68 research outputs found

    Digital Beamforming Based RFI Mitigation for Synthetic Aperture Radar

    Get PDF
    An increasing challenge for P-band Synthetic Aperture Radar (SAR) is Radio Frequency Interference (RFI). RFI results in image distortions and degrades the derived science products. This makes it critical to apply RFI removal techniques to restore the image quality. New advanced techniques can be achieved with Digital Beamforming (DBF) radars such as EcoSAR. In this paper, we present a Range-Dependent Time Minimum Variance Distortionless Response (RDTMVDR) Beamformer and apply it to EcoSAR flight data during post-processing. The antenna pattern (AP) is adaptively changed for each range line which increases the RFI suppression compared to a fixed AP for each pulse. The interferometric image quality is assessed before and after RFI suppression

    A review of RFI mitigation techniques in microwave radiometry

    Get PDF
    Radio frequency interference (RFI) is a well-known problem in microwave radiometry (MWR). Any undesired signal overlapping the MWR protected frequency bands introduces a bias in the measurements, which can corrupt the retrieved geophysical parameters. This paper presents a literature review of RFI detection and mitigation techniques for microwave radiometry from space. The reviewed techniques are divided between real aperture and aperture synthesis. A discussion and assessment of the application of RFI mitigation techniques is presented for each type of radiometer.Peer ReviewedPostprint (published version

    Development of the ECOSAR P-Band Synthetic Aperture Radar

    Get PDF
    This paper describes objectives and recent progress on the development of the EcoSAR, a new P-band airborne radar instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. These measurements support science requirements for the study of the carbon cycle and its relationship to climate change. The instrument is scheduled to be completed and flight tested in 2013. Index Terms SAR, Digital Beamforming, Interferometry

    RFI detection and mitigation for advanced correlators in interferometric radiometers

    Get PDF
    This work presents the first RFI detection and mitigation algorithm for the interferometric radiometers that will be implemented in its correlator unit. The algorithm operates in the time and frequency domains, applying polarimetric and statistical tests in both domains, and exhibiting a tunable and arbitrary low probability of false alarm. It is scalable to a configurable number of receivers, and it is optimized in terms of quantization bits and the implementation of the cross-correlations in the time or frequency domains for hardware resource saving. New features of this algorithm are the computation of the Stokes parameters per frequency bin in the Short-Time Fourier Transform and a new parameter called Polarimetric Kurtosis. If RFI is detected in one domain or in both, it is removed using the calculated blanking masks. The optimum algorithm parameters are computed, such as length of the FFTs, the threshold selection for a given probability of false alarm, and the selection of the blanking masks. Last, an important result refers to the application of Parseval’s theorem for the computation of the cross-correlations in the frequency domain, instead of in the time domain, which is more efficient and leads to smaller errors even when using moderate quantization levels. The algorithm has been developed in the framework of the ESA’s technology preparation for a potential L-band radiometer mission beyond SMOS. However, it is also applicable to (polarimetric) real aperture radiometers, and its performance would improve if more than one bit is used in the signal quantization.This research was funded by ESA, grant number ITT AO9359, by project SPOT: Sensing with Pioneering Opportunistic Techniques grant RTI2018-099008-B-C21/AEI/10.13039/501100011033, and the grant for recruitment of early stage research staff of the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) Generalitat de Catalunya, Spain (FISDUR2020/105).Peer ReviewedPostprint (published version

    Impact of signal quantization on the performance of RFI mitigation algorithms

    Get PDF
    Radio Frequency Interference (RFI) is currently a major problem in Communications and Earth Observation, but it is even more dramatic in Microwave Radiometry because of the low power levels of the received signals. Its impact has been attested in several Earth Observation missions. On-board mitigation systems are becoming a requirement to detect and remove affected measurements, increasing thus radiometric accuracy and spatial coverage. However, RFI mitigation methods have not been tested yet in the context of some particular radiometer topologies, which rely on the use of coarsely quantized streams of data. In this study, the impact of quantization and sampling in the performance of several known RFI mitigation algorithms is studied under different conditions. It will be demonstrated that in the presence of clipping, quantization changes fundamentally the time-frequency properties of the contaminated signal, strongly impairing the performance of most mitigation methods. Important design considerations are derived from this analysis that must be taken into account when defining the architecture of future instruments. In particular, the use of Automatic Gain Control (AGC) systems is proposed, and its limitations are discussedPeer ReviewedPostprint (published version

    Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations

    Get PDF
    icrowave radiometry has provided valuable spaceborne observations of Earth’s geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observ- ing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsur- face at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500–1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under veg- etation canopies. However, the absence of significant spectrum re- served for passive microwave measurements in the 500–1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500–1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities

    System design of the MeerKAT L - band 3D radar for monitoring near earth objects

    Get PDF
    This thesis investigates the current knowledge of small space debris (diameter less than 10 cm) and potentially hazardous asteroids (PHA) by the use of radar systems. It clearly identifies the challenges involved in detecting and tracking of small space debris and PHAs. The most significant challenges include: difficulty in tracking small space debris due to orbital instability and reduced radar cross-section (RCS), errors in some existing data sets, the lack of dedicated or contributing instruments in the Southern Hemisphere, and the large cost involved in building a high-performance radar for this purpose. This thesis investigates the cooperative use of the KAT-7 (7 antennas) and MeerKAT (64 antennas) radio telescope receivers in a radar system to improve monitoring of small debris and PHAs was investigated using theory and simulations, as a cost-effective solution. Parameters for a low cost and high-performance radar were chosen, based on the receiver digital back-end. Data from such radars will be used to add to existing catalogues thereby creating a constantly updated database of near Earth objects and bridging the data gap that is currently being filled by mathematical models. Based on literature and system requirements, quasi-monostatic, bistatic, multistatic, single input multiple output (SIMO) radar configurations were proposed for radio telescope arrays in detecting, tracking and imaging small space debris in the low Earth orbit (LEO) and PHAs. The maximum dwell time possible for the radar geometry was found to be 30 seconds, with coherent integration limitations of 2 ms and 121 ms for accelerating and non-accelerating targets, respectively. The multistatic and SIMO radar configurations showed sufficient detection (SNR 13 dB) for small debris and quasi-monostatic configuration for PHAs. Radar detection, tracking and imaging (ISAR) simulations were compared to theory and ambiguities in range and Doppler were compensated for. The main contribution made by this work is a system design for a high performance, cost effective 3D radar that uses the KAT-7 and MeerKAT radio telescope receivers in a commensal manner. Comparing theory and simulations, the SNR improvement, dwell time increase, tracking and imaging capabilities, for small debris and PHAs compared to existing assets, was illustrated. Since the MeerKAT radio telescope is a precursor for the SKA Africa, extrapolating the capabilities of the MeerKAT radar to the SKA radar implies that it would be the most sensitive and high performing contributor to space situational awareness, upon its completion. From this feasibility study, the MeerKAT 3D distributed radar will be able to detect debris of diameter less than 10 cm at altitudes between 700 km to 900 km, and PHAs, with a range resolution of 15 m, a minimum SNR of 14 dB for 152 pulses for a coherent integration time of 2.02 ms. The target range (derived from the two way delay), velocity (from Doppler frequency) and direction will be measured within an accuracy of: 2.116 m, 15.519 m/s, 0.083° (single antenna), respectively. The range, velocity accuracies and SNR affect orbit prediction accuracy by 0.021 minutes for orbit period and 0.0057° for orbit inclination. The multistatic radar was found to be the most suitable and computationally efficient configuration compared to the bistatic and SIMO configurations, and beamforming should be implemented as required by specific target geometry

    New Passive Instruments Developed for Ocean Monitoring at the Remote Sensing Lab—Universitat Politècnica de Catalunya

    Get PDF
    Lack of frequent and global observations from space is currently a limiting factor in many Earth Observation (EO) missions. Two potential techniques that have been proposed nowadays are: (1) the use of satellite constellations, and (2) the use of Global Navigation Satellite Signals (GNSS) as signals of opportunity (no transmitter required). Reflectometry using GNSS opportunity signals (GNSS-R) was originally proposed in 1993 by Martin-Neira (ESA-ESTEC) for altimetry applications, but later its use for wind speed determination has been proposed, and more recently to perform the sea state correction required in sea surface salinity retrievals by means of L-band microwave radiometry (TB). At present, two EO space-borne missions are currently planned to be launched in the near future: (1) ESA's SMOS mission, using a Y-shaped synthetic aperture radiometer, launch date November 2nd, 2009, and (2) NASA-CONAE AQUARIUS/SAC-D mission, using a three beam push-broom radiometer. In the SMOS mission, the multi-angle observation capabilities allow to simultaneously retrieve not only the surface salinity, but also the surface temperature and an “effective” wind speed that minimizes the differences between observations and models. In AQUARIUS, an L-band scatterometer measuring the radar backscatter (σ0) will be used to perform the necessary sea state corrections. However, none of these approaches are fully satisfactory, since the effective wind speed captures some sea surface roughness effects, at the expense of introducing another variable to be retrieved, and on the other hand the plots (TB-σ0) present a large scattering. In 2003, the Passive Advance Unit for ocean monitoring (PAU) project was proposed to the European Science Foundation in the frame of the EUropean Young Investigator Awards (EURYI) to test the feasibility of GNSS-R over the sea surface to make sea state measurements and perform the correction of the L-band brightness temperature. This paper: (1) provides an overview of the Physics of the L-band radiometric and GNSS reflectometric observations over the ocean, (2) describes the instrumentation that has been (is being) developed in the frame of the EURYI-funded PAU project, (3) the ground-based measurements carried out so far, and their interpretation in view of placing a GNSS-reflectometer as secondary payload in future SMOS follow-on missions

    Radio astronomical imaging in the presence of strong radio interference

    Get PDF
    Radio-astronomical observations are increasingly contaminated by interference, and suppression techniques become essential. A powerful candidate for interference mitigation is adaptive spatial filtering. We study the effect of spatial filtering techniques on radio astronomical imaging. Current deconvolution procedures such as CLEAN are shown to be unsuitable to spatially filtered data, and the necessary corrections are derived. To that end, we reformulate the imaging (deconvolution/calibration) process as a sequential estimation of the locations of astronomical sources. This not only leads to an extended CLEAN algorithm, the formulation also allows to insert other array signal processing techniques for direction finding, and gives estimates of the expected image quality and the amount of interference suppression that can be achieved. Finally, a maximum likelihood procedure for the imaging is derived, and an approximate ML image formation technique is proposed to overcome the computational burden involved. Some of the effects of the new algorithms are shown in simulated images. Keywords: Radio astronomy, synthesis imaging, parametric imaging, interference mitigation, spatial filtering, maximum likelihood, minimum variance, CLEAN.Comment: 27 pages, 7 figures. Paper with higher resolution color figures at http://cobalt.et.tudelft.nl/~leshem/postscripts/leshem/imaging.ps.g
    corecore