6,475 research outputs found

    ARCHANGEL: Tamper-proofing Video Archives using Temporal Content Hashes on the Blockchain

    Get PDF
    We present ARCHANGEL; a novel distributed ledger based system for assuring the long-term integrity of digital video archives. First, we describe a novel deep network architecture for computing compact temporal content hashes (TCHs) from audio-visual streams with durations of minutes or hours. Our TCHs are sensitive to accidental or malicious content modification (tampering) but invariant to the codec used to encode the video. This is necessary due to the curatorial requirement for archives to format shift video over time to ensure future accessibility. Second, we describe how the TCHs (and the models used to derive them) are secured via a proof-of-authority blockchain distributed across multiple independent archives. We report on the efficacy of ARCHANGEL within the context of a trial deployment in which the national government archives of the United Kingdom, Estonia and Norway participated.Comment: Accepted to CVPR Blockchain Workshop 201

    Material extrusion-based additive manufacturing: G-code and firmware attacks and Defense frameworks

    Get PDF
    Additive Manufacturing (AM) refers to a group of manufacturing processes that create physical objects by sequentially depositing thin layers. AM enables highly customized production with minimal material wastage, rapid and inexpensive prototyping, and the production of complex assemblies as single parts in smaller production facilities. These features make AM an essential component of Industry 4.0 or Smart Manufacturing. It is now used to print functional components for aircraft, rocket engines, automobiles, medical implants, and more. However, the increased popularity of AM also raises concerns about cybersecurity. Researchers have demonstrated strength degradation attacks on printed objects by injecting cavities in the design file which cause premature failure and catastrophic consequences such as failure of the attacked propeller of a drone during flight. Since a 3D printer is a cyber-physical system that connects the cyber and physical domains in a single process chain, it has a different set of vulnerabilities and security requirements compared to a conventional IT setup. My Ph.D. research focuses on the cybersecurity of one of the most popular AM processes, Material Extrusion or Fused Filament Fabrication (FFF). Although previous research has investigated attacks on printed objects by altering the design, these attacks often leave a larger footprint and are easier to detect. To address this limitation, I have focused on attacks at the intermediate stage of slicing through minimal manipulations at the individual sub-process level. By doing so, I have demonstrated that it is possible to implant subtle defects in printed parts that can evade detection schemes and bypass many quality assessment checks. In addition to exploring attacks through design files or network layer manipulations, I have also proposed firmware attacks that cause damage to the printed parts, the printer, and the printing facility. To detect sabotage attacks on FFF process, I have developed an attack detection framework that analyzes the cyber and physical domain state of the printing process and detects anomalies using a series of estimation and comparison algorithms in time, space, and frequency domains. An implementation case study confirms that cyber-physical security frameworks are an effective solution against sophisticated sabotage attacks. The increasing use of 3D printing technology to produce functional components underscores the growing importance of compliance and regulations in ensuring their quality and safety. Currently, there are no standards or best practices to guide a user in making a critical printing setup forensically ready. Therefore, I am proposing a novel forensic readiness framework for material extrusion-based 3D printing that will guide standards organizations in formulating compliance criteria for important 3D printing setups. I am optimistic that my offensive and defensive research endeavors presented in this thesis will serve as a valuable resource for researchers and industry practitioners in creating a safer and more secure future for additive manufacturing

    Overview of Copyright Law

    Get PDF
    This article offers an overview of copyright in general in common law and civil law countries, with an emphasis on the U.S. and the European Union. It addresses the history and philosophies of copyright (authors’ right), subject matter of copyright (including the requirement of fixation and the exclusion of “ideas”), formalities, initial ownership and transfers of title, duration, exclusive moral and economic rights (including reproduction, adaptation, public performance and communication and making available to the public, distribution and exhaustion of the distribution right), exceptions and limitations (including fair use), and remedies. The article also covers the liability of intermediaries, and new copyright obligations concerning technological protections and copyright management information. It concludes with some observations concerning the role of copyright in promoting creativity and free expression

    Inspecting Traditions

    Get PDF
    In this paper I examine my thesis body of work, Inspecting Traditions. This paper illuminates my process of making Jewish objects through the use of digital fabrication techniques. The work in Inspecting Traditions uses historically Jewish forms as a lens in which to speak about the history of ceramics and its relationship to 21st century technology. This work developed a dialogue between the historical sources and modern technology by using 3D printing to create vessels
    • …
    corecore