digital information (Toker, Conati, Steichen, & Carenini, 2013).  

Shneiderman (1996) pointed to research successes in interface visualization design 

methods for structured database and textual presentations, attributing such successes to 

designers’ having created a visual language in multiple domains wherein users complete 

visual technology tasks of filtering for information-gathering. Using visualization reduces 

information overload and anxiety in the user experience in data mining and data 

warehousing, for example, in digital forensics by the capabilities of both the experienced 

and non-savvy analyst (Osborne, Turnbull, & Slay, 2012; Shneiderman).  

     Experts within the information security field of study have concluded that challenges 

that they face are also faced by experts in the field of digital forensics (Osborne, 

Turnbull, & Slay, 2010). Information visualization presents graphically to the digital 

forensics analyst a compressed view of data and sources by the millions, reducing the 

amount of cognitive effort required by analysts of textual displays (Osborne, Turnbull, & 

Slay, 2012).  Toker, Conati, Steichen, and Carenini (2013) provided details on how 
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information visualization improves user cognitive abilities in processing large amounts of 

information. Conti (2007) detailed how visualization relates to information security and 

explains that evaluation of this type of visualization is lacking. Similarly, he noted the 

lack of works detailing the impact of visualization on the digital forensics tool interface 

user community.          

     The literature fails to account for the impact of visualization upon digital forensics 

tool sets. Texts and other peer-reviewed works have been published on digital forensics, 

some addressing visualization, but none presents empirical evidence explaining how to 

reduce the cognitive workload of the analyst by use of contemporary visualization 

techniques.   

     Saltzer and Schroeder (1975) described the mechanics of providing security for 

computer-based information. Their architecture defined and detailed eight general 

practices for safeguarding information from security incidents: economy of mechanism; 

fail-safe defaults; complete mediation; open design; separation of privilege; separation of 

least privilege; separation of least common mechanism; and psychological acceptability. 

Ultimately, addressed here is psychological acceptability, an outline of the human 

interface to the system. 

     The past decade has yielded numerous frameworks and proposed models for 

improvements to digital forensics, such as those by Bhat, Rao, Abhilash, Shenoy, 

Venugopal, and Patnaik (2010) and Digital Forensic Research Workshop (DFRWS) 

(2001).  Some suggested improved graphics to enhance the analyst’s capabilities (Ayers, 

2009; Osborne & Turnbull, 2009; Richard & Roussev, 2006).  Hargreaves and Patterson 

(2012) and Olsson and Boldt (2009) documented visual representations of digital 
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evidence timelines. However, few sources explored implementation of visualization for 

forensics application.       

 

Digital Forensics  

     Discussion of visualization methods necessitates consideration of what is known about 

computer or digital forensics. Mohay, Anderson, Collie, McKemmish, and de Vel (2003) 

defined the process of digital forensics as the science of identifying, evaluating, and 

presenting digital evidence. There exists well-defined means and processes by which to 

accomplish the goals of this branch of science—as there are with any other.  Just as in 

other fields, one of the required and less glamorous steps in computer forensics is 

tediously documenting everything from whatever may have led to an investigation to how 

it has been conducted and what has been discovered.  Selamat, Sahib, Hafeizah, Yusof, 

and Abdollah, (2013) presented the framework for an investigation derived from the 

DFRWS (2001) digital forensics process categories as follows: 1) identification, 2) 

preservation, 3) collection, 4) examination, 5) analysis, and 6) presentation.  They 

defined the framework as varying by organizational policy and digital medium/device 

type.   

     The terms digital forensics and computer forensics, applied interchangeably (Peisert, 

Bishop, & Marzullo, 2008), are defined as a branch of forensic science wherein 

investigative results are used to prove or refute accusations of crime committed by means 

of digital devices. The prosecution in most criminal cases depends heavily upon physical 

evidence; in cases of digital crimes, physical evidence may be nonexistent though 
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potentially incriminating evidence is stored in digital logs or binary form (Bhat et al., 

2010; Peisert et al., 2008; Trček, Abie, Skomedal, & Starc, 2010).       

     Advances in communications and computer equipment have greatly impacted both 

personal and professional contemporary lifestyles. Commonplace services as well as 

public infrastructure depend upon these systems. As these conveniences advance, so does 

a range of malicious activities, including both natural disasters and human misuses of 

computer systems. Many daily activities have moved into cyberspace—along with those 

of the criminal element of society.  Trček et al. (2010) described how obtaining evidence 

of cyberspace crimes is particularly challenging to investigators as there has been a shift 

in criminal investigations from reliance upon witnesses; confessions; and, most 

demanding, no physical evidence—to reliance upon digital evidence.  Without physical 

evidence, digital crimes exist only as binary information found in a wide range of digital 

media such as magnetic storage devices, semiconductors, and optical media (Trček et al., 

2010).   

     With much critical evidence being found in computer logs, digital evidence is 

replacing physical evidence. Peisert et al. (2008) presented FBI findings claiming that in 

2002 half of criminal cases investigated involved a computer, and the RCFL 2013 report 

revealed that in 2012 all of its participating agents’ investigations involved a computer. In 

the recent past, digital evidence was seized in a single device whereas today evidence is 

often located on critical live networks that cannot be easily secured, for example, air 

traffic control systems (Trček et al., 2010).     
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Digital Forensics Process  

     Digital forensics’ existing methods and principal strategies aim to secure admissible 

evidence, to preserve the evidence, to identify and extract pertinent data, and to present 

documentation of interpreted computer data (Bhat et al., 2010; Trček et al., 2010; Wang, 

2007).  This fundamental procedure as a framework for digital forensics investigation is 

shown in the DFRWS technical report to have been scientifically derived.  The procedure 

is one of the first sets of guidelines outlining how to derive evidence from digital sources. 

However, digital forensics methods are developing only gradually; hence, they are not as 

mature as physical evidence frameworks, for example, those found in DNA-based 

forensics (Peisert et al., 2008; Trček et al., 2010).        

     The first step to every digital forensics investigation is acquisition of the digital 

evidence, which necessitates copying the original data and storing the digital evidence by 

following a prescribed chain of custody consisting of positive controls that formalize 

procedures in sealing, archiving, and documenting the process. Handling the evidence, 

once it has been gathered, poses other challenges, including analysts’ conforming to 

protocol regarding collection, identification, chain of custody, transportation, and storage 

of evidence (Kruse & Heiser, 2002; Trček et al., 2010).   

     Maintaining integrity of evidence necessitates protection of the evidence from 

environmental factors and keeping the evidence consistent with its source of origin. 

Kruse and Heiser (2002) stated that keeping an “electronic fingerprint” of an entire drive 

or file can be achieved by using a cryptographic technique called a hash.  The hash value 

is produced during the initial collection process: a time stamp and key validate the 

evidence’s authenticity. The same technique and algorithm used to produce the hash are 
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used to test the evidence in the future to ensure that it has retained its original form. 

Challenges such as these (and others) must be taken into account when evidence is 

gathered (Kruse & Heiser, 2002; Trček et al., 2010).          

     When acquiring evidence, an investigator must be flexible in adapting to presenting 

anomalies. Evidence that may reside in computer memory could become corrupt if the 

computer under investigation were to be shut down.  Live or volatile evidence, such as 

information residing in memory, presents a significantly greater number of challenges to 

the forensics analyst than does evidence found in non-volatile disk or flash storage 

devices. Volatile evidence cannot be cloned as can traditional, static evidence.  

Additionally, even with non-volatile evidence-gathering operations, restrictions may be 

imposed in instances of a system’s being critical for business operations so that a system 

manager or a business owner may be reluctant to shut down the system for the purpose of 

gathering evidence networks. Mobile devices provide additional challenges due to their 

networking properties that potentially change internal evidence as they move into and out 

of their coverage zones (Ieong & Leung, 2007; Mislan, Casey, & Kessler, 2010).   

     Once the evidence has been preserved, the job of the analyst is to trace the evidence 

from the victim and link it to the perpetrator. The objective is to discover a chain of 

events validating the criminal activities. Digital evidence may be used to support the 

identification of a crime committed with a digital device or to corroborate a traditional 

crime (Trček et al., 2010).   

     The analyst’s results are used to develop a presentation that clearly links the source of 

the evidence to the crime and explains how it relates to the perpetrator. An effective 

hypothesis of guilt or no guilt is derived for the purpose of convincing members of a 
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court proceeding (Wang, 2007).  Difficulties do arise in courts, which—being made up of 

lawyers and judges—often fail to understand interworking of computer systems (Bhat et 

al., 2010; Trček et al., 2010).   

 

Visualization  

     Huang, Eades, and Lai (2005) chronicled the many works that present detailed 

visualization models outlining processes, designs, and guidelines. One such model is that 

of Shneiderman (1996, 2008), who summarized visual design with a mantra: “overview 

first, zoom and filter, then details on demand.”  From the user’s perspective, the mantra 

names tasking capabilities, which may additionally include identifying relationships, 

extracting data subsets, and tracing actions, for example, undo.  These tasks may be 

specific to associated data type characteristics. Similarly, Chi (2000) described critical 

visual operations as a workflow pipeline with an underlying data structure that itself 

remains unchanged while an analytical transformation for up to 36 visualization 

techniques is performed. Graph visualization is well suited to the presentation of file 

system or relational data in visual form whereby nodes represent entities, and connections 

between the entities represent relationships with limitations (Hansen et al., 2010; Huang 

et al., 2005).  Hansen et al. stated that node analysis was first studied in 1736 by 

mathematician Leonhard Euler and revisited by Paul Erdos and Alfred Renyi, who 

developed Graph Theory in the 1950s. Figures 1 (a) and (b) illustrate simple graphs of 

relational information datasets with visualized and unwanted information filtered out for 

close analysis.    
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Figure 1. Simple graphs representing relational information (Huang et al., 2005) 
 

     Tufte (2000) observed that scientific visualization has for centuries been able to 

present in maps and statistical graphics the fundamental context of size, orientation, and 

label. He explained how to improve images with dimensions of direction, timelines that 

may be added to graphics (depicting movement), and temporal sequences (providing 

additional quantitative order to visual presentations).  

Visualization of Data 

     Visualization has for some time been looked to as a means of analyzing large amounts 

of accumulated computer data.  Ferster (2013) saw the human limitations of analyzing 

large amounts of raw data possessing multidimensional relationships. Researched 

visualization techniques are found to be useful in fraud detection and business data 

mining; even today’s social media networks, such as Twitter and Facebook, are being 

visually analyzed. Data are continually being collected in our daily lives, for example, 

during credit card transactions and telephone calls. These data are automatically 

accumulated and stored by computer systems in ever-growing volumes. Specifications of 
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these stored transactions provide multiple dimensions of information (Hansen et al., 

2010; Keim, 2002).       

     The visualization of information wherein the data are deficient of two-dimensional 

(2D) and three-dimensional (3D) properties is inherently difficult to map to digital 

displays.  However, identified display methods for visualizing information, such as x-y 

plots, line plots, and histograms, are available. Display methods are beneficial to the 

analyst of information whenever a dataset overview is needed to present graphically an 

entire single-dimensional dataset.  Although they are limited in their dimensional 

capacity and relatively ineffective in small datasets, many different techniques have been 

developed to represent graphically datasets in multidimensional fashion wherein only 

single-dimensional data are available. These methods include approaches such as parallel 

coordinate visualization and dense pixel displays’ recursive pattern techniques (Keim, 

2002).   

     Parallel coordinate visualization represents multidimensional data elements, which 

were explained by Inselberg and Dimsdale (1990) as each data dimension’s being 

represented by a vertical line and each data item represented with a horizontal polygonal 

line.  The polygonal line intersections exhibit relationships among the other pieces of 

data.  Vidmar (2007) described parallel coordinates as useful in data mining large 

datasets, frequently found in biomedical research.  Figure 2 represents a parallel 

coordinate plot and associated data set created in  Microsoft Excel. 
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Figure 2. Parallel coordinate plot and associated data set         

 

     Keim (2000) described in theory dense pixel techniques as mapping data elements by 

dimension value of colored pixels and grouping the pixels into adjacent areas belonging 

to dimensional sectors. One pixel represents one datum value, thus limiting the largest 

amount of data as those that can be presented by a certain number of pixels within a 

display screen (Inselberg & Dimsdale, 1990; Keim).                   

     Finding and correlating valuable information proves difficult by use of textual-based 

interfaces, wherein only a fraction of the data is displayed. As noted by Shneiderman, 

Dunne, Sharma, and Wang (2012), it is challenging to explore with frequent scrolling and 

make sense of millions of data items when only hundreds are presented. The prospect is 

limited for finding unknown or new hypotheses from small amounts of data. 

Visualization uses graphical technologies to present large amounts of data (Osborne et 

al., 2010). However, when data exploration using visualization techniques adheres to the 

information-seeking mantra presented by Shneiderman (1996), Shneiderman (2008), and 

Shneiderman et al.—overview, zoom, and filter—likelihood of the discovery of 

otherwise invisible data is significantly increased (Keim, 2002).  
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     Visual data exploration was explained by Keim (2002) and Ferster (2013) as needing 

the human’s flexibility, creativity, pattern-recognition capabilities, and knowledge to be 

effective in mining the volumes of storage capacity of the modern computer system. The 

visualization objective is to take advantage of the human’s perceptual capabilities in the 

discovery of useful information within very large data sets. Textual-based displays 

underutilize humans’ abilities. Visualization techniques, on the other hand, enhance 

humans’ perceptual capabilities to rapidly recognize and recall images—detecting 

changes in size, color, shape, movement, or texture—according to Shneiderman (1996).   

     When properly implemented, visualization allows the human to interact directly with 

large datasets. Even when the analyst is not familiar with the data, this direct interaction 

becomes useful in facilitating the capability to rapidly change data-exploration goals. 

These visual tools and techniques outstrip automated data-mining techniques and 

statistics, especially when the data under examination are noisy—even when the analyst 

has little understanding of intricate algorithms or statistics.  Exploration of digital 

information comprised of large datasets is faster when presented visually and often 

produces better results (Keim, 2002; Shneiderman, 1996). 

     Palomo, North, Elizondo, Luque, and Watson (2012) employed visualization to 

analyze large data sets of network traffic logs to discover both human and machine 

anomalies. Their work presented two visualizing techniques to analyze data, replacing 

often error-prone and time-consuming manual processes. Information flows in the human 

memory as a three-part system: 1) sensory registers receive information such as the visual 

and auditory, 2) short-term memory processes the information as strategies and decisions 

in working memory; short-term memory is limited in capabilities, and 3) long-term 



30 
 

 
 

memory stores information to be retrieved for later use (Atkinson & Shiffrin, 1971).  

Huang et al. (2009) viewed the working memory as being responsible for processing a 

limited number of cognitive tasks.   

     Visualization provides cognitive support to data analysts, according to Huang et al. 

(2009). This support—visual representation of data—reduces cognitive process 

workloads by reducing the demand on the human memory, visualization functioning as 

an (external) extension of the memory.  

 

Visualization and Forensics  

     Shneiderman, Plaisant, Cohen, and Jacobs (2010) described visual presentations as 

being easier to comprehend than textual displays. Interactive, compact presentations 

capable of visual data-mining enable the human perceptual system to answer even those 

questions that have not been asked.  Increased volumes of data increase demands on 

investigators in event correlation in digital forensics evaluations (Osborne & Turnbull, 

2009). Visualization techniques have the potential to integrate human perception into the 

data exploration process of large datasets, according to Keim (2002). As previously 

mentioned, digital forensics tools are available both commercially and as open-source 

products. EnCase forensic software is a commercially available tool touted by its 

producer as the premier computer forensics application on the market. EnCase enables 

investigators to explore and preserve evidence in file format. The open-source tool TSK 

provides a library of command line tools for the investigation of file system data useful to 

finding evidence. The Autopsy Forensic Browser incorporates a graphical interface to the 

command line digital investigation tools in TSK. Together, Autopsy and TSK allow a 
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computer file system to be investigated. However, the Autopsy graphical interface, 

similar to EnCase, is a textual-based interface with limited capacity for presenting large 

amounts of information to the investigator (see Figure 3) (Sleuth Kit, 2012). Augmenting 

the digital forensics interface with visualization increases the investigator’s working 

memory, thus increasing processing capacity.   

 

Figure 3. Sleuth Kit-Autopsy interface Digital Forensics Application—textual-based 

interface (2012). 

 

     Jones (2008) pointed out that gathering digital forensics data for a particular case is 

both time-consuming and expensive.  However, he cited work by other researchers, such 

as Conti and Dean, who demonstrated how visualization increases the analyst’s efficiency 

by speeding up the process of file content examination. He explained that visualization 

interface techniques provide the opportunity for previously overlooked or undiscovered 

information to be identified.  Additionally, Jones held that visualization is capable of 

aiding in piecing together fragments of data stored in computer memory.                



32 
 

 
 

     The basic graph as seen in Figures 1 a) and 1 b) is limited to only a few hundred nodes 

at best (50 shown here). However, information visualization applications often need to 

address thousands or millions of nodes. Two main techniques to overcome the limitation 

in node presentation were identified by Huang and Eades (1998) as clustering and 

navigation. Clustering creates super nodes that summarize like nodes. Navigation 

requires interactivity between the graphic and the user. Shneiderman (1996) and 

Shneiderman et al. (2010) explained that the interactivity allows the user to zoom in for 

analysis of a subset of nodes. For demonstration, used in this report is the open-source 

tool NodeXL, an extension of the Microsoft Excel spreadsheet tool used for network 

analysis for learning, concept presentation, and visualization (Hansen et al., 2010).  

Figures 4 a) and b) exemplify how a complete dataset and a subset of nodes may be 

presented graphically. Fu, Hong, Nikolov, Shen, Wu, and Xu (2007) explained how 

malicious intrusion upon a corporate email system is recorded and traceable in server log 

files for analysis. However, text-based log events may be made to expose graphically 

results that exhibit unexpected findings, which—when introduced textually—may 

actually go unnoticed or may otherwise be discounted as noise. Huang, Zhang, Nguyen, 

and Wang (2011) employed the clustering type of visualization as an experiment showing 

effective use for analysis of network security. Their experiment displayed a data file 

representing 4100 spam emails that originate from 450 locations. Clustered structures 

demonstrated graphically were meant to enable the analyst to identify unusual events and 

certain types of spam email attacks, spam emails being reviled for clogging email 

systems and robbing networks of bandwidth capacity.     
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     The graphical techniques presented by Huang et al. (2011) for evaluating spam email 

datasets form the bases for the thesis in this work: digital forensics tools benefit from the 

addition of interactive graphical displays to their interfaces. Relational properties of file-

centric digital evidence—such as file type, creator, size, date created/accessed, etc.—lend 

themselves neatly to graphical presentations. According to Osborne and Turnbull (2009), 

those graphical enhancements provide an abstract representation of data that increases the 

analyst’s capacity to obtain knowledge. Moreover, data abstraction increases the 

cognitive absorption of information while amplifying relationships within the datasets.  

Filtering easily removes or masks irrelevant data while enhancing or highlighting 

information of interest. 

     Digital Corpora (2011) provides randomly generated file sets for researchers of 

simulated digital forensics evidence. These files, meant for testing tools and practicing 

digital forensics analysis, are arranged with the relational attributes of filename, last 

modified, date, time, size, and description. Figure 4 a), again using NodeXL, visualizes 

digital forensics evidence as a dataset of 1000 files simulated by Digital Corpora. In 

Figure 4 b) the file set has been filtered to display only those files with attributes of 

computer graphics and utility. Lastly, Figure 5 introduces details on demand by 

presenting information about a single file from the simulated investigation. 
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a) Entire evidence dataset of 1000 files is 

visualized. 
b) The dataset appears filtered, rendering only 

those files of interest. 
 

Figure 4. NodeXL visualization of simulated digital forensics evidence (Hansen et al., 2010). 

 

 

Figure 5. NodeXL detail on demand of a single simulated digital forensics evidence file (Hansen 

et al., 2010). 

 
     Schrenk and Poisel (2011) stated, “Digital crimes are increasing, [sic] so is the need 

for improvements in digital forensics. Visualization allows for displaying big amounts of 

data at once, so a forensic investigator is able to maintain an overlook about the whole 



35 
 

 
 

case” (p. 758). Peisert et al. (2008) presented FBI findings revealing that in 2002 half of 

the cases investigated involved a computer, and RCFL (2013) reported that all 2012 

investigations involved a computer.  

     As computer software improves with advances in display resolution, increasingly 

significant becomes the question of how visual presentation improves the effectiveness of 

the interface over textual-based information. Research findings show how digital 

forensics tool interfaces incorporating these visualization techniques improve the 

capability of the investigator to identify and gather digital evidence more effectively 

during the analysis process of a criminal investigation.  Today’s digital forensics 

investigative technologies are over-reaching the investigator’s ability to identify evidence 

rapidly and efficiently from digital devices suspected of having been used during the 

execution of a crime. Previous research has showed how the advancement of digital 

forensics tools improves investigations, especially when the event is time-sensitive 

(Osborne & Turnbull, 2010; Richard & Roussev, 2006; Shneiderman, 1996).  

     Visualization in computer applications provides humans the ability to take advantage 

of their inherent physiological capability to process large amounts of information 

visually.  Visualization techniques and technologies were applied in multiple domains, 

including medical, military, and business (Krasser, Conti, Grizzard, Gribschaw, & Owen, 

2005; Osborne & Turnbull, 2009). Krasser et al. proved how IT security tools, such as 

IDS, which generate large amounts of network security data, waste humans’ resources, 

capabilities, and time in effectively analyzing large numbers of network traffic patterns.  

Large sets of digital forensic data may be better examined through visualization, enabling 

the investigator to rapidly scan these data sets. 
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     Visualized information processes graphic evidence, aiding the analysis phase of an 

investigation by identifying that which may be suitable for conveyance to a colleague or 

to a court of law. Other graphical techniques may potentially be used to examine 

simultaneously multiple devices containing evidence, such as mobile phones and other 

forms of portable digital storage devices. Similar techniques were successful in the 

domain of security to visualize large amounts of network data or logging information 

found in firewalls. The increased volumes of data and number of devices require 

enhanced capabilities of tools, and analysts require new techniques in evidence discovery 

(Osborne & Turnbull, 2009).       

     Entire datasets of digital evidence can be prototyped, presented, and filtered to provide 

the user with interactive details on demand about digital evidence for analysis. These 

prototyped principles follow Shneiderman’s (1996) information-seeking mantra, 

incorporating visualization into a digital forensics frontend application. Osborne et al. 

(2010) chronicled digital forensics tools as critical in providing analysts the utility for 

detecting and discovering digital evidence of a crime. Increased volumes of data increase 

demands on investigators in event correlation and in analyzing other relational attributes 

found in digital evidence (Osborne & Turnbull, 2009).  Visualization techniques have the 

potential to integrate human perception into the data exploration process of large data 

sets, accordingly reducing the burden of analysis on the investigative practitioner (Keim, 

2002; Osborne & Turnbull).   
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Summary 

     A considerable amount of research detailed digital forensics tools and processes.  

Additionally, several researchers called for the improvement of digital forensics tools 

through the use of visualization (Hoelz & Ralha, 2013). Visualization design principles, 

when applied to the software interface, offer capabilities to present very large datasets to 

the user, bringing resolution to multi-dimensional information (Shneiderman, 2008; 

Tufte, 1990). 

     The hypothesis tested by this research is that the cognitive load of the practitioner is 

reduced whenever visualization has been integrated into the digital forensics application 

interface.  Huang, Eades, and Hong (2009) validated the premise that cognitive load is 

consistently reduced in applications into which visualization has been integrated, proving 

such applications superior to textual-based interfaces.  In this study ethnographic research 

identifies the primary duties of the digital forensics analyst during the analysis phase of 

investigative discovery while cognitive load is measured for purposes of comparison of 

mental workloads as reported in the user experience of the visualized interface and the 

textual-based interface. 

     This research contributes to the body of knowledge by validating a method of 

measurement and by providing empirical evidence consistent with theory introduced and 

hypothesis asserted in this study: the use of the visualized digital forensics interface 

provides a more efficient workload for the analyst, saving labor costs and compressing an 

analyst’s time in the digital investigation discovery phase.  
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Chapter 3 

 

Methodology 

 

Overview of Research Methodology 

     This study is based on a mix of ethnographic observations and cognitive load 

measures. Traditional ethnography as described by Fetterman (2010) was established 

within the social sciences for research to be conducted in a natural setting rather than 

under simulated conditions.  Fetterman pointed out that ethnography establishes the 

context of the human environment as it occurs in nature. In their study of technologies, 

Ormerod et al. (2005) described ethnography as an effective way to discover best 

practices and common patterns in work processes: the perspective of research participants 

ethnographically describes the social context in their settings. Although such studies have 

been conducted for many decades, these types of studies are not problem-free. Presenting 

study findings to system designers, for example, has proven to be difficult because 

findings are often not orderly or clearly stated; erratic options prove difficult for 

engineers to understand. Such problems result from misunderstood observations or 

disruption of normal operations (Hughes, King, Rodden, & Andersen, 1995). 

     Cognitive load theory (CLT) is based on the principle of cognitive architecture that 

working memory is limited.  According to Paas, Tuovinen, Tabbers, and van Gerven 
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(2003) an appraisal of cognitive load may be accomplished by measuring “mental load, 

mental effort and performance” (p. 64).  Both analytical and empirical methods have 

been researched in measuring cognitive load.  Sweller (1988) used analytical methods 

such as expert opinion and task analysis to measure cognitive load. Empirical methods 

using rating scales similar to self-ratings are described by Paas et al. (2003) as the context 

for CLT whereby people report with accuracy their mental burden.  Huang et al. (2009) 

defined cognitive load—also referred to as memory demand—as a measure of the 

required amount of cognitive capacity needed to perform a given chore.      

 

Specific Research Methods Employed 

     This study followed ethnographic study guidelines—merged to measure the use of 

cognitive resources of the participants. Guidelines for an ethnographic study, according 

to Rose, Shneiderman, and Plaisant (1995), include preparation, actual field study, 

analysis, and reporting. Preparation includes identifying specific culture and policies of 

the study participants’ organization, becoming accustomed to the digital forensics tools 

and the tools’ history within the organization, preparing goals and questionnaires for the 

study, and gaining physical access to conduct the study. The field study itself—through 

observation or interviews in the workplace or home rather than a laboratory setting—is 

meant to develop amicable relationships among the researcher, managers, and users. The 

researcher must uncover from the study participants’ surroundings, environmental clues 

and must document findings.      

      Cognitive load was self-measured by the study participants’ using Paas’ (1992) 

seven-point Likert scale in context for the CLT.  The scale of numerical values, 
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distributed from one to seven, was used to record perceived mental effort in increments 

from “very low mental effort” to “very difficult.”  Paas et al. (2003) reported that subjects 

were quite capable when reporting their own expended mental effort.  Although 

suggestive, this scale has been found to be reliable, non-intrusive, and sensitive to 

variations in mental effort, as documented by Huang et al. (2009).              

      Analyzing the findings required the assembly and aggregation of testing results by 

calculating the statistical values from the study’s CLT findings.  Textual data were 

compiled by group or class as comments, needs, or suggestions. Rose et al. (1995) 

recommended that numerical information from Likert self-assessments present the mean 

of the tasks by the relevant systems tested and reviewed for patterns. The results may be 

seen in Appendix A of this document.           

      Rose et al. (1995) identified finalization of the process as interpreting observations 

and distilling the goals and procedures found by the study. Variations upon reporting 

must consider audiences and their needs. Finally, reports were to be prepared and results 

presented.        

      The aforementioned process of preparation and organization seems requisite for any 

study. However, in this instance, a need prevailed to reevaluate the series of actions in 

order to achieve results for individual circumstance. Careful modeling of how the 

research is conducted positively influences both users and managers. Attention to details, 

such as use of the vernacular in communication, establishes trusting relationships within 

the observed community.  See Appendix B for the study process flow. 

     The accumulation of findings—participants’ comparison of textual and visualized 

interfaces—defined their accounts of differences and likenesses between interface types. 
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A summary and final report explaining that the hypothesis (H) of an improvement 

employing the visualization approach has been realized concludes the study, as 

prescribed by Saraiya, North, and Duca (2010).   

 

Instrument Development and Validation 

     Shneiderman and Plaisant (2006) suggested that the ethnographic strategy holds many 

benefits when thoughtfully planned and executed, for instance, by building study 

participants’ trust and confidence in the researcher. With the researcher being resident for 

the study, camaraderie among the subjects and researcher naturally develops, providing 

meaningful input, in this case, for software application interface design. The 

abovementioned ethnographic evaluation guidelines by Shneiderman and Plaisant relate 

to an interface redesign study conducted by Rose et al. (1995).  

     Research conducted by Shneiderman and Plaisant (2006) presented “multi-

dimensional in-depth long-term case studies (MILCs)” of information visualization. The 

MILCs are an ethnographic method that establishes evaluation goals for visualization 

research studies. With studies differing, MILC guidelines are meant to be flexible to 

accommodate the individual research project. By presenting an entire dataset of evidence 

to be examined, this study (focusing on visualization) evaluated how the digital forensics 

application with a textual-based interface may bolster the digital forensics analyst’s 

abilities.  Following the basic information exploration approach outlined by Shneiderman 

(1996), the procedure displayed what was initially text-based information, first, 

presenting an overview of the entire dataset; second, providing an interface capable of 

zooming and filtering for items of interest; and then discovering the ability to drill down 
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to specific data for details.  For this study—to gather information about understanding 

and refining digital forensics tools and improving the achievements of the analyst—

MILCs seem well suited. See Appendix B for the study’s process. 

 

Population  

     Participants were selected according to minimum standards set for this study: 1) 

subject matter experts (SME) or digital forensics experts and 2) those of the first-

responder community, such as network administrators and security professionals. 

     Participant SMEs of the first phase of the study were an ethnographic research group 

whose input helped to develop the primary discovery tasks in how to perform the digital 

forensics investigation. The SMEs group was comprised of digital forensics specialists 

who are experienced in law enforcement or other investigative professions wherein 

digital forensics is their primary duty.  Additionally, according to the U.S. Bureau of 

Labor Statistics (2012), private detectives or investigators of computer crime are college-

educated or have completed dedicated on-the-job training.  Pendergast (2010) described 

digital forensics professionals as experts in operating systems and may have a specialty 

niche area such as mobile devices. Furthermore, Pendergrast reconized professional 

digital forensics certification as a differentiator when searching for employment and a 

confidence booster for the practitioner.  The task development SME study—comprised of 

a small sample size, two or three participants—emulated a model by Hughes, King, 

Rodden, and Andersen (1995), wherein few participants were engaged in an ethnographic 

study.                  
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     For the second part of the study, a group of first-responders established an 

experimental group. These participants modeled the work of Shneiderman and Plaisant 

(2006), employing various levels of skill and education in order to avoid homogeneity in 

the result set. Specifically, the first-responders were selected according to U.S. 

Department of Defense (DoD) (2012) workforce guidelines for persons who collect data 

from intrusion detection systems, firewalls, and network traffic and system logs—using a 

variety of tools to analyze events that occur within their environment. The first-

responders’ minimum qualifications were two years’ experience using analysis tools 

tactics, techniques, and procedures for evaluating computer event information.  

Additionally, these first-responders hold, minimally, professional certification—such as 

A+, Security+, Network+, Certified Information Systems Security Professional (CISSP), 

or Systems Security Certified Practitioner (SSCP)—as outlined in guidelines for 

personnel with privileged system access in the U.S. DoD (2012) workforce.  These 

participants’ having a general knowledge of the legal aspects of digital evidence 

collection (20 first-responders forming an experimental group with similar skill sets) 

ensured effectiveness of the evaluation, advised by Cohen (1988). 

     Criteria for the first-responders to participate in this study were that they be network 

administrators, as modeled by Endicott-Popovsky and Frincke (2007); first-responders in 

the digital forensics evidence-gathering processes; and information security professionals 

especially trained in IDS and digital forensics. Shneiderman and Plaisant (2006) 

suggested that domain knowledge levels of participants vary to provide contrasting 

perspectives. Initial testing was scheduled face-to-face and in advance with selected first-

responders for tool introductions and testing.  If clarification was not needed, subsequent 
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interviews were not conducted.   The user community defined success in various ways 

when accomplishing their assigned tasks.  In this case, a variety of participants from the 

evidence-gathering community provided that diverse perspective.      

     In order to collect data for this research, a simplified version of the MILCs was 

implemented in the following steps: 

1. The University Institutional Review Board Memorandum provides approval for the 

protocols to be utilized while testing human subjects for this study (see Appendix C).  

2. Specifications for the research were outlined and distributed in advance to the 

participants in the Nova Southeastern University Institutional Review Board (IRB) 

consent for participation form (see Appendix D).    

3. Research was conducted. 

4. Three SMEs with specific qualifications provided input through ethnographic 

interviews related to digital forensics.  

5. Experimental group of 20 first-responders answered questionnaires (see Appendix E).    

6. SME interviews and first-responder questionnaires were aggregated with findings. 

 

 

Research Design 
 

     This research tested the hypothesis that the digital forensics analysts operate at 

reduced cognitive load, yet demonstrate improving performance, when using an interface 

employing visualization rather than a textual-based interface.  

     The ethnographic segment of this study provided the method to answering research 

question one, seen below, through interviews with three SMEs.  As the portion of the 

study measuring cognitive load contrasted visualized and textual-based applications, each 
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of 20 first-responder participants provided answers to the following research questions 

two and three.      

1. What are the investigator’s primary tasks for evidence identification while operating a 

traditional digital forensics tool set?  

2. What is the cognitive load of an assessment of human working memory beyond just 

time and accuracy measures while performing ethnographically discovered 

techniques of a predefined set of tasks to establish a baseline of evidence 

identification?  

3. What efficiency level may be attained for a digital investigation improved for the 

benefit of analysis by application of visualization to predefined tasks?  

     Each SME and first-responder participant spent minimally one hour providing input 

for the study.  Some spent up to one and a half hours providing input.  

 

Arithmetic Mean 

     The arithmetic mean is the most widely used method for testing how a population 

leans toward a hypothesis, according to Cohen (1988).  The sample of n cases of a 

population, randomly selected, is tested to form around a mean for a researcher to prove 

that a null hypothesis (H0) exists.  In the case of this research, n cases or how many first-

responders are needed for testing to prove H0.  H0 for this study is affirmed if there is no 

cognitive load difference between the mean of the user experience of the textual-based 

interface digital forensics tool set (mA) and the visualized (mB) or H0: mA  - mB = 0. 

However, research significantly rejecting H0 proves that a phenomenon of the hypothesis 
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(H) exists or, in this case, that the visualized display reduces the cognitive load on the 

tested mean of the population, stated as (H0: mA  - mB ≠ 0) (Cohen, 1988).                    

     In order for H to be acceptable and ensure that the occurrence is not by chance, there 

must be a statistically significant departure from the mean of H0.  The criteria of 

significance set for rejecting H0 is referred to as the alpha level (α).  According to Eng 

(2003), α is most often set to .05 or 5 %.  The smaller the α, the larger is the sample or n 

cases needed for a credible study result.  With α set to .05, the risk is small, the risk being 

false rejection of H0 5 % of the time—called a type I error.  The selected beta (β) level 

provides protection against the type II error or false acceptance of H0.  Traditionally, β is 

set by the statistical power of (P) where (P  = 1 – β).  Araujo and Frøyland (2007) 

considered .80 or 80% a suitable P or β of .20 or 20%.       

 

t-test     

     The t-test was selected as the experimental design for testing H0 in this study.  Simply, 

the t-test compares two means, often in before-and-after studies, either independently or 

dependently.  This type of testing contrasts two means to see if they differ significantly 

from one another (Urdan, 2010).  The most widely used t-test is the independent test 

whereby, for example, grade observations of 50 girls and 50 boys in an elementary school 

are compared. Another type of t-test, the paired or dependent sample test, was used in this 

study.  Urdan described the dependent t-test as testing determining the difference in the 

means to check a sample taken from a single population. In this case, cognitive load from 

a sample population utilizing both a textual-based display and a visualized display was 

tested as participants performed a given task, creating a distribution of scores.  Both pre-
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test and post-test averages on a single sample may generate a distribution of scores 

(Urdan).      

     The probability of the rejection of H0 in this study shows a reduction in cognitive load 

for the participants rather than showing a more centralized distribution.  In normal 

distributions, whenever the mean or median may fall on either side of the distribution, a 

two-tailed test is conducted.  In this case, a directional relationship was expected; 

therefore, the experiment relies upon a single-tailed test.  In order to compensate for a 

skewed distribution where the mean is found on a single side of the resulting distribution, 

the significance of α for accepting or rejecting H0 is halved or changed from .1 to .05 or 

5%, ensuring a strong argument for rejection (Prajapati, Dunne, & Armstrong, 2010; 

Urdan, 2010).           

 

Sample       

     In order for first-responder participants to validate this study, the sample size 

estimation and power analysis required a sample sufficient to detect real effect of the 

research (Prajapati, Dunne, & Armstrong, 2010).  Cohen (1988) described standard effect 

size “ES index” as small, medium, and large or d value. Cohen’s conventional framework 

for power recommends ES be set .2 for small, .5 for medium, and .8 for large.  The 

smaller effect sizes require a larger sample size.  Cohen provided tables as a primary 

utility in developing sample size, employing the aforementioned factors: significance 

criterion value of α set to .05; the ES index of a large d value set to .80; and the power of 

P value set to .80. See the α of .05 set for the table demonstrated in Table 1, depicting 

how Cohen developed a sample size n of 20—also utilized in this study.        
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Table 1. Power of t-test Sample Size (Cohen, 1988)  

 

Data Collection Procedures 

     Immediately following completion of each of the ethnographically discovered tasks, 

the first-responder participants were asked to complete a self-report using a questionnaire 

designed to assess their invested mental effort (Paas & van Merriënboer, 1994).  In order 

for the participants to maintain anonymity, each study subject’s questionnaire was 

distinctly marked by an assigned ID number (see Appendix E) based on the order of their 

testing—one through 20.  Participants were questioned according to a Likert scale to 

assess and report mental effort required to perform the assigned tasks. The seven-point 

Likert response scale ranges from 1-2 (low mental effort) to 3-5 (neither easy nor 

difficult) to 6-7 (very difficult).  Subjective ratings of cognitive load were chosen because 

they are easy to implement, do not interfere with the primary task, and have been used 

successfully in previous CLT research (Paas & van Merriënboer). See questionnaire in 

Appendix E.  
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Resources 

     Resources of facility, equipment, and software were provided by the researcher 

whereas resources needed for the deployment of a prototype application were acquired as 

cost-free, open-source materials.  The three SMEs and 20 first-responder human 

participants were not compensated.   

 

Summary  

     The research design reflects a method based on CLT to present empirical evidence 

demonstrating the hypothesis (H) in determining that the use of visualization in the 

identification of digital evidence reduces the digital forensics application user’s cognitive 

load.  The goals of this study are explicitly defined in research questions as recommended 

by Eisenhardt (1989), which lay out the specific path for the researcher to focus efforts.  

Ethnographic interviews of three SMEs were performed in this study to develop 

evaluation tasks of primary file-centric activities found in evidence discovery of a digital 

forensics investigation.  These primary investigative activities were the base for the 

evaluation measures in comparing the visualized and textual-based digital forensics 

applications.  This research adopted the self-appraisal aspect of a system interface 

determined by users’ observation levels of cognitive load patterns (Rose et al., 1995). 

     A t-test as described by Cohen (1988), the design methodology used in this study, is 

intended to compare two sample means testing for the null hypothesis (H0). In order to 

reject or accept H0 or H there must be a significant set criteria or alpha level (α) of 

deference when testing two means—in this case, the mean cognitive load when 
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comparing the visualized and textual-based digital forensics applications.  To ensure this 

high level of reliability of confidence, this study’s appropriate sample size subject 

population selection is set to 20, following the procedure for a power analysis, as 

suggested by Cohen.        

     Data collection for this test was achieved by compiling the results of 20 first-

responders performing the primary file-centric investigative tasks on both the visualized 

and textual-based digital forensics applications.   Following execution of each of the 

ethnographically discovered tasks, the first-responder participants were asked to complete 

a self-report using a questionnaire designed to assess their invested mental effort (Paas & 

van Merriënboer, 1994).  The results were compiled and the mean comparisons tested for 

the null hypothesis (H0).     
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Chapter 4 

 

Results 

 

Research 

     The basis of this research is the premise that the cognitive load of the digital forensics 

analyst can be reduced by his or her use of a visualized display rather than a traditional 

textual-based presentation. To test this hypothesis, as discussed in Chapter 3, the research 

was conducted by means of two separate methods and two groups of participants.  To 

preserve the privacy of those supporting the study, each was assigned a participant ID 

provided by the researcher as indicated on an associated questionnaire (see Appendix E).    

     The first group of participants were SMEs, experts in the field of digital forensics, 

possessing at a minimum a professional certification of CCE.  Based on the CCE, the 

SMEs are product tool vendor neutral and have proven to be proficient in the digital 

crime examination and analysis. The SMEs participated in ethnographic interviews for 

the purpose of generating the primary tasks to be employed for the second group of 

participants.  The SME participants hold various positions within the digital forensics 

community: policy developer, department director, and malware reverse engineer. 

However, each is an expert in the investigative field of digital forensics and has 

performed many digital forensics criminal investigations. 
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     Tasks resulting from the SME ethnographic interviews provided a list of items applied 

as part of a simulated criminal investigation performed in this study. The identified tasks 

are those file-centric activities often performed by digital investigators, see Table 2.  

 

Task Task Description 

Task 1 Locate files with the .jpg extension 
Task 2 Locate the file named Kittie.jpg 
Task 3 Date range to establish timeline 
Task 4 Identify the size of a directory structure 
Task 5 Identify the largest file 

 

Table 2. Task List  

 

     The second group of study participants were tasked to test the role of the first-

responders of a digital investigation for this study.  To qualify, this group of study 

subjects all perform some level of network administration in their daily work activities, 

being persons who collect data from intrusion detection systems, firewalls, and network 

traffic and system logs to analyze events occurring within their environment. The first-

responders’ minimum qualifications were two years of experience analyzing computer 

event information and holding professional certification—such as A+, Security+, 

Network+, Certified Information Systems Security Professional (CISSP), or Systems 

Security Certified Practitioner (SSCP). The tasks performed by the subjects are those 

often accomplished by digital investigators during an actual computer system 

examination, mentioned previously as having been identified by the SME study group.  

The first-responders examined a flash drive simulating a storage device utilized by a 

perpetrator as part of a criminal act.     
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     Testing one’s cognitive load is accomplished simply by the test-taker’s assessing the 

difficulty of a task performed.  The research shows that individuals being tested provide 

the best measure for estimating cognitive load (Paas, 1992). The first-responders 

established the experimental group. These participants modeled the work of Shneiderman 

and Plaisant (2006), that is, employing various levels of skill and education in order to 

avoid homogeneity in the result set. Furthermore, these participants possess general 

knowledge of the legal aspects of digital evidence collection.                

 

Data Analysis 

     The experimental group of 20 participants with similar skill sets ensured effectiveness 

of the evaluation (Cohen, 1988).  Data were collected as a dependent-sample t-test of 

subjects’ repeated measures to assess the cognitive load induced when answering the 

questions found in the questionnaire (see Appendix E) and measured against the dataset 

for each of the requisite digital forensics applications (two conditions on one measure). 

The applications, one visualized and one textual-based, provided the prototypes for the 

experiment. Final testing results are that the mean varies between the paired/matched 

observations, differing significantly from zero. That is, the dependent-sample t-test 

procedure detected a significant difference between the means of the two variables, in 

this study the variables being the subject results from operation of the opposing 

applications. The participants were assessed under the dual conditions for a single task, 

paired on the questionnaire developed from aspects of Shneiderman’s (1996, 2008) visual 

design mantra.  

     The evaluation’s t value (t = 2.55) being above the critical value of t0 (t0 = 1.79)  
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supports the hypothesis (H) that cognitive load on the digital forensics investigator is 

reduced significantly when operating a digital forensics application into which has been 

incorporated a visualized user interface.  Conversely, the null hypothesis (H0) was not 

supported: no change or an insignificant t value (t <= 1.79) occurs in the cognitive load 

for an analyst operating a visualized user interface as compared to cognitive load while 

operating a textual-based interface. The assessment concluded in the difference in mean 

values or delta (δ), which must result in a value of greater statistical significance than the 

confidence level alpha (α) of .05 established for this study in Chapter 3 in order to reject 

H0.  The testing results’ raw data are recorded in the tables in Appendix A and the study’s 

(t) distribution is detailed in the sections to follow.   

 

Findings 

     The findings result from data collected from the 20 first-responder subjects.  First-

responders are similar in that they met minimum computer information system 

qualifications for investigating system logs—in addition to meeting experience and 

professional certification requirements. Participant demographics—such as geographic 

location, gender, age, or education—were not considered in this study.  

     The study results are based on the impacted participant cognitive load as measured by 

five tasks performed and judged by the participants, see Table 2. The measures are listed 

on the study questionnaire’s seven-point Likert scale, ranging from “low mental effort” 

(1) to “very difficult” (7); the questionnaire is available in Appendix E of this work.  

Each first-responder participant was given study instructions, shown in Appendix F, for 

step-by-step performance of each of the five tasks on the identical datasets by utilizing, 
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independently, both the SequoiaView visualized analysis tool and The Sleuth Kit digital 

forensics tool set; instructions also explain the study’s purpose and specify criteria for 

participant selection.  

          The cognitive workload impact differential between the textual-based and the 

visualized digital forensics tools on the 20 study participants represents a measure of 

difficulty in their performance of the five investigative tasks required by this study, see 

Table 2.  The study participants answered a total of 14 questions referencing the 

applications’ presentation following performance of each of the investigative tasks 

according to the instructions guide for this study.  The mean of The Sleuth Kit results is 

2.49 and that of the SequoiaView is 2.08 on a scale of one to seven, a reduction of 0.42 or 

nearly a 16% reduction in workload. The final differential value of the digital forensics 

tools’ calculated cognitive load mean of all of the study responses’ comparative results is 

recorded in the histogram, Figure 6, with the vertical axis representing the degree of 

difficulty as found in the respondent questionnaire, see Appendix E.  

 

Figure 6.  Mean Comparative Results      
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Measuring Mental Effort  

     The method for measuring mental effort empirically was accomplished by the study 

participants’ self-rating the amount of effort required to perform the given tasks for the 

study. The participants’ self-rating activity consisted of answering, in order, each of the 

14 questions, following task completion, to register their perception of how easily they 

could identify patterns and clusters of information visually from the given application’s 

presentation.  The presentations represented a simulation of a suspected file system found 

on a thumb drive consistent with an investigation’s file-centric properties. The rating 

scales provided a report of mental burden in locating suspected files from a perpetrator’s 

illegal activities and the amount of cognitive capacity needed to perform given chores.  

     The sum mean value of all results from the participant surveys for each of the task 

area’s cognitive load mean values is presented in Table 3.  Each of the deltas (δ) for the 

task comparisons between the applications support the hypothesis (H) with each of the 

resulting factors demonstrating that the visualized application reduced the workload with 

each task performed. Proportionately, these factors, when evaluated, determine the 

impact of visualization in reducing the cognitive workload of the analyst.  

Task Sleuth Kit - μ1 SequoiaView – μ2 Deltas (δ) = μ1 – μ2 
Task 1 2.86 2.10 0.76 
Task 2 2.70 1.82 0.88 
Task 3 2.71 1.89 0.82 
Task 4 2.60 2.00 0.60 
Task 5 2.71 1.90 0.81 

 

Table 3. Task Mean Values 

     The histogram (Figure 7) displays the distribution of mean values for each task of all 

results from each of the participant surveys assessing the cognitive workload on the 
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vertical axis representing the degree of difficulty by the interface under test as found in 

the respondent questionnaire, see Appendix E. 

 

 

Figure 7. Total Subject Mean Difficulty by Task and Interface  

     The questionnaire results represent distributed values based on the respondents’ 

perception of cognitive impact as related to visualization principles employed by the 

application under test.  When mean values were compiled, the deltas (δ) from survey 

questions corresponded to the applications, supporting the hypothesis (H) with each 

visualized application’s resultant mean values in the reduced mental workload among the 

first-responders across all questions.  Proportionately, these factors, when evaluated, 

determined the impact of visualization in reducing the cognitive workload of the analyst; 

questionnaire survey questions’ mean value and correlative-result-related deltas (δ) are 

presented in Table 4.   
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Question Sleuth Kit - μ1 SequoiaView – μ2 Deltas (δ) = μ1 – μ2 
Question 5 2.63 2.05 0.58 
Question 6 2.93 2.82 0.11 
Question 7 2.61 2.06 0.55 
Question 8 4.3 1.75 2.55 
Question 9 2.62 2.05 0.57 
Question 10 2.4 2.01 0.39 
Question 11 2.56 2.15 0.41 
Question 12 2.44 2.2 0.24 
Question 13 2.74 1.96 0.78 
Question 14 2.74 1.62 1.12 

 

Table 4. Survey Questions’ Mean Value and Correlative-Result-Related Deltas (δ)  

      The histogram (Figure 8) displays the distribution of values for degree of difficulty 

total mean by the interface under test for cognitive workload reported by first-responder 

subjects 1-20.  Data showing the cognitive load mean for subjects by interface for each 

task are shown in Table 5.   

 

Figure 8. Total Subject Mean by Interface  
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1                SequoiaView 1.36 1.58 1.36 1.43 1.43 1.43 
1                Sleuth Kit   1.86 2.28 1.93 2.14 2.07 2.06 
2                SequoiaView 2.14 1.64 2.21 2.07 1.86 1.98 
2                Sleuth Kit   3.14 3 2.86 2.5 2.43 2.78 
3                SequoiaView 2.29 2.07 2.29 1.86 1.86 2.07 
3                Sleuth Kit   3.93 3.93 3.86 3.57 4.21 3.9 
4                SequoiaView 3.36 3.21 3.79 3.43 3.64 3.49 
4                Sleuth Kit   4 4 3.79 3.64 3.86 3.86 
5                SequoiaView 2.43 1.71 1.71 1.71 1.71 1.86 
5                Sleuth Kit   3.5 3.57 3.79 3.57 3.57 3.6 
6                SequoiaView 1.5 1.43 1.43 1.43 1.43 1.44 
6                Sleuth Kit   3 2.43 2.57 2.21 2.5 2.54 
7                SequoiaView 4.36 4.36 4.14 4.29 4.14 4.26 
7                Sleuth Kit   2.79 2.57 2.64 2.21 2.21 2.49 
8                SequoiaView 2.57 2.21 2.07 1.86 2.07 2.16 
8                Sleuth Kit   2.5 2.21 1.79 2 2 2.1 
9                SequoiaView 1.93 1.79 1.36 1.5 1.64 1.64 
9                Sleuth Kit   1.64 1.29 1.14 1.43 1.5 1.4 
10              SequoiaView 1 1 1 1 1 1 
10              Sleuth Kit   1 1 1 1 1 1 
11              SequoiaView 1 1 1 1 1 1 
11              Sleuth Kit   1 1 1 1 1 1 
12              SequoiaView 5 3.64 3.64 3.57 3.5 3.87 
12              Sleuth Kit   2.14 2.57 2.3 2 2 2.21 
13              SequoiaView 2 2 2 3 2 2.2 
13              Sleuth Kit   4 3 4 4 4 3.8 
14              SequoiaView 3.07 3 3 3 3 3.01 
14              Sleuth Kit   3.57 3.57 3.5 3.43 3.5 3.51 
15              SequoiaView 1.07 1 1 1 1 1.01 
15              Sleuth Kit   2.14 1.93 2 1.64 1.86 1.91 
16              SequoiaView 2 2 2 2 1 1.8 
16              Sleuth Kit   2.5 2.29 2.21 3.14 2.64 2.56 
17              SequoiaView 3 2 6.29 3.5 3.29 3.61 
17              Sleuth Kit   2 1 1 1 1 1.2 
18              SequoiaView 1.14 1.14 1.14 1.14 1.14 1.14 
18              Sleuth Kit   1.29 1 1 1 1 1.06 
19              SequoiaView 1.43 1 1 1.14 1 1.11 
19              Sleuth Kit   1.29 1 1 1 1 1.06 
20              SequoiaView 2.5 1.43 1.21 2.21 1.21 1.71 
20              Sleuth Kit   5.79 5.07 6 5.79 5.79 5.69 

 

Table 5. Cognitive Load Mean for Subjects by Interface   

 



60 
 

 
 

     The questionnaire provided a method to collect cognitive load data empirically. The t-

test was performed on the results of 2800 data points recorded in Appendix A. Results 

support the study hypothesis (H).  The visualized digital forensics interface reduced the 

cognitive workload on the analysts.   

 

Differences Between Sets of Conditions 

     Dependent-samples were used since the same subjects were tested and compared on 

both the textual-based and visualized applications.  The dependent-samples t-test was 

performed on the calculated means of the cognitive load data collected from the 

questionnaire respondent results to determine whether the use of the visualized 

application produced a reduced cognitive workload for the first-responders compared to 

that produced by the textual-based presentation. The final analysis results are to follow in 

the remainder of this section. Microsoft Excel was used to calculate the mean and to 

produce the charts and result tables for the study. The analysis in the previous section of 

this document established mean comparison deltas (δ) for the study research questions, 

study tasks performed, and subject testing—overall each being positive; therefore, the 

testing for the null hypothesis (H0) establishes a calculated mean as a single direction: the 

testing was conducted on the positive side of the rejection region (a one-tailed test).  

     The one-tailed dependent-sample t-test was conducted to compare the observed 

samples of cognitive load for first-responders to determine if there was a true difference 

under the testing conditions between the textual-based and visualized interfaces.  In view 

of the statistical change in confidence due to varying sample sizes, the number of study 

participants is taken into account by calculating the degrees of freedom (df) as 
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recommended by Urdan (2010).  The degrees of freedom (df) are calculated by adding 

together the sample size from the observation and subtracting 1 (df  = N – 1), in this case 

20 - 1 = 19 or df = 19.  With the value of degrees of freedom (df) known, the critical 

values of the t distribution or the value of statistical significance may be determined by 

considering the confidence level of alpha (α) set to .05.  According to Urdan’s (2010) 

table of critical values of the t distribution or the level of statistical significance, (t0) may 

be derived.  With the degrees of freedom (df) being 19 and an alpha (α) level of .05, the 

level of statistical significance (t0 = 1.729) is identified; see Table 6 (Urdan, 2010).   

 

Table 6. Critical Values of the t Distribution (Urdan, 2010)   

 

     When calculating the final study results, according to Urdan (2010), typical variation 

or standard deviation between the scores of the respondents occurs.  As with degrees of 

freedom (df), this variance is impacted by the number of study participants, see Equation 

1 for the standard deviation formula as presented by Urdan (2010). The difference (D) is 

the difference between study scores; see Table 7 for study results, deltas (δ) or (D), sums, 

means, and D
2
 (Urdan, 2010).  
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(1) 

 

   

Subject 
Sleuth Kit   

μ1 

Subject Mean 

SequoiaView  

μ2  

Subject Mean 

Deltas (δ)  

μ1 – μ2 

or (D) 

 

Deltas (δ)
2
  

or (D)
2 

Subject 1 2.057 1.43 0.63 0.40 
Subject 2 2.79 1.99 0.80 0.64 
Subject 3 3.90 2.07 1.83 3.34 
Subject 4 3.86 3.49 0.37 0.14 
Subject 5 3.60 1.86 1.74 3.04 
Subject 6 2.54 1.44 1.10 1.21 
Subject 7 2.49 4.26 -1.77 3.14 
Subject 8 2.10 2.16 -0.06 0.003 
Subject 9 1.40 1.64 -0.24 0.059 
Subject 10 1.00 1.00 0.00 0 
Subject 11 1.00 1.00 0.00 0 
Subject 12 2.21 3.49 -1.27 1.62 
Subject 13 3.80 2.20 1.60 2.56 
Subject 14 3.51 2.07 1.44 2.08 
Subject 15 1.91 1.04 0.90 0.81 
Subject 16 2.56 1.53 1.03 1.06 
Subject 17 1.20 2.21 -1.01 1.03 
Subject 18 2.63 1.14 1.49 2.21 
Subject 19 4.06 1.11 2.94 8.66 
Subject 20 5.69 1.71 3.97 15.77 
Sum (Ʃ) 54.30 38.81 15.49 47.76 

Mean (Ʃ/20) 2.72 1.94 0.77  
 

Table 7. Study Results, Deltas (δ) or (D), Sums, Means, and D
2
   

 

     With the mean of the subject mean differences known, as well as the number of study 

participants, the standard deviation is calculated, see Equation 2. Similar to the 

calculation of standard deviation, a standard error of the differences between the means 

(𝑠𝐷̅̅ ̅) is needed to calculate the final value of t. The standard deviation (𝑠𝐷 = 1.37) 
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known, the standard error of the differences between the means (𝑠𝐷̅̅ ̅) is found with the 

formula; calculations are seen in Equation 3 as presented by Urdan (2010).        

 

 

(2) 

 

 

(3) 

 

 

     With the standard error of the differences between the means ( 𝑠𝐷̅̅ ̅ = .306), the mean 

value of the questionnaire results for The Sleuth Kit ( 𝜇1̅̅̅̅  = 2.715), and the mean value of 

the questionnaire results for the SequoiaView (𝜇2̅̅̅̅  = 1.94) known, the value of t can be 

calculated, see Equation 4.  The paired-sample t-test was conducted to compare the 

relative cognitive workloads of digital forensics first-responders operating, first, a 

textual-based interface and then a visualized prototyped interface.  Urdan (2010) stated, 

“the difference between the means divided by the standard error of the difference 

between the means produce the t value” (p. 101). 
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(4) 

 

     The observed value of t (t = 2.55) falls within the region of rejecting the null-

hypothesis (H0): above the critical value of the (t) distribution (t0 = 1.729). Significant 

difference in the conditions is indicated by this study’s rejection of the null hypothesis of 

no difference between the first-responders’ cognitive load operating textual-based and 

visualized digital forensics interface on study results bell curve (t = 0), see Figure 9. 

 

Figure 9. Study Results Bell Curve (Urdan, 2010) 

 

Summary of Results  

    This research shows through empirical discovery that the visualized interface display 

implemented in the digital forensics process significantly reduced the cognitive workload 

impact compared to the workload imposed by the textual-based interface. These findings 
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support the hypothesis (H) and do not support the null hypothesis (H0) that there would 

not be a significant change in the analysts’ cognitive load.   

     The study results focus upon five file-centric tasks, see Table 2, identified during 

ethnographic interviews with digital forensics SMEs.  Instructions to perform each task 

were given to 20 first-responders testing the visualized and textual-based interfaces and 

comparing the cognitive workload experienced while performing the tasks. Following 

each task, study participants responded to each of the 14 questions about interface design 

and also self-rated the cognitive workload of each task.  

     A t-test was conducted, testing the distribution between two dependent means, in this 

case the cognitive load results when comparing a visualized and a textual-based interface.  

Calculations of the 2800 data points recorded by the researcher as results of the 

questionnaire tallies produced the mean values for this study. The t-test analysis strategy 

reveals the difference between the two means, including an alpha level (α = .05) to ensure 

significant contrasts between the applications under test.  Additionally, to ensure test 

validity, a sample size of 20 was used to be consistent with Cohen’s (1988) “effective 

size” to show a sufficient sample for the alpha level (α) set for the research. Microsoft 

Excel was used to calculate and present the findings graphically in this chapter and to 

store the study test results for analysis throughout the study.       

     From the sample size of 20, the degrees of freedom (df = 19) are obtained. The 

correlation between degrees of freedom (df = 19) and alpha level (α = .05) enables the 

critical value of the t distribution or statistical significance (t0 = 1.729) to be derived by 

Urdan’s (2010) methodology.  Utilizing the mean differences (δ) or (D), the sum of the 

differences squared (ƩD)
2
,
 
the squared sum of the differences (ƩD

2
),

 
and the degrees of 
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freedom (df = 19), the standard deviation (𝑠𝐷 = 1.37) is calculated. With the degrees of 

freedom (df = 19), the standard deviation (𝑠𝐷 = 1.37), and the standard error of the 

differences between the means ( 𝑠𝐷̅̅ ̅ = .306) is obtained.  Finally, the calculated standard 

error of the differences between the means ( 𝑠𝐷̅̅ ̅ = .306), the sum of the mean 

questionnaire value for The Sleuth Kit (𝜇1̅̅̅̅  = 2.715), and the sum of the mean of the 

questionnaire results for the SequoiaView (𝜇2̅̅̅̅  = 1.94), t is presented as (t = 2.55). Since 

the value (t = 2.55) is greater than the statistical significance (t0 = 1.729), the null 

hypothesis (H0) is not supported and the hypothesis (H) is supported with a significant 

change, demonstrating decreased cognitive load of analysts utilizing the visualized digital 

forensics interface (Urdan, 2010).  
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Chapter 5 

 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

     Currently, digital forensic tools utilize a textual-based interface such as The Sleuth 

Kit.  Even though commercial vendors (such as FTK) have integrated visualization into 

their product lines, the domain of digital forensics lacks empirical evidence to support the 

claim that visualization reduces the cognitive workload of the analyst when operating a 

digital forensics interface utilizing a visualized component.  The hypothesis (H) of this 

work asserts that the visualized interface display integrated into the digital forensics 

process significantly reduces the analyst’s cognitive workload compared to that required 

by the textual-based interface. Presented here is a potential solution to the problem of 

analyst overload: use of a visualized interface to reduce the cognitive workload of the 

analyst during the evidence-gathering process of the digital forensics investigation.   

     In this study three digital forensics SMEs identified five file-centric tasks described as 

commonly being performed during a digital forensics investigation, enabling the 

researcher to develop relevant scenarios for this study, see Table 2.  The tasks were 

presented to qualified digital forensics first-responders for analysis—with each first-

responder testing both a visualized and textual-based interface—to determine the 

cognitive workload required for the investigative outcomes to be achieved for the 
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researcher’s examination.  The first-responder study subjects followed the order of testing 

guided by the study instructions in Appendix F.   

     Results obtained by use of the visualized digital forensics tool—contrasted with those 

of the textual-based interface—reveal that the latter (Sleuth Kit) was outperformed by the 

prototype (SequoiaView) application’s visualized presentation.  The visualized display 

performed consistently to fulfill the predetermined tasks with a mental workload on the 

first-responder lower than that imposed by the textual-based display. Questionnaires 

based on basic visual design principles captured cognitive load data after each common 

task scenario was performed for a quantitative assessment of results. Compilation of the 

first-responder data indicates reduced workload on the analyst.        

Research Questions 

     Eisenhardt (1989) described research as an explicit forward-moving process. 

Identified by the researcher in Chapter 1 are three research questions addressing the 

specific research objective explicitly defined in this dissertation:  

1. What are the investigator’s primary tasks for evidence identification while operating a 

traditional digital forensics tool set?  

2. What is the cognitive load of a human’s working memory beyond just time and 

accuracy measures while performing ethnographically discovered techniques of a 

predefined set of tasks to establish a baseline of evidence identification?  

3. What efficiency level may be attained for a digital investigation improved for the 

benefit of analysis by application of visualization to predefined tasks?  

     Through ethnographic investigation research, Question 1 was answered with five 

primary file-centric tasks, see Table 2, for evidence identification by analysts operating a 
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digital forensics tool set. These five tasks were performed by the first-responder 

experimental group in testing the visualized and the textual-based tools to develop a 

mean-based comparison. The researcher detected a significant difference between sets of 

results pertaining to the study participants’ cognitive workload while simulating the 

analysis phase of an investigation. 

     In order to answer Question 2 of the study, the cognitive load of the study’s first-

responder participants was measured by capturing an empirical assessment of their 

human working memory through self-evaluation.  These participants performed a 

baseline of predefined, evidence-identification tasks established through ethnographically 

discovered techniques of the SME study.  The identical baseline tasks were performed on 

both a visualized and a textual-based application, concluding with intent to improve the 

effectiveness of a digital forensics investigation.  

     The final research question was satisfied by the researcher’s identifying the efficiency 

level attained for a digital investigation improved by benefit of visualization having been 

applied to an interface while first-responders performed predefined tasks.  Question 3’s 

answer derived from comparing/contrasting the results of the user surveys: analysis of the 

compiled results revealed a difference considered to be statistically significant—

referencing the 95% confidence level of .05 value or greater level of alpha (a)—

established in Chapter 3.  

Alternatives 

     Many alternatives were considered for each step of this study that may have led to 

additional explanations of findings and additional areas for research, including the 

research methods for the dissertation itself, digital forensics tools and prototypes, and 
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statistical measures for result analysis.  Initial research methods such as a purely 

ethnographic study were considered.  Fundamentally, the ethnographic study would have 

worked. However, controlling the number of participants and tools would have been 

difficult. Also considered was the programming of a prototype tool from scratch. An 

originally programmed tool would have worked although the availability of the open 

source tools satisfied the tool requirement. The prospect of statistical analysis of variance 

(ANOVA) and multivariate analysis of variance (MANOVA) were considered but given 

up for the more appropriate t-test, which is most frequently used by behavioral scientists 

in measuring mean values, according to Urdan (2010).                          

 

Strengths 

     The primary strengths of this work stem from sound academic practices and policies 

as described in the Nova Southeastern Graduate School of Computer and Information 

Sciences Dissertation Guide.  Key to this dissertation is an explicitly stated research and 

methodical process defining criteria for research questions, data capture and collection 

methods, and final project conclusion.  Eisenhardt (1989) described research as an 

iterative process, taking into account previous knowledge, in the form of a detailed 

literature review. Hence, both seminal and contemporary materials from peer-reviewed 

sources were referenced, and the researcher ensured that identical testing was performed 

on both types of interfaces and that all tasking related to the same simulated dataset to 

provide an unbiased environment for the study.  

     With the study’s taking place in the Washington DC area, qualified digital forensics 

professionals and first-responders were available.  The metropolitan area, having a large 
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technologically sophisticated population base, provided well-educated, experienced, and 

certified professionals to participate in the study.        

     The ethnographic portion of the study provided an opportunity to define the human 

group of digital forensics SMEs.  Not only is their expertise in the area of investigative 

processes noted but also the types of criminal activities they have investigated are 

identified as unrelated discovery and the history of their personal career paths was 

learned. The comparison of means in testing the visualized and textual-based interfaces 

with the paired variables of study participants, data, and tasks lent itself well to the 

dependent sample t-tests, advocated by Urdan (2010).             

 

Weaknesses 

     Weaknesses of this study may have resulted from both internal and external 

dependencies. The internal dependencies include, for example, sample size, sample 

demographics, and formats for presenting multidimensional data visually in a two-

dimensional display. According to Cohen (1988) a larger sample size will always 

increase the viability and accuracy of a study due to a smaller error rate or a chance of 

falsely rejecting the null hypothesis (H0).  Additionally, demographics were not collected 

for this study, such as geographic location, gender, age, and years of experience.  The 

researcher did find that the most senior study subjects were very comfortable in either the 

textual-based or the visualized environments.  The researcher observed this phenomenon, 

and it may be seen in the study results where the subjects responded with 1’s or “low 

mental effort” for both interfaces for all tasks and questions.  Lastly, only node and 

treemap visualized presentations were discussed in this study.  Tufte (1990) discussed 
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graphically presenting multidimensional, quantitative data in a two-dimensional 

environment in many varying formats for multiple domains of study, such as chemistry 

and astronomy. 

     External dependencies that may have impacted outcomes include economic 

considerations and the single-researcher point of view.  Due to resource constraints, this 

research utilized only open-source tools for testing.  Digital forensics tools are 

commercially available, but not available for trial licensing or educational use.  Key to 

this research has been thoughtful input from the dissertation committee.  However, for 

obvious reasons, the dissertation process restricts input to the study content from other 

researchers, limiting the study development process to a narrow view.          

 

Limitations  

     There are several limitations to this study.  For instance, data used for subject testing 

were simulated, the testing itself was limited in scope, and, again, open-source tools were 

used.  Simulated perpetrator case data used for testing were not actual crime scene data.  

The simulated data were used to enforce a chain-of-custody element for actual case data, 

as mentioned in Chapter 1, protecting both a potential victim and perpetrator. The scope 

in testing for the study was limited by the participants in completing individual tasks. 

Measures for task performance, such as time and accuracy, were not developed or used.  

Because tasks utilized for establishing the cognitive workload built upon the previous 

tasks, they were conducted in the same order for each participant.  Additionally, the 

applications tested were not alternated but were utilized in the same order by all 



73 
 

 
 

participants.  Though the researcher is thankful for their availability, the tools used lacked 

some obviously desirable features, such as a back button for application navigation.         

Implications 

     With digital evidence playing a constant role in criminal investigations, according to 

Regional Computer Forensics Laboratories (RCFL) (2013), this study is both timely and 

relevant. This work complements the previous work of others while strengthening the 

body of knowledge of digital forensics and human–computer interaction (HCI).  

     To date, no published empirical documentation accounts for how visualization impacts 

the cognitive workload of the digital forensics practitioner in the investigative analysis 

process.  The results of this study reach across many domains where digital forensics 

tools are utilized and provide solid footing for enhancement of these tools. Additional 

relevance of this work is that it exemplifies a clear analysis method for future research by 

the HCI researcher, providing a template for comparing and contrasting application 

interface design techniques.            

     

Recommendations 

     This study provides five real-world tests for examining and measuring outcomes in the 

testing or prototyping of digital forensics tools.  Its findings are applicable for the 

betterment of the digital forensics analyst’s efficiencies and, in turn, better protect the 

populace.  Future work stemming from this research might benefit from the following 

recommendations: 

1. Determine the most efficient way to present file-centric data visually to the digital 

forensics practitioner. 
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2. Improve the digital forensics tool for optimum demographic analysis. 

3. Incorporate findings from this work and those of future projects into open-source and 

commercial digital forensics tool developers’ tool sets.    

4. Acquire funding for testing commercial tool sets.  

 

Summary 

     Digital forensics tools are software and other instruments that assist analysts in the 

discovery of digital evidence located in an array of computer systems. According to the 

RCFL 2012 FY report, nearly all current criminal investigations involve such a device. 

This research builds upon previous works, such as that of Garfinkel (2010), to 

demonstrate enhancement in the discovery phase of the evidence-identification process 

through the use of visualization. To date, understanding of the process is so limited as to 

preclude clear identification of the impact of visualization integrated into the user 

interface of the digital forensics tool or upon the digital investigation itself.  One reason 

for this dearth of understanding is that the domain of digital forensics remains in its 

infancy stage. During an investigation the analyst may need to assess thousands, millions, 

or even billions of files to identify digital evidence, an inordinately cognitively 

challenging task.   

     It is expected that a significant degree of understanding of the impact of visualization 

on the digital forensics tool may be obtained through analysis and discovery of evidence 

read digitally rather than merely cognitively.  Additionally expected is heightened 

understanding of the process whereby visualization reduces analysts’ cognitive workload, 

thereby proving digital evidence detection more efficient. 
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     A considerable amount of research details digital forensics tools and processes.  

Additionally, several researchers have called for the improvement of digital forensics 

tools through the use of visualization (Hoelz & Ralha, 2013). Visualization design 

principles, when applied to the software interface, offer capabilities to present very large 

datasets to the user, bringing resolution to multi-dimensional information (Shneiderman, 

2008; Tufte, 1990). 

     The hypothesis (H) in this research is that the cognitive load of the practitioner will be 

reduced by incorporating visualization into the digital forensics application interface.  

Huang, Eades, and Hong (2009) validated the premise that cognitive load is consistently 

reduced in applications into which visualization has been integrated, proving such 

applications superior to textual-based interfaces.  In this study ethnographic research 

identifies the primary duties of the digital forensics analyst during the analysis phase of 

investigative discovery while the cognitive load is measured by means of the user’s 

comparison of the visualized interface with the textual-based interface. 

     This research contributes to the body of knowledge in its field by validating a method 

of measurement and by providing empirical evidence consistent with the hypothesis (H): 

use of the visualized digital forensics interface will provide a more efficient performance 

by the analyst, saving labor costs and compressing time required for the digital 

investigation discovery phase.  

     The purpose of this research is to provide empirical evidence to determine whether the 

use of visualization in the identification of digital evidence will reduce the digital 

forensics application user’s cognitive load.  However, visualization may have a negative 

impact in the legal environment or when presented in another public forum (John, 2012).  
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This research adopted the self-appraisal aspect of a system interface determined by users’ 

observation levels of cognitive load patterns, suggested by Rose et al. (1995).  

     The methodology design is intended to provide results ensuring a high level of 

reliability. Confidence in the study is derived from appropriate sample size, subject 

population selection, and procedures followed for a power analysis, as suggested by 

Cohen (1988).    

     This research shows through empirical discovery that the visualized interface display 

implemented in the digital forensics process significantly reduces the cognitive workload 

compared to that reported for the textual-based interface. These findings support the 

hypothesis (H) and invalidate the null hypothesis (H0): there would not be a significant 

change in the analyst’s cognitive load.   

     The study results focus upon five file-centric tasks (see Table 2) identified during 

ethnographic interviews with digital forensics SMEs.  Richard and Roussev (2006) 

defined file-centric activities as primary labors of the digital forensics investigation. 

Instructions to perform each task were given to 20 professional, qualified first-responders 

who tested the visualized and textual-based interfaces by comparing the cognitive 

workloads experienced—according to interface type—while performing the tasks. 

Following each task, study participants responded to a questionnaire with a total of 14 

interface design self-rating questions to score respective workloads. 

     A t-test was conducted to identify the mean values of over 2800 data points recorded 

by the researcher as questionnaire tallies. The t-test analysis strategy provided the 

difference between two means to include an alpha (α) level of .05 to ensure a significant 

difference among the results of the applications under test.  Additionally, to ensure test 
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validity, a sample size of 20 was used to be consistent with Cohen’s concept (1988) of 

“effective size” to show a sufficient sample for the alpha level (α) set for the research.  

Microsoft Excel was utilized in this study for storing, calculating, and presenting 

graphically the test result findings.         

     From the sample size of 20, the degrees of freedom (df = 19) are obtained. The 

correlation between degrees of freedom (df = 19) and alpha level (α = .05) enables the 

critical value of the t distribution or statistical significance (t0 = 1.729) to be derived from 

Urdan’s (2010) formula that allows one to determine statistical significance.  Utilizing 

the mean differences (δ) or (D), the calculated sum of the differences squared (ƩD)
2
,
 
the 

squared sum of the differences (ƩD
2
), and the degrees of freedom (df = 19), the standard 

deviation (𝑠𝐷 = 1.37) is calculated. With the degrees of freedom (df = 19) and the 

standard deviation (𝑠𝐷 = 1.37), the standard error of the differences between the means 

(𝑠𝐷̅̅ ̅ = .306) is obtained. Finally, the standard error of the differences between the means 

(𝑠𝐷̅̅ ̅ = .306), the sum of the mean questionnaire value for The Sleuth Kit (𝜇1̅̅̅̅  = 2.715), and 

the sum of the mean value of the questionnaire results for the SequoiaView (𝜇2̅̅̅̅  = 1.94) 

produce a t of  (t = 2.55). Since the value (t = 2.55) is greater than the statistical 

significance (t0 = 1.729), the null hypothesis (H0) is invalidated and the hypothesis (H) is 

supported with a significant change, demonstrating the analysts’ cognitive load being 

decreased while utilizing the visualized digital forensics interface.   

     This study provides five real-world tasks for examining and measuring outcomes in 

the testing or prototyping of digital forensics tools, see Table 2.  Its findings are 

applicable for the betterment of digital forensics analysts’ efficiencies and, in turn, better 

protection of the populace. Future researchers may benefit from this research by 
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continuing to determine efficient ways to present file-centric data visually to the digital 

forensics practitioner. Additionally, developers of open-source and commercial digital 

forensics tools should incorporate findings from this work and those of future projects 

into their tool sets to improve the digital forensics tool to be optimized for the analysts’ 

distinguishing personal demographics. Finally, future research would benefit from the 

inclusion of commercial tool sets with acquired grants or funding.  
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Appendix A 

 

Raw Data 

Data and Mean for Subjects by Question and Interface  

Subject     Interface 

Q
u

estio
n

 

           

T
a

sk
 1 

           

T
a

sk
 2 

           

T
a

sk
 3 

           

T
a

sk
 4 

           

T
a

sk
 5 

         

M
ea

n
 

1                SequoiaView 1 1 1 1 1 1 1 
1                SequoiaView 2 1 1 1 1 1 1 
1                SequoiaView 3 2 3 1 1 1 1.6 
1                SequoiaView 4 1 1 1 1 1 1 
1                SequoiaView 5 2 2 2 2 2 2 
1                SequoiaView 6 2 2 2 2 2 2 
1                SequoiaView 7 2 2 1 2 2 1.8 
1                SequoiaView 8 1 1 1 1 1 1 
1                SequoiaView 9 1 1 1 1 1 1 
1                SequoiaView 10 2 1 2 2 2 1.8 
1                SequoiaView 11 1 2 2 2 2 1.8 
1                SequoiaView 12 1 2 2 2 2 1.8 
1                SequoiaView 13 1 2 1 1 1 1.2 
1                SequoiaView 14 1 1 1 1 1 1 
1                SequoiaView Mean 1.36 1.58 1.36 1.43 1.43 1.43 
1                Sleuth Kit 1 1 1 1 1 1 1 
1                Sleuth Kit 2 1 3 1 1 1 1.4 
1                Sleuth Kit 3 3 4 3 3 4 3.4 
1                Sleuth Kit 4 1 1 1 1 1 1 
1                Sleuth Kit 5 1 1 1 1 1 1 
1                Sleuth Kit 6 2 2 2 2 2 2 
1                Sleuth Kit 7 2 2 2 2 2 2 
1                Sleuth Kit 8 5 7 7 7 7 6.6 
1                Sleuth Kit 9 1 1 1 1 1 1 
1                Sleuth Kit 10 1 1 1 1 1 1 
1                Sleuth Kit 11 2 2 1 1 1 1.4 
1                Sleuth Kit 12 1 2 2 2 2 1.8 
1                Sleuth Kit 13 1 1 1 2 1 1.2 
1                Sleuth Kit 14 4 4 3 5 4 4 
1                Sleuth Kit Mean 1.86 2.28 1.93 2.14 2.07 2.06 
2                SequoiaView 1 1 1 2 1 1 1.2 
2                SequoiaView 2 1 1 2 1 2 1.4 
2                SequoiaView 3 1 1 1 1 1 1 
2                SequoiaView 4 1 1 2 1 1 1.2 
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2                SequoiaView 5 4 2 2 2 2 2.4 
2                SequoiaView 6 3 2 7 7 7 5.2 
2                SequoiaView 7 2 4 3 1 1 2.2 
2                SequoiaView 8 1 1 2 2 2 1.6 
2                SequoiaView 9 2 1 2 2 2 1.8 
2                SequoiaView 10 4 1 2 2 1 2 
2                SequoiaView 11 3 1 2 2 2 2 
2                SequoiaView 12 5 3 2 3 2 3 
2                SequoiaView 13 1 2 1 2 1 1.4 
2                SequoiaView 14 1 2 1 2 1 1.4 
2                SequoiaView Mean 2.14 1.64 2.21 2.07 1.86 1.98 

2                Sleuth Kit 1 3 1 3 2 1 2 
2                Sleuth Kit 2 4 2 2 3 2 2.6 
2                Sleuth Kit 3 2 2 1 3 1 1.8 
2                Sleuth Kit 4 2 2 2 2 1 1.8 
2                Sleuth Kit 5 2 3 4 4 2 3 
2                Sleuth Kit 6 5 6 6 6 5 5.6 
2                Sleuth Kit 7 3 3 3 3 3 3 
2                Sleuth Kit 8 5 3 2 2 5 3.4 
2                Sleuth Kit 9 2 3 3 1 1 2 
2                Sleuth Kit 10 4 4 3 2 3 3.2 
2                Sleuth Kit 11 3 5 3 2 4 3.4 
2                Sleuth Kit 12 3 3 4 2 3 3 
2                Sleuth Kit 13 2 2 2 1 1 1.6 
2                Sleuth Kit 14 4 3 2 2 2 2.6 
2                Sleuth Kit Mean 3.14 3 2.86 2.5 2.43 2.78 
3                SequoiaView 1 2 1 1 1 2 1.4 
3                SequoiaView 2 1 1 1 1 1 1 
3                SequoiaView 3 2 2 3 2 2 2.2 
3                SequoiaView 4 3 2 2 1 1 1.8 
3                SequoiaView 5 2 3 2 2 2 2.2 
3                SequoiaView 6 4 3 4 4 3 3.6 
3                SequoiaView 7 2 3 3 2 3 2.6 
3                SequoiaView 8 1 1 1 1 1 1 
3                SequoiaView 9 4 3 3 3 2 3 
3                SequoiaView 10 1 1 2 1 1 1.2 
3                SequoiaView 11 2 2 2 2 2 2 
3                SequoiaView 12 3 2 2 2 2 2.2 
3                SequoiaView 13 3 3 3 3 2 2.8 
3                SequoiaView 14 2 2 3 1 2 2 
3                SequoiaView Mean 2.29 2.07 2.29 1.86 1.86 2.07 
3                Sleuth Kit 1 5 5 4 6 5 5 
3                Sleuth Kit 2 4 4 2 4 4 3.6 
3                Sleuth Kit 3 6 4 5 5 6 5.2 
3                Sleuth Kit 4 2 4 3 2 3 2.8 
3                Sleuth Kit 5 2 3 4 4 4 3.4 
3                Sleuth Kit 6 4 4 4 4 4 4 
3                Sleuth Kit 7 4 4 3 3 3 3.4 
3                Sleuth Kit 8 6 6 6 3 6 5.4 
3                Sleuth Kit 9 3 5 5 4 4 4.2 
3                Sleuth Kit 10 2 3 2 3 5 3 
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3                Sleuth Kit 11 3 3 3 3 4 3.2 
3                Sleuth Kit 12 4 2 4 2 4 3.2 
3                Sleuth Kit 13 5 3 3 3 2 3.2 
3                Sleuth Kit 14 5 5 6 4 5 5 
3                Sleuth Kit Mean 3.93 3.93 3.86 3.57 4.21 3.9 
4                SequoiaView 1 2 3 6 4 4 3.8 
4                SequoiaView 2 2 3 2 4 4 3 
4                SequoiaView 3 2 3 4 2 4 3 
4                SequoiaView 4 5 2 4 5 4 4 
4                SequoiaView 5 3 3 6 3 4 3.8 
4                SequoiaView 6 3 4 2 2 4 3 
4                SequoiaView 7 4 4 4 4 4 4 
4                SequoiaView 8 4 3 4 5 4 4 
4                SequoiaView 9 2 2 2 2 2 2 
4                SequoiaView 10 4 5 5 2 4 4 
4                SequoiaView 11 5 5 5 4 4 4.6 
4                SequoiaView 12 4 2 2 2 2 2.4 
4                SequoiaView 13 2 2 2 4 3 2.6 
4                SequoiaView 14 5 4 5 5 4 4.6 
4                SequoiaView Mean 3.36 3.21 3.79 3.43 3.64 3.49 
4                Sleuth Kit 1 4 5 4 4 4 4.2 
4                Sleuth Kit 2 4 4 4 4 4 4 
4                Sleuth Kit 3 4 4 4 3 3 3.6 
4                Sleuth Kit 4 4 4 3 3 4 3.6 
4                Sleuth Kit 5 5 6 4 4 4 4.6 
4                Sleuth Kit 6 4 4 4 4 4 4 
4                Sleuth Kit 7 4 4 4 4 4 4 
4                Sleuth Kit 8 6 6 6 6 6 6 
4                Sleuth Kit 9 2 2 2 2 2 2 
4                Sleuth Kit 10 4 3 4 3 4 3.6 
4                Sleuth Kit 11 5 4 4 5 5 4.6 
4                Sleuth Kit 12 2 2 2 2 2 2 
4                Sleuth Kit 13 4 4 4 3 4 3.8 
4                Sleuth Kit 14 4 4 4 4 4 4 
4                Sleuth Kit Mean 4 4 3.79 3.64 3.86 3.86 
5                SequoiaView 1 1 1 1 1 1 1 
5                SequoiaView 2 1 1 1 1 1 1 
5                SequoiaView 3 5 1 1 1 1 1.8 
5                SequoiaView 4 7 1 1 1 1 2.2 
5                SequoiaView 5 1 1 1 1 1 1 
5                SequoiaView 6 5 5 5 5 5 5 
5                SequoiaView 7 1 1 1 1 1 1 
5                SequoiaView 8 1 1 1 1 1 1 
5                SequoiaView 9 1 1 1 1 1 1 
5                SequoiaView 10 1 1 1 1 1 1 
5                SequoiaView 11 1 1 1 1 1 1 
5                SequoiaView 12 1 1 1 1 1 1 
5                SequoiaView 13 7 7 7 7 7 7 
5                SequoiaView 14 1 1 1 1 1 1 
5                SequoiaView Mean 2.43 1.71 1.71 1.71 1.71 1.86 
5                Sleuth Kit 1 6 6 6 6 6 6 
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5                Sleuth Kit 2 3 3 6 4 4 4 
5                Sleuth Kit 3 1 1 1 1 1 1 
5                Sleuth Kit 4 4 5 4 4 4 4.2 
5                Sleuth Kit 5 5 5 5 5 5 5 
5                Sleuth Kit 6 5 5 6 6 6 5.6 
5                Sleuth Kit 7 1 1 1 1 1 1 
5                Sleuth Kit 8 7 7 7 7 7 7 
5                Sleuth Kit 9 1 1 1 1 1 1 
5                Sleuth Kit 10 3 3 3 3 3 3 
5                Sleuth Kit 11 1 1 1 1 1 1 
5                Sleuth Kit 12 1 1 1 1 1 1 
5                Sleuth Kit 13 7 7 7 7 7 7 
5                Sleuth Kit 14 4 4 4 3 3 3.6 
5                Sleuth Kit Mean 3.5 3.57 3.79 3.57 3.57 3.6 
6                SequoiaView 1 1 1 1 1 1 1 
6                SequoiaView 2 1 1 1 1 1 1 
6                SequoiaView 3 1 1 1 1 1 1 
6                SequoiaView 4 1 1 1 1 1 1 
6                SequoiaView 5 2 2 2 2 2 2 
6                SequoiaView 6 3 3 3 3 3 3 
6                SequoiaView 7 1 1 1 1 1 1 
6                SequoiaView 8 1 1 1 1 1 1 
6                SequoiaView 9 1 2 2 2 2 1.8 
6                SequoiaView 10 2 2 1 1 1 1.4 
6                SequoiaView 11 1 1 2 2 2 1.6 
6                SequoiaView 12 2 1 1 1 1 1.2 
6                SequoiaView 13 3 2 2 2 2 2.2 
6                SequoiaView 14 1 1 1 1 1 1 
6                SequoiaView Mean 1.5 1.43 1.43 1.43 1.43 1.44 
6                Sleuth Kit 1 1 2 1 1 1 1.2 
6                Sleuth Kit 2 1 1 1 1 1 1 
6                Sleuth Kit 3 3 2 1 2 1 1.8 
6                Sleuth Kit 4 3 1 1 1 1 1.4 
6                Sleuth Kit 5 4 2 6 3 6 4.2 
6                Sleuth Kit 6 1 2 2 2 2 1.8 
6                Sleuth Kit 7 3 1 1 1 1 1.4 
6                Sleuth Kit 8 6 6 6 6 6 6 
6                Sleuth Kit 9 6 3 3 3 4 3.8 
6                Sleuth Kit 10 1 1 2 1 1 1.2 
6                Sleuth Kit 11 6 6 6 3 4 5 
6                Sleuth Kit 12 1 1 1 1 1 1 
6                Sleuth Kit 13 3 3 2 3 3 2.8 
6                Sleuth Kit 14 3 3 3 3 3 3 
6                Sleuth Kit Mean 3 2.43 2.57 2.21 2.5 2.54 
7                SequoiaView 1 4 4 5 4 6 4.6 
7                SequoiaView 2 6 4 2 4 3 3.8 
7                SequoiaView 3 2 2 2 5 3 2.8 
7                SequoiaView 4 2 2 2 5 2 2.6 
7                SequoiaView 5 6 6 6 3 6 5.4 
7                SequoiaView 6 7 7 7 7 6 6.8 
7                SequoiaView 7 5 5 2 2 2 3.2 
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7                SequoiaView 8 1 2 1 2 2 1.6 
7                SequoiaView 9 3 4 6 6 6 5 
7                SequoiaView 10 6 6 6 2 3 4.6 
7                SequoiaView 11 6 6 6 6 6 6 
7                SequoiaView 12 6 5 6 6 6 5.8 
7                SequoiaView 13 6 6 6 6 6 6 
7                SequoiaView 14 1 2 1 2 1 1.4 
7                SequoiaView Mean 4.36 4.36 4.14 4.29 4.14 4.26 
7                Sleuth Kit 1 3 2 3 2 2 2.4 
7                Sleuth Kit 2 1 1 2 1 1 1.2 
7                Sleuth Kit 3 5 1 1 3 3 2.6 
7                Sleuth Kit 4 1 2 1 1 1 1.2 
7                Sleuth Kit 5 1 4 2 1 1 1.8 
7                Sleuth Kit 6 3 2 4 2 2 2.6 
7                Sleuth Kit 7 4 4 2 2 2 2.8 
7                Sleuth Kit 8 6 6 6 6 6 6 
7                Sleuth Kit 9 1 1 2 1 1 1.2 
7                Sleuth Kit 10 2 1 1 1 1 1.2 
7                Sleuth Kit 11 2 1 3 1 1 1.6 
7                Sleuth Kit 12 4 4 3 3 3 3.4 
7                Sleuth Kit 13 5 6 6 6 6 5.8 
7                Sleuth Kit  14 1 1 1 1 1 1 
7                Sleuth Kit Mean 2.79 2.57 2.64 2.21 2.21 2.49 
8                SequoiaView 1 1 1 1 1 2 1.2 
8                SequoiaView 2 2 2 2 2 2 2 
8                SequoiaView 3 1 1 1 1 1 1 
8                SequoiaView 4 1 1 2 1 2 1.4 
8                SequoiaView 5 3 3 2 2 1 2.2 
8                SequoiaView 6 4 4 3 3 3 3.4 
8                SequoiaView 7 3 3 3 2 3 2.8 
8                SequoiaView 8 2 2 2 2 2 2 
8                SequoiaView 9 3 3 3 3 3 3 
8                SequoiaView 10 4 3 3 3 3 3.2 
8                SequoiaView 11 4 3 2 2 2 2.6 
8                SequoiaView 12 4 2 3 2 3 2.8 
8                SequoiaView 13 2 1 1 1 1 1.2 
8                SequoiaView 14 2 2 1 1 1 1.4 
8                SequoiaView Mean 2.57 2.21 2.07 1.86 2.07 2.16 
8                Sleuth Kit 1 3 3 2 2 2 2.4 
8                Sleuth Kit 2 4 3 2 2 2 2.6 
8                Sleuth Kit 3 4 1 1 1 1 1.6 
8                Sleuth Kit 4 2 5 2 1 2 2.4 
8                Sleuth Kit 5 2 2 2 3 2 2.2 
8                Sleuth Kit 6 4 3 3 3 3 3.2 
8                Sleuth Kit 7 2 3 2 3 3 2.6 
8                Sleuth Kit 8 3 3 2 2 3 2.6 
8                Sleuth Kit 9 3 2 2 3 3 2.6 
8                Sleuth Kit 10 1 1 2 2 2 1.6 
8                Sleuth Kit 11 1 2 2 2 2 1.8 
8                Sleuth Kit 12 2 1 1 2 1 1.4 
8                Sleuth Kit 13 2 1 1 1 1 1.2 
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8                Sleuth Kit  14 2 1 1 1 1 1.2 
8                Sleuth Kit Mean 2.5 2.21 1.79 2 2 2.1 
9                SequoiaView 1 1 1 1 1 1 1 
9                SequoiaView 2 1 1 1 1 1 1 
9                SequoiaView 3 2 1 1 1 1 1.2 
9                SequoiaView 4 1 1 1 1 1 1 
9                SequoiaView 5 4 2 1 1 1 1.8 
9                SequoiaView 6 2 1 1 1 1 1.2 
9                SequoiaView 7 4 4 2 1 1 2.4 
9                SequoiaView 8 4 4 1 4 4 3.4 
9                SequoiaView 9 1 2 1 2 1 1.4 
9                SequoiaView 10 1 1 1 1 4 1.6 
9                SequoiaView 11 1 1 2 1 4 1.8 
9                SequoiaView 12 3 4 4 4 1 3.2 
9                SequoiaView 13 1 1 1 1 1 1 
9                SequoiaView 14 1 1 1 1 1 1 
9                SequoiaView Mean 1.93 1.79 1.36 1.5 1.64 1.64 
9                Sleuth Kit 1 1 1 1 1 1 1 
9                Sleuth Kit 2 1 1 1 2 1 1.2 
9                Sleuth Kit 3 1 1 1 1 1 1 
9                Sleuth Kit 4 1 1 1 1 2 1.2 
9                Sleuth Kit 5 2 1 1 1 2 1.4 
9                Sleuth Kit 6 1 1 1 1 2 1.2 
9                Sleuth Kit 7 2 2 1 2 1 1.6 
9                Sleuth Kit 8 4 2 2 4 4 3.2 
9                Sleuth Kit 9 1 2 2 1 1 1.4 
9                Sleuth Kit 10 2 1 1 2 2 1.6 
9                Sleuth Kit 11 1 2 1 1 1 1.2 
9                Sleuth Kit 12 4 1 1 1 1 1.6 
9                Sleuth Kit 13 1 1 1 1 1 1 
9                Sleuth Kit  14 1 1 1 1 1 1 
9                Sleuth Kit Mean 1.64 1.29 1.14 1.43 1.5 1.4 
10              SequoiaView 1 1 1 1 1 1 1 
10              SequoiaView 2 1 1 1 1 1 1 
10              SequoiaView 3 1 1 1 1 1 1 
10              SequoiaView 4 1 1 1 1 1 1 
10              SequoiaView 5 1 1 1 1 1 1 
10              SequoiaView 6 1 1 1 1 1 1 
10              SequoiaView 7 1 1 1 1 1 1 
10              SequoiaView 8 1 1 1 1 1 1 
10              SequoiaView 9 1 1 1 1 1 1 
10              SequoiaView 10 1 1 1 1 1 1 
10              SequoiaView 11 1 1 1 1 1 1 
10              SequoiaView 12 1 1 1 1 1 1 
10              SequoiaView 13 1 1 1 1 1 1 
10              SequoiaView 14 1 1 1 1 1 1 
10              SequoiaView Mean 1 1 1 1 1 1 
10              Sleuth Kit 1 1 1 1 1 1 1 
10              Sleuth Kit 2 1 1 1 1 1 1 
10              Sleuth Kit 3 1 1 1 1 1 1 
10              Sleuth Kit 4 1 1 1 1 1 1 
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10              Sleuth Kit 5 1 1 1 1 1 1 
10              Sleuth Kit 6 1 1 1 1 1 1 
10              Sleuth Kit 7 1 1 1 1 1 1 
10              Sleuth Kit 8 1 1 1 1 1 1 
10              Sleuth Kit 9 1 1 1 1 1 1 
10              Sleuth Kit 10 1 1 1 1 1 1 
10              Sleuth Kit 11 1 1 1 1 1 1 
10              Sleuth Kit 12 1 1 1 1 1 1 
10              Sleuth Kit 13 1 1 1 1 1 1 
10              Sleuth Kit  14 1 1 1 1 1 1 
10              Sleuth Kit Mean 1 1 1 1 1 1 
11              SequoiaView 1 1 1 1 1 1 1 
11              SequoiaView 2 1 1 1 1 1 1 
11              SequoiaView 3 1 1 1 1 1 1 
11              SequoiaView 4 1 1 1 1 1 1 
11              SequoiaView 5 1 1 1 1 1 1 
11              SequoiaView 6 1 1 1 1 1 1 
11              SequoiaView 7 1 1 1 1 1 1 
11              SequoiaView 8 1 1 1 1 1 1 
11              SequoiaView 9 1 1 1 1 1 1 
11              SequoiaView 10 1 1 1 1 1 1 
11              SequoiaView 11 1 1 1 1 1 1 
11              SequoiaView 12 1 1 1 1 1 1 
11              SequoiaView 13 1 1 1 1 1 1 
11              SequoiaView 14 1 1 1 1 1 1 
11              SequoiaView Mean 1 1 1 1 1 1 
11              Sleuth Kit 1 1 1 1 1 1 1 
11              Sleuth Kit 2 1 1 1 1 1 1 
11              Sleuth Kit 3 1 1 1 1 1 1 
11              Sleuth Kit 4 1 1 1 1 1 1 
11              Sleuth Kit 5 1 1 1 1 1 1 
11              Sleuth Kit 6 1 1 1 1 1 1 
11              Sleuth Kit 7 1 1 1 1 1 1 
11              Sleuth Kit 8 1 1 1 1 1 1 
11              Sleuth Kit 9 1 1 1 1 1 1 
11              Sleuth Kit 10 1 1 1 1 1 1 
11              Sleuth Kit 11 1 1 1 1 1 1 
11              Sleuth Kit 12 1 1 1 1 1 1 
11              Sleuth Kit 13 1 1 1 1 1 1 
11              Sleuth Kit  14 1 1 1 1 1 1 
11              Sleuth Kit Mean 1 1 1 1 1 1 
12              SequoiaView 1 7 1 7 7 7 5.8 
12              SequoiaView 2 6 1 1 1 2 2.2 
12              SequoiaView 3 1 1 1 1 1 1 
12              SequoiaView 4 2 1 1 3 1 1.6 
12              SequoiaView 5 7 6 1 3 3 4 
12              SequoiaView 6 7 7 7 7 7 7 
12              SequoiaView 7 7 7 6 2 3 5 
12              SequoiaView 8 1 7 7 4 3 4.4 
12              SequoiaView 9 7 7 7 7 7 7 
12              SequoiaView 10 7 2 3 3 4 3.8 
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12              SequoiaView 11 7 2 3 4 4 4 
12              SequoiaView 12 7 7 3 4 3 4.8 
12              SequoiaView 13 1 1 1 1 1 1 
12              SequoiaView 14 3 1 3 3 3 2.6 
12              SequoiaView Mean 5 3.64 3.64 3.57 3.5 3.87 
12              Sleuth Kit 1 1 1 1 1 1 1 
12              Sleuth Kit 2 1 1 1 1 1 1 
12              Sleuth Kit 3 2 1 1 1 1 1.2 
12              Sleuth Kit 4 1 1 1 1 1 1 
12              Sleuth Kit 5 1 1 1 1 1 1 
12              Sleuth Kit 6 1 1 1 1 1 1 
12              Sleuth Kit 7 4 3 4 2 2 3 
12              Sleuth Kit 8 7 7 7 7 7 7 
12              Sleuth Kit 9 1 4 4 4 4 3.4 
12              Sleuth Kit 10 1 3 2 2 2 2 
12              Sleuth Kit 11 1 3 1 2 2 1.8 
12              Sleuth Kit 12 4 3 4 2 2 3 
12              Sleuth Kit 13 4 4 2 1 1 2.4 
12              Sleuth Kit 14 1 3 3 2 2 2.2 
12              Sleuth Kit Mean 2.14 2.57 2.3 2 2 2.21 
13              SequoiaView 1 2 2 2 3 2 2.2 
13              SequoiaView 2 2 2 2 3 2 2.2 
13              SequoiaView 3 2 2 2 3 2 2.2 
13              SequoiaView 4 2 2 2 3 2 2.2 
13              SequoiaView 5 2 2 2 3 2 2.2 
13              SequoiaView 6 2 2 2 3 2 2.2 
13              SequoiaView 7 2 2 2 3 2 2.2 
13              SequoiaView 8 2 2 2 3 2 2.2 
13              SequoiaView 9 2 2 2 3 2 2.2 
13              SequoiaView 10 2 2 2 3 2 2.2 
13              SequoiaView 11 2 2 2 3 2 2.2 
13              SequoiaView 12 2 2 2 3 2 2.2 
13              SequoiaView 13 2 2 2 3 2 2.2 
13              SequoiaView 14 2 2 2 3 2 2.2 
13              SequoiaView Mean 2 2 2 3 2 2.2 
13              Sleuth Kit 1 4 3 4 4 4 3.8 
13              Sleuth Kit 2 4 3 4 4 4 3.8 
13              Sleuth Kit 3 4 3 4 4 4 3.8 
13              Sleuth Kit 4 4 3 4 4 4 3.8 
13              Sleuth Kit 5 4 3 4 4 4 3.8 
13              Sleuth Kit 6 4 3 4 4 4 3.8 
13              Sleuth Kit 7 4 3 4 4 4 3.8 
13              Sleuth Kit 8 4 3 4 4 4 3.8 
13              Sleuth Kit 9 4 3 4 4 4 3.8 
13              Sleuth Kit 10 4 3 4 4 4 3.8 
13              Sleuth Kit 11 4 3 4 4 4 3.8 
13              Sleuth Kit 12 4 3 4 4 4 3.8 
13              Sleuth Kit 13 4 3 4 4 4 3.8 
13              Sleuth Kit 14 4 3 4 4 4 3.8 
13              Sleuth Kit Mean 4 3 4 4 4 3.8 
14              SequoiaView 1 2 2 2 2 2 2 
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14              SequoiaView 2 3 3 3 3 3 3 
14              SequoiaView 3 3 3 3 3 3 3 
14              SequoiaView 4 3 3 3 3 3 3 
14              SequoiaView 5 4 3 3 3 3 3.2 
14              SequoiaView 6 4 4 4 4 4 4 
14              SequoiaView 7 3 3 3 3 3 3 
14              SequoiaView 8 2 2 2 2 2 2 
14              SequoiaView 9 4 3 3 3 3 3.2 
14              SequoiaView 10 3 4 4 4 4 3.8 
14              SequoiaView 11 4 4 4 4 4 4 
14              SequoiaView 12 3 3 3 3 3 3 
14              SequoiaView 13 2 2 2 2 2 2 
14              SequoiaView 14 3 3 3 3 3 3 
14              SequoiaView Mean 3.07 3 3 3 3 3.01 
14              Sleuth Kit 1 4 4 4 4 4 4 
14              Sleuth Kit 2 3 3 3 3 3 3 
14              Sleuth Kit 3 3 3 3 3 3 3 
14              Sleuth Kit 4 3 3 3 3 3 3 
14              Sleuth Kit 5 2 2 2 2 2 2 
14              Sleuth Kit 6 4 4 4 4 4 4 
14              Sleuth Kit 7 3 3 2 2 2 2.4 
14              Sleuth Kit 8 6 6 6 6 6 6 
14              Sleuth Kit 9 5 5 5 5 5 5 
14              Sleuth Kit 10 4 4 4 4 4 4 
14              Sleuth Kit 11 4 4 4 4 4 4 
14              Sleuth Kit 12 3 3 3 3 3 3 
14              Sleuth Kit 13 2 2 2 2 2 2 
14              Sleuth Kit 14 4 4 4 3 4 3.8 
14              Sleuth Kit Mean 3.57 3.57 3.5 3.43 3.5 3.51 
15              SequoiaView 1 1 1 1 1 1 1 
15              SequoiaView 2 1 1 1 1 1 1 
15              SequoiaView 3 1 1 1 1 1 1 
15              SequoiaView 4 1 1 1 1 1 1 
15              SequoiaView 5 1 1 1 1 1 1 
15              SequoiaView 6 2 1 1 1 1 1.2 
15              SequoiaView 7 1 1 1 1 1 1 
15              SequoiaView 8 1 1 1 1 1 1 
15              SequoiaView 9 1 1 1 1 1 1 
15              SequoiaView 10 1 1 1 1 1 1 
15              SequoiaView 11 1 1 1 1 1 1 
15              SequoiaView 12 1 1 1 1 1 1 
15              SequoiaView 13 1 1 1 1 1 1 
15              SequoiaView 14 1 1 1 1 1 1 
15              SequoiaView Mean 1.07 1 1 1 1 1.01 
15              Sleuth Kit 1 3 1 2 1 2 1.8 
15              Sleuth Kit 2 3 3 2 2 3 2.6 
15              Sleuth Kit 3 4 2 3 2 2 2.6 
15              Sleuth Kit 4 1 1 3 2 2 1.8 
15              Sleuth Kit 5 1 1 1 1 1 1 
15              Sleuth Kit 6 1 2 1 1 1 1.2 
15              Sleuth Kit 7 3 3 2 3 3 2.8 
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15              Sleuth Kit 8 1 4 3 2 2 2.4 
15              Sleuth Kit 9 1 3 2 2 2 2 
15              Sleuth Kit 10 1 1 1 1 1 1 
15              Sleuth Kit 11 1 1 1 1 1 1 
15              Sleuth Kit 12 3 2 3 2 2 2.4 
15              Sleuth Kit 13 4 1 2 1 2 2 
15              Sleuth Kit 14 3 2 2 2 2 2.2 
15              Sleuth Kit Mean 2.14 1.93 2 1.64 1.86 1.91 
16              SequoiaView 1 2 1 1 1 1 1.2 
16              SequoiaView 2 2 1 1 1 1 1.2 
16              SequoiaView 3 2 2 1 2 3 2 
16              SequoiaView 4 1 1 1 1 2 1.2 
16              SequoiaView 5 2 1 1 1 2 1.4 
16              SequoiaView 6 2 2 1 2 3 2 
16              SequoiaView 7 2 2 1 2 4 2.2 
16              SequoiaView 8 1 1 1 3 1 1.4 
16              SequoiaView 9 2 1 1 3 2 1.8 
16              SequoiaView 10 1 1 1 2 1 1.2 
16              SequoiaView 11 1 1 1 1 1 1 
16              SequoiaView 12 1 2 1 3 4 2.2 
16              SequoiaView 13 1 1 1 1 1 1 
16              SequoiaView 14 1 1 1 2 3 1.6 
16              SequoiaView Mean 1.5 1.29 1 1.79 2.07 1.53 
16              Sleuth Kit 1 2 2 2 2 2 2 
16              Sleuth Kit 2 2 2 1 3 2 2 
16              Sleuth Kit 3 1 2 2 3 3 2.2 
16              Sleuth Kit 4 1 1 2 3 3 2 
16              Sleuth Kit 5 2 2 2 3 3 2.4 
16              Sleuth Kit 6 2 3 3 4 4 3.2 
16              Sleuth Kit 7 3 3 2 3 3 2.8 
16              Sleuth Kit 8 5 4 4 4 3 4 
16              Sleuth Kit 9 3 3 3 4 3 3.2 
16              Sleuth Kit 10 3 2 2 3 2 2.4 
16              Sleuth Kit 11 3 2 2 3 2 2.4 
16              Sleuth Kit 12 4 2 3 4 4 3.4 
16              Sleuth Kit 13 2 2 1 3 2 2 
16              Sleuth Kit 14 2 2 2 2 1 1.8 
16              Sleuth Kit Mean 2.5 2.29 2.21 3.14 2.64 2.56 
17              SequoiaView 1 4 1 6 2 4 3.4 
17              SequoiaView 2 2 1 7 4 1 3 
17              SequoiaView 3 1 1 7 6 5 4 
17              SequoiaView 4 3 1 6 1 2 2.6 
17              SequoiaView 5 4 1 6 2 4 3.4 
17              SequoiaView 6 4 1 6 1 1 2.6 
17              SequoiaView 7 4 3 1 3 4 3 
17              SequoiaView 8 1 2 7 3 1 2.8 
17              SequoiaView 9 2 2 7 3 2 3.2 
17              SequoiaView 10 5 5 7 7 7 6.2 
17              SequoiaView 11 5 4 7 7 7 6 
17              SequoiaView 12 3 4 7 4 4 4.4 
17              SequoiaView 13 1 1 7 2 2 2.6 
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17              SequoiaView 14 3 1 7 4 2 3.4 
17              SequoiaView Mean 3 2 6.29 3.5 3.29 3.61 
17              Sleuth Kit 1 2 1 1 1 1 1.2 
17              Sleuth Kit 2 2 1 1 1 1 1.2 
17              Sleuth Kit 3 2 1 1 1 1 1.2 
17              Sleuth Kit 4 2 1 1 1 1 1.2 
17              Sleuth Kit 5 2 1 1 1 1 1.2 
17              Sleuth Kit 6 2 1 1 1 1 1.2 
17              Sleuth Kit 7 2 1 1 1 1 1.2 
17              Sleuth Kit 8 2 1 1 1 1 1.2 
17              Sleuth Kit 9 2 1 1 1 1 1.2 
17              Sleuth Kit 10 2 1 1 1 1 1.2 
17              Sleuth Kit 11 2 1 1 1 1 1.2 
17              Sleuth Kit 12 2 1 1 1 1 1.2 
17              Sleuth Kit 13 2 1 1 1 1 1.2 
17              Sleuth Kit 14 2 1 1 1 1 1.2 
17              Sleuth Kit Mean 2 1 1 1 1 1.2 
18              SequoiaView 1 1 1 1 1 1 1 
18              SequoiaView 2 1 1 1 1 1 1 
18              SequoiaView 3 1 1 1 1 1 1 
18              SequoiaView 4 1 1 1 1 1 1 
18              SequoiaView 5 1 1 1 1 1 1 
18              SequoiaView 6 3 3 3 3 3 3 
18              SequoiaView 7 1 1 1 1 1 1 
18              SequoiaView 8 1 1 1 1 1 1 
18              SequoiaView 9 1 1 1 1 1 1 
18              SequoiaView 10 1 1 1 1 1 1 
18              SequoiaView 11 1 1 1 1 1 1 
18              SequoiaView 12 1 1 1 1 1 1 
18              SequoiaView 13 1 1 1 1 1 1 
18              SequoiaView 14 1 1 1 1 1 1 
18              SequoiaView Mean 1.14 1.14 1.14 1.14 1.14 1.14 
18              Sleuth Kit 1 1 1 1 1 1 1 
18              Sleuth Kit 2 1 1 1 1 1 1 
18              Sleuth Kit 3 1 1 1 1 1 1 
18              Sleuth Kit 4 1 1 1 1 1 1 
18              Sleuth Kit 5 3 1 1 1 1 1.4 
18              Sleuth Kit 6 3 1 1 1 1 1.4 
18              Sleuth Kit 7 1 1 1 1 1 1 
18              Sleuth Kit 8 1 1 1 1 1 1 
18              Sleuth Kit 9 1 1 1 1 1 1 
18              Sleuth Kit 10 1 1 1 1 1 1 
18              Sleuth Kit 11 1 1 1 1 1 1 
18              Sleuth Kit 12 1 1 1 1 1 1 
18              Sleuth Kit 13 1 1 1 1 1 1 
18              Sleuth Kit 14 1 1 1 1 1 1 
18              Sleuth Kit Mean 1.29 1 1 1 1 1.06 
19              SequoiaView 1 4 1 1 3 1 2 
19              SequoiaView 2 4 1 1 1 1 1.6 
19              SequoiaView 3 1 1 1 1 1 1 
19              SequoiaView 4 1 1 1 1 1 1 
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19              SequoiaView 5 1 1 1 1 1 1 
19              SequoiaView 6 1 1 1 1 1 1 
19              SequoiaView 7 1 1 1 1 1 1 
19              SequoiaView 8 1 1 1 1 1 1 
19              SequoiaView 9 1 1 1 1 1 1 
19              SequoiaView 10 1 1 1 1 1 1 
19              SequoiaView 11 1 1 1 1 1 1 
19              SequoiaView 12 1 1 1 1 1 1 
19              SequoiaView 13 1 1 1 1 1 1 
19              SequoiaView 14 1 1 1 1 1 1 
19              SequoiaView Mean 1.43 1 1 1.14 1 1.11 
19              Sleuth Kit 1 3 1 1 1 1 1.4 
19              Sleuth Kit 2 3 1 1 1 1 1.4 
19              Sleuth Kit 3 1 1 1 1 1 1 
19              Sleuth Kit 4 1 1 1 1 1 1 
19              Sleuth Kit 5 1 1 1 1 1 1 
19              Sleuth Kit 6 1 1 1 1 1 1 
19              Sleuth Kit 7 1 1 1 1 1 1 
19              Sleuth Kit 8 1 1 1 1 1 1 
19              Sleuth Kit 9 1 1 1 1 1 1 
19              Sleuth Kit 10 1 1 1 1 1 1 
19              Sleuth Kit 11 1 1 1 1 1 1 
19              Sleuth Kit 12 1 1 1 1 1 1 
19              Sleuth Kit 13 1 1 1 1 1 1 
19              Sleuth Kit 14 1 1 1 1 1 1 
19              Sleuth Kit Mean 1.29 1 1 1 1 1.06 
20              SequoiaView 1 2 1 1 2 1 1.4 
20              SequoiaView 2 2 1 1 2 1 1.4 
20              SequoiaView 3 2 1 1 3 1 1.6 
20              SequoiaView 4 3 1 1 3 1 1.8 
20              SequoiaView 5 4 1 1 3 1 2 
20              SequoiaView 6 2 1 1 2 1 1.4 
20              SequoiaView 7 3 2 1 3 2 2.2 
20              SequoiaView 8 3 2 2 3 2 2.4 
20              SequoiaView 9 2 2 2 2 2 2 
20              SequoiaView 10 2 1 1 1 1 1.2 
20              SequoiaView 11 3 2 1 2 1 1.8 
20              SequoiaView 12 3 3 2 2 1 2.2 
20              SequoiaView 13 2 1 1 1 1 1.2 
20              SequoiaView 14 2 1 1 2 1 1.4 
20              SequoiaView Mean 2.5 1.43 1.21 2.21 1.21 1.71 
20              Sleuth Kit 1 6 5 7 6 6 6 
20              Sleuth Kit 2 6 5 7 6 6 6 
20              Sleuth Kit 3 6 5 7 6 6 6 
20              Sleuth Kit 4 6 4 7 6 5 5.6 
20              Sleuth Kit 5 6 5 6 5 6 5.6 
20              Sleuth Kit 6 6 4 5 6 5 5.2 
20              Sleuth Kit 7 7 6 6 6 6 6.2 
20              Sleuth Kit 8 7 7 6 7 7 6.8 
20              Sleuth Kit 9 6 5 6 6 6 5.8 
20              Sleuth Kit 10 4 5 6 6 6 5.4 
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20              Sleuth Kit 11 5 5 6 5 6 5.4 
20              Sleuth Kit 12 6 5 6 5 6 5.6 
20              Sleuth Kit 13 4 5 4 5 5 4.6 
20              Sleuth Kit 14 6 5 5 6 5 5.4 
20              Sleuth Kit Mean 5.79 5.07 6 5.79 5.79 5.69 
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Appendix B 

 

The Study Process Flow 
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Appendix C 

 

Institutional Review Board Memorandum  
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Appendix D 

 

Consent Form for Participation 

 

 

 
Consent Form for Participation in the Research Study Entitled  

Digital Forensics Tool Interface Visualization 

 

Funding Source: None 

 

IRB protocol #: wang09151306 

 

Principal investigator Co-investigator 

Robert Altiero, PhD Candidate    Maxine S. Cohen, PhD 

7765 Sutton Ct 

Port Tobacco, MD 20677 

(301)751-6419 

Graduate School of Computer and 

Information Sciences  

3301 College Avenue  

Fort Lauderdale-Davie, FL 33314-7796 

 (954) 262-2072 

 



95 
 

 
 

For questions/concerns about your research rights, contact: 
Human Research Oversight Board (Institutional Review Board or IRB)  
Nova Southeastern University 
(954) 262-5369/Toll Free: 866-499-0790 
IRB@nsu.nova.edu 
 
 
 
Site Information: 
Site 1: Southern Maryland Business Center, 10665 Stanhaven Place Suite 300A, White 

Plains, MD 20695 

What is the study about?  

The purpose of this research is to investigate how a digital forensics tool interface 

enhanced with visualization techniques may show improved capabilities to an 

investigator’s cognitive capacities in the discovery of criminal evidence.   

Why are you asking me? 

You have been selected to participate due to your qualifications as a subject matter 

expert (SME) or as a first-responder. Criteria: 

 

1) SME-digital forensic experts  

-- Work in the Washington, DC Metropolitan Area 

-- Digital forensics is their primary duty 

-- Experienced in law enforcement or other investigative professions 

-- College-educated or have completed dedicated on-the-job training 

-- Experts in the Microsoft Windows operating systems 

-- A specialty niche area such as mobile devices  

-- Professional digital forensic certification such as the Certified Computer Examiner 

(CCE) 

 

2) First-responder, network administrators, or information security information system 

professionals 

-- Work in the Washington, DC Metropolitan Area   

-- Two years of experience using analysis tools, tactics, techniques, and procedures for 

mailto:IRB@nsu.nova.edu
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evaluating computer event information 

-- Professional certification—such as Security+, A+, Network+, Certified Information 

Systems Security Professional (CISSP) or Systems Security Certified Practitioner 

(SSCP) 

What will I be doing if I agree to be in the study? 

As a study participant SME,  you will be answering open-ended questions about your 

professional environment in developing a digital forensics investigator’s primary tasks for 

evidence identification while operating a traditional digital forensics tool set. These 

techniques will simulate the analysis phase of an investigation for digital forensics and 

will represent the primary tasks to be followed in the final phases of this research. 

As a study participant first-responder,  you will be instructed to perform the digital 

forensics investigator's primary tasks for evidence identification while operating a 

traditional digital forensics tool set in addition to using a visualized interface. These 

techniques are meant to simulate the analysis phase of an investigation for digital 

forensics. 

Cognitive load, an assessment of human working memory, will be measured using a 

Likert scale while you are performing a predefined set of tasks. Determined, is the 

measurement of a prototype visualized application intended to improve the effectiveness 

of a digital forensics investigation. Efficiency levels will be compared and contrasted for 

results of the users’ surveys to determine the benefit of a visualized application. 

Is there any audio or video recording? 

There are no audio or video recordings associated with this research. 

What are the dangers to me? 

Foreseeable risks or discomforts are minimal associated with this research. However, 

foreseen risks are listed below. The procedures or activities in this study may have 

unknown or unforeseeable risks.  

If you have any questions about the research or your research rights or a research-

related injury, please contact Robert Altiero, principal investigator or Maxine Cohen,  

advisor.  You may also contact the IRB at the numbers indicated above with questions 

about your research rights. 

 

Risk/Discomfort:  Violation of Privacy 

Likelihood:  Low 

Magnitude/Duration: Low/Minimal  
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Risk Minimization: Participant surveys will not identify participants by name. 

Participant personnel information will not be stored electronically and will be destroyed 

36 months after research completion.  

 

 

Risk/Discomfort:  Legal Risks 

Likelihood:  Low 

Magnitude/Duration: Low/Minimal 

Risk Minimization: Since this is a digital forensic research project data is needed. 

Victim and perpetrator data will be simulated in order not to compromise victim or 

accused’s case rights.     

 

Risk/Discomfort: Psychosocial Stress 

Likelihood:  Low 

Magnitude/Duration: Low/Survey completion time—one hour 

Risk Minimization: The researcher will ensure that the participants understand that 

research participation is voluntary and that they are informed of consent. All risk will be 

addressed and discussed with the participants, including psychosocial stress. 

Additionally, all meetings will be scheduled at the participants’ convenience, and a 

description of the research and surveys will be given to the participants in advance. 

Are there any benefits for taking part in this research study? 

There are no direct benefits. However, by participating in this study you will be assisting 

the researcher in contributing to the body of knowledge by validating the method of 

measure and by providing empirical evidence consistent with the betterment of digital 

forensics tools.  

Will I get paid for being in the study?  Will it cost me anything? 

There are no costs to you or payments made for participating in this study. 

How will you keep my information private? 

All identifying documentation leading to the subject’s name will be destroyed by 

shredding after 36 months following the study’s completion. Subject identification will not 

be used to identify questionnaires; rather an ID will be used to determine respondent.   

What if I do not want to participate or I want to leave the study? 
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You have the right to leave this study at any time or to refuse to participate. If you do 

decide to leave or you decide not to participate, you will not experience any penalty or 

loss of services you have a right to receive.  If you choose to withdraw, any information 

collected about you before the date you leave the study will be kept in the research 

records for 36 months from the conclusion of the study, but you may request that it not 

be used. 

 

Other Considerations: 

If significant new information relating to the study becomes available, which may relate 

to your willingness to continue to participate, this information will be provided to you by 

the investigators. 

 

Voluntary Consent by Participant: 

By signing below, you indicate that 

 this study has been explained to you 

 you have read this document or it has been read to you 

 your questions about this research study have been answered 

 you have been told that you may ask the researchers any study-related 
questions in the future or contact them in the event of a research-related injury 

 you have been told that you may ask Institutional Review Board (IRB) personnel 
questions about your research rights 

 you are entitled to a copy of this form after you have read and signed it  

 you voluntarily agree to participate in the study entitled Digital Forensics Tool 
Interface Visualization 

 

Participant's Signature: ___________________________ Date: ________________ 

 

Participant’s Name: ______________________________ Date: ________________ 

 

 

Signature of Person Obtaining Consent: _____________________________   

 

Date: _________________________________ 
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Appendix E 

 

Questionnaire 

 

Participant ID: 

Date: 

Interface Used:  

 SequoiaView  

 Autopsy  

Task #: 

 

Please indicate in one column with an “X” the numeral that most accurately represents your experience 

as you performed the presented task.  

 

  Low Mental Effort Neither  

Easy nor 

Difficult 

Very 

Difficult 

 Question 1 2 3 4 5 6 7 

1 I was able to gain an overview of 

the entire data set. 

       

2 I was able to zoom in on items of 

interest. 

       

3 I was able to filter out irrelevant 

items. 

       

4 I was able to select an item or group 

of items to get the details that I 

needed. 

       

5 I was able to view relationships        
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among files. 

6 I was able to keep a history of 

actions through undo when 

necessary. 

       

7 I was able to identify sub-

collections of the query parameters. 

       

8 I was able to develop a three-

dimensional relationship of the 

file’s size relative to other files 

present.  

       

9 I was easily able to identify file 

temporal information. 

       

10 I was easily able to identify file 

hierarchy in parent-child 

relationships. 

       

11 I was able to view relationships 

among files. 

       

12 I was able to identify sub-

collections and query taxonomy 

parameters once a file of interest 

had been located. 

       

13 I was able to adjust filtering ranges 

dynamically. 

       

14 The level of mental effort difficulty 

to complete the task.  

       

 

Questions 1-14 represent the basic design guidelines for the interface presenting visual 

information as presented by Shneiderman (1996).  

 

 

Reference 

Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information 

visualizations. Visual Languages, IEEE Symposium, 336-343. Boulder, CO: IEEE. 

doi:10.1109/VL.1996.545307 
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Appendix F 

 

Study Instructions 

Background: 

Recent trends show digital devices utilized with increasing frequency in most crimes 

committed.  Investigating crime involving these devices is labor-intensive for the 

practitioner applying digital forensics tools that present possible evidence with results 

displayed in tabular lists for manual review. This research investigates how enhanced 

digital forensics tool interface visualization techniques can be shown to improve the 

investigator’s cognitive capacities to discover criminal evidence more efficiently.   

Purpose: 

The primary operations of a digital forensic investigation often depend upon the capture 

of file-centric evidence. This research presents visualization graphs and contrasts their 

properties with the outputs of The Sleuth Kit (TSK) contemporary digital forensic 

program’s textual-based interface in order to prove the effectiveness of enhanced data 

presentation. There is potential for the computer interface to present to the digital forensic 

practitioner an abstract, graphic view of an entire dataset of computer files. Enhanced 

interface design of digital forensic tools means more rapidly linking suspicious evidence 

to a perpetrator. 

Your Role: 

You will play the role of the digital investigator in this study by performing the five 

primary tasks listed below. These tasks are often performed by digital investigators.  

Your investigation will be to examine a flash drive suspected of being a storage device 

utilized by a perpetrator, see table 2.     

Task 1: Locate files with the .jpg extension 

Task 2: Locate the file named Kittie.jpg 

Task 3: Date range to establish timeline 

Task 4: Identify directory structure that takes up the most space 

Task 5: Identify the largest file 
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Testing your cognitive load is simply answering how difficult a task is to perform.  The 

research shows that you are the best measure for estimating your cognitive load. 

 

SequoiaView 

The visualized application used for this study is SequoiaView. SequoiaView provides a 

global view of an entire selected file structure utilizing a treemap presentation. Treemaps 

provide a visual representation of all files and directories simultaneously and are only 

limited by the available screen space.  Treemaps present a solution for efficient use of the 

available space. 

SequoiaView Launch Sequence  

1. Open SequoiaView by clicking the Start button . Select All Programs, in the 

list of program results, click SequoiaView. Select the SequoiaView button  to 

launch the application.  

2. Close the Scan window. Select the Browse button  and folders, and then 

click Select Removable Drive F: .  

3. The browse for folder widow will open, again select Removable Disk F: 

 and click OK.  

Each file and folder is represented in a single display as tiled squares and rectangles.  

The file types are represented by the tile color.   

TASK INSTRUCTIONS: 

Task 1:  Locate files with the .jpg extension. 

There are two options for identifying the file type .jpg: by using the presentation and 2) 

using Display the Filter option. You will perform both options. 

1. Identify the files with ‘.jpg’ extension by locating those tiles colored blue.  Note: 

All graphic files are varying shades of blue.  
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Mousing over the tiles reveals the file name. By right clicking on the tiles, the 

file properties are displayed, and traversing up and down directories is also 

possible.   

 

2. On the menu bar select the arrow on the filter options .  When the filter 

dialog box pops up, click the include filter on checkbox to enable the filter, and 

specify ‘*.jpg’ in the edit box, and click add. Now click Apply. 

 

 

Again, by mousing over the tiles reveals the file name. Right clicking on the tiles 

the displays file properties; traversing up and down directories is also possible. 

 

You have completed Task 1. Please complete the questionnaire. 

 

Task 2: Locate the file named Kittie.jpg 

1. Perform the SequoiaView Launch Sequence above as needed.  Just as with Task 

1, there are two options to completing Task 2:   1) using the presentation—

remember that files with the ‘.jpg’ extension are represented with blue tiles and 2) 

using the filter option. You will perform both options. Return to the filter options 

 ; when the filter dialog box pops up, click ‘*.jpg’ in the edit box and click 

Remove. Now click Apply. 
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1. Locate the file Identified as ‘Kittie.jpg’ by locating its blue-colored tile. 

 

  
Mouse over the tiles until locating the file named ‘Kittie.jpg’. Mousing over the 

tiles, the file name causes a directory to pop up; and the name of the file is also 

located in the lower left information bar. Right clicking on the tiles displays the 

file properties, and traversing up and down directories is also possible.   

 

2. On the menu bar select the down arrow on the filter options .  When the 

filter dialog box pops up, click the include filter on checkbox to enable the filter, 

specify ‘Kittie.jpg’ in the edit box, and click add. Now click Apply. 
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Mousing over the tile presents the file name Right clicking on the tiles displays 

the file properties; traversing up or opening the file is also possible. 

 

You have completed Task 2. Please complete the questionnaire. 

Task 3: Date range to establish timeline 

Perform the SequoiaView Launch Sequence above as needed.  Task 3 establishes a 

timeline by applying the date/time filter option and locating suspected files utilizing the 

presentation. Utilizing the date/time filter eliminates any files presented outside the 

selected range. 

1. On the menu bar select the down arrow on the filter options .  When the 

filter dialog box pops up, select the Date tab then click the Date/Time filter on 

checkbox to enable the filter; next click the Modified radio button and now click 

the After checkbox.  Finally, click on the year and with the down arrow select 

2013. Click Apply. 

 

Once again, Mouse over the tiles until locating the file named ‘Kittie.jpg’. Mousing 

over the tiles the file name displays a directory; pops up is the name of the file is also 

located in the lower left-hand portion of the information bar. Right clicking on the tiles 

displays the file properties; traversing up and down directories is also possible. 

You have completed Task 3. Please complete the questionnaire. 
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Task 4: Directory structure that takes up the most space 

Perform the SequoiaView Launch Sequence above as needed.  Task 4 establishes the 

largest file directories. By enabling the Treemap Sort Options, you may order the 

presentation by directory size.  The graphic display presents root level directories 

outlined in yellow when the directory is moused over.  

1. On the menu bar click on the Options button .  When the Options dialog box 

pops up, click the Sort tab and then click on the Size radio button to enable 

sorting by size; click on the Increase radio button to present the larger root level 

directories on the right-hand side of the presentation. Now click Apply. 
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Mouse over the tiles until locating the largest root level directory on the right. Notice the 

yellow outline. 

You have completed Task 4. Please complete the questionnaire. 

Task 5: Identify the largest file 

Perform the SequoiaView Launch Sequence above as needed.  Task 5 identifies files by 

size. Enable the Filter Options, and the presentation will identify file size.  The graphic 

display presents tiles proportionate to their file size Mousing over the tiles presents the 

file directory, name, and file size.   

1. On the menu bar select the down arrow on the filter options .  When the 

filter dialog box pops up, select the Size tab then click the Size filter on checkbox 

to enable the filter, next click the at least checkbox.  Specify the specified in 

bytes and megabytes by selecting the appropriate option from the right-most 

comboboxes and enter ‘4’ in the edit boxes on the left, filtering for files that are at 

least 4 MB in size. Click Apply. 



108 
 

 
 

 

Once again, locate the largest file and Mouse over the tile to display the directory, file 

name, and size. Can you locate the file ‘Kittie.jpg’? Again, right clicking on the tiles 

displays the file properties; traversing up and down directories is also possible. 

You have completed Task 5, the graphic display portion of the study. Please complete 

the questionnaire. 
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SleuthKit (Autopsy) 

SleuthKit is an open-source traditional digital forensics investigation tool that runs on 

multiple platforms. The tool is used to analyze disk images and perform in-depth analysis 

of file systems. Examiners and analysts can use the Autopsy graphical interface to 

conduct an investigation and to interface with SleuthKit rather than using the command 

line. For this study you will use the Autopsy to interact with the SleuthKit tool and 

perform the tasks necessary to conduct the study. 

Autopsy Launch Sequence  

1. Open Autopsy by clicking the Start button . Select All Programs; in the list of 

program results, click Autopsy  to launch the application.  

2. When the Autopsy Welcome window pops up, select Open Existing Case 

. When the Open dialog pops up, select the folder 

StudyCase  . Next, select the case file StudyCase.aut  

and click open. 

3. Once the Autopsy case opens, expand the Images and then click the autopsy.db

.  

The expanded autopsy.db image is a traditional Windows hierarchical folder structure 

known as the Data Explorer or Directory Tree, which can be traversed and expanded. 

The Directory and File attributes are presented in the Results Viewer in the upper right 

of the interface under the Directory Listing tab.  The file and folder attributes are 

presented within the Table View tab, and thumbnails of graphic files can be viewed 

within the Thumbnails tab.  

Note: “Images” here relates to copies of a drive or directory as a file structure image. 

TASK INSTRUCTIONS: 

Task 1:  Locate files with the .jpg extension. 

There are two options for identifying the file type ‘.jpg’: 1) using the Data Explorer 

presentation 2) using File Search By Attributes filter option. You will perform both 

options. 
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1. Identify the files with ‘.jpg’ extension by locating those files in the autopsy.db 

image, expanding the hierarchical Data Explorer folder in the Data Tree and 

viewing their attributes in the Table View tab on the right of the interface.  

 

  

 

2. In the Data Explorer right click the autopsy.db image and, when the dialog box 

pops up, select the File Search by Attributes option. 
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In the File Search by Attribute dialog box, click the Name checkbox and type 

‘.jpg’ in the text box. Now click Search.     
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The search results appear in the Directory Listing under the Table View tab.  

The Name of the file and the respective directory are presented. 

 

 
 

 

You have completed Task 1. Please complete the questionnaire. 

 

Task 2: Locate the file named Kittie.jpg 

Perform the Autopsy Launch Sequence above as needed.  Just as with Task 1, there are 

two options to completing Task 2:   1) use the Data Explorer to expand each file folder 

and search the files listed in the table view for the file Kittie.jpg 2) use the File Search 

by Attribute option. You will perform both options. 

1. Locate the file Identified as ‘Kittie.jpg’ by searching the Directory Tree.  
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By right clicking the file folder you have the option of saving the directory folder 

or to collapsing the folder. By right clicking on the file you will receive a dialog 

with several options for opening, extracting, or bookmarking the file. 

 

2. In the Data Explorer, right click autopsy.db image and, when the dialog box 

pops up, select the File Search by Attributes option. 

 

 
 

 

In the File Search by Attribute dialog box, click the Name checkbox and type 

“kittie.jpg” in the text box. Now click Search.   
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The search results are presented in the Directory Listings results viewer within 

the Table View tab.  

 

 
 

 

You have completed Task 2. Please complete the questionnaire. 

Task 3: Date range to establish timeline 

Perform the Autopsy Launch Sequence above as needed.  Task 3 establishes a timeline 

by applying the File Search by Attribute option and locating suspected files by utilizing 

the results pane Table View.  Utilizing the File Search by Attribute filter eliminates any 

files presented outside the selected range. 

1. In the Data Explorer, right click autopsy.db image and, when the dialog box 

pops up, select the File Search by Attributes option. 

 

 
 

 

In the File Search by Attribute dialog box, click the Date checkbox and select the from 

to dates—enter the dates as seen here (03/29/2013 to 03/27/2014).  Click the checkbox 

Modified and uncheck the check boxes accessed, created, and changed.  Now click 

Search.   
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Again, by right clicking the file folder you have the option of saving the directory folder 

or collapsing the folder. By right clicking on the file you will receive a dialog with 

several options for opening, extracting, or bookmarking the file. 

You have completed Task 3. Please complete the questionnaire. 

Task 4: Directory structure that takes up the most space 

Perform the Autopsy Launch Sequence above as needed.  Task 4 establishes the largest 

file directories. Enable File Search by Attribute to prompt the Table View to present/ 

identify files/directories by size.   

 

1. In the Data Explorer, right click autopsy.db image and, when the dialog box 

pops up, select the File Search by Attributes option. 
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In the File Search by Attribute dialog box, click the Size checkbox, change the pattern 

to greater than, and select the size to be greater than 1 byte.  Now click Search.   

 

 
 

 

Once the results are presented in the Table View, click Size twice TO ORDER the 

files/directories largest to smallest. This may take a minute. 
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Now scroll to find the largest directory in the Table View. 

You have completed Task 4. Please complete the questionnaire. 

Task 5: Identify the largest file 

Perform the Autopsy Launch Sequence above as needed.  Task 5 identifies files by size. 

Enabling the File Search by Attribute to prompt the Table View to present/identify 

files/directories by size.   

1. In the Data Explorer right click autopsy.db image and, when the dialog box 

pops up, select the File Search by Attributes option. 
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In the File Search by Attribute dialog box, click the Size checkbox, change the pattern 

to greater than, and select the size to be greater than 4 MB.  Now click Search.   

 

 
 

Once the results are presented in the Table View, click Size twice to order 

files/directories largest to smallest. This may take a minute. 

 

   

 

Now scroll to find the largest file in the Table View.  Can you locate Kittie.jpg? 
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You have completed Task 5: the Directory Tree display portion of the study. Please 

complete the questionnaire.  
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