2,419 research outputs found

    Automatic segmentation of the lumen of the carotid artery in ultrasound B-mode images

    Get PDF
    A new algorithm is proposed for the segmentation of the lumen and bifurcation boundaries of the carotid artery in B-mode ultrasound images. It uses the hipoechogenic characteristics of the lumen for the identification of the carotid boundaries and the echogenic characteristics for the identification of the bifurcation boundaries. The image to be segmented is processed with the application of an anisotropic diffusion filter for speckle removal and morphologic operators are employed in the detection of the artery. The obtained information is then used in the definition of two initial contours, one corresponding to the lumen and the other to the bifurcation boundaries, for the posterior application of the Chan-vese level set segmentation model. A set of longitudinal B-mode images of the common carotid artery (CCA) was acquired with a GE Healthcare Vivid-e ultrasound system (GE Healthcare, United Kingdom). All the acquired images include a part of the CCA and of the bifurcation that separates the CCA into the internal and external carotid arteries. In order to achieve the uppermost robustness in the imaging acquisition process, i.e., images with high contrast and low speckle noise, the scanner was adjusted differently for each acquisition and according to the medical exam. The obtained results prove that we were able to successfully apply a carotid segmentation technique based on cervical ultrasonography. The main advantage of the new segmentation method relies on the automatic identification of the carotid lumen, overcoming the limitations of the traditional methods

    Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery

    Get PDF
    Abstract—The robust identification and measurement of the intima media thickness (IMT) has a high clinical relevance because it represents one of the most precise predictors used in the assessment of potential future cardiovascular events. To facilitate the analysis of arterial wall thickening in serial clinical investigations, in this paper we have developed a novel fully automatic algorithm for the segmentation, measurement, and tracking of the intima media complex (IMC) in B-mode ultrasound video sequences. The proposed algorithm entails a two-stage image analysis process that initially addresses the segmentation of the IMC in the first frame of the ultrasound video sequence using a model-based approach; in the second step, a novel customized tracking procedure is applied to robustly detect the IMC in the subsequent frames. For the video tracking procedure, we introduce a spatially coherent algorithm called adaptive normalized correlation that prevents the tracking process from converging to wrong arterial interfaces. This represents the main contribution of this paper and was developed to deal with inconsistencies in the appearance of the IMC over the cardiac cycle. The quantitative evaluation has been carried out on 40 ultrasound video sequences of the common carotid artery (CCA) by comparing the results returned by the developed algorithm with respect to ground truth data that has been manually annotated by clinical experts. The measured IMTmean ± standard deviation recorded by the proposed algorithm is 0.60 mm ± 0.10, with a mean coefficient of variation (CV) of 2.05%, whereas the corresponding result obtained for the manually annotated ground truth data is 0.60 mm ± 0.11 with a mean CV equal to 5.60%. The numerical results reported in this paper indicate that the proposed algorithm is able to correctly segment and track the IMC in ultrasound CCA video sequences, and we were encouraged by the stability of our technique when applied to data captured under different imaging conditions. Future clinical studies will focus on the evaluation of patients that are affected by advanced cardiovascular conditions such as focal thickening and arterial plaques

    Automatic segmentation of the lumen of the carotid artery in ultrasound B-mode images

    Full text link

    Image segmentation and reconstruction of 3D surfaces from carotid ultrasound images

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Contrast Ultrasound Imaging of the Carotid Artery Vasa Vasorum and Atherosclerotic Plaque Neovascularization

    Get PDF
    Cardiovascular disease is associated with the aging of the population, obesity, metabolic syndrome, and diabetes. Therefore, it is important to develop non-invasive imaging systems to detect “at-risk” populations. New data suggest that contrast-enhanced ultrasound (CU) imaging of the carotid arteries enhances luminal irregularities (i.e., ulcers and plaques), improves near-wall, carotid intima-media thickness, and uniquely permits direct, real-time visualization of neovasculature of the atherosclerotic plaque and associated adventitial vasa vasorum. With continued clinical investigation, CU imaging of the carotid artery may afford an effective means to non-invasively identify atherosclerosis in “at-risk” populations while providing new standard for therapeutic monitoring

    The determinants of intra-plaque neovascularisation: a study by contrast-enhanced carotid ultrasonography

    Get PDF
    Atherosclerosis is a chronic inflammatory disorder, initiated by arterial wall injury, mediated by well-recognised cardiovascular risk factors and culminating in formation of plaques, the patho-biological substrate that precedes events such as stroke and myocardial infarction. Intraplaque neovascularisation (IPN) is one of several defence mechanisms in response to atherosclerosis. With development of an atherosclerotic plaque within the intima, the distance between the deeper intimal layers and the luminal surface increases, producing hypoxia within the arterial wall. This stimulates release of pro-angiogenic factors that induces neoangiogenesis in an attempt to normalise oxygen tension. However, these neo-vessels are fragile, immature and leaky and thought to be the primary cause of intraplaque haemorrhage, now appreciated to be a key risk factor for plaque rupture. Therefore, the presence of IPN is now widely recognised as a precursor of the “vulnerable plaque”. Contrast-enhanced ultrasound (CEUS) is a non-invasive method of imaging carotid plaques and, as contrast bubbles travel wherever erythrocytes travel, they permit visualization of IPN. Prior research studies have demonstrated that CEUS can detect IPN with a high degree of accuracy (on comparison with histological plaque specimens) and have shown a relationship between extent of plaque neovessels and plaque echogenicity and between plaque neovascularization and prior cardiovascular events. However, CEUS is a relatively recently described imaging technique and there were a number of unanswered questions in this field, some of which formed the basis for study in this research Thesis. In this Thesis, research studies were conducted on human subjects using CEUS imaging to identify IPN and its determinants. The incidence and determinants of IPN in healthy asymptomatic individuals was unknown and was studied in subjects from the London Life Sciences Population (LOLIPOP) study, a large study exploring mechanisms for differences in cardiovascular disease (CVD) between South Asian and European White individuals. The study found that approximately half of all plaques contain IPN. The only variable associated with IPN presence in an adjusted analysis was Asian ethnicity. This finding potentially has significant implications as it may help explain, in part, the greater CVD burden observed in Asian populations. A study comparing visualization of the carotid tree during B-mode and CEUS imaging was also conducted. Both IMT visualization and plaque detection were significantly improved by CEUS, implying that CEUS is superior to B-mode imaging for detection of sub-clinical atherosclerosis. Radiotherapy (RT) damages arterial walls and promotes atherosclerosis. The carotid arteries frequently receive significant incidental doses of radiation during RT treatment of head and neck cancers. The effect of RT on plaque composition – specifically IPN – had not been studied and thus a collaborative cardio-oncological study was conducted to assess the effects of RT upon IPN in cancer survivors who had previously received RT. A significant association between RT and IPN was found which may provide insights into the mechanisms underlying the increased stroke risk amongst cancer survivors treated by RT. Finally, a collaboration with biophysicists was formed to develop and validate a novel algorithm for quantitative analysis of IPN. Patients clinically scheduled to undergo carotid endarterectomy were recruited and underwent CEUS imaging prior to surgery. This study did not achieve its principal aims due to challenges with patient recruitment, challenges in image quality and with the quantification software also. Future directions of study in this promising field have been addressed in the thesis summary.Open Acces

    Traumatic bilateral dissection of cervical internal carotid artery in the wake of a car accident: A case report

    Get PDF
    Background Bilateral carotid artery dissection secondary to severe trauma is rare and can be potentially life -threatening if not diagnosed and treated properly. Case Presentation We report a 29-year-old female who was admitted to the emergency department after a car accident. The patient was conscious at the time of admission and presented with an initial Glasgow Coma Scale (GCS) of 15 presenting normal vital signs. The patient developed motor dysphasia with right upper limb paresis a few hours after the admission. Magnetic resonance imaging (MRI) revealed a bilateral cervical internal carotid artery (ICA) occlusion in addition to left frontal lobe infarct in a subacute phase. Medical management was successful and the patient was discharged from the hospital two weeks after the admission. Discussion Noninvasive vascular imagining modalities are merging as the gold standard in the early detection of carotid artery dissection (CAD). Typical pathognomonic findings on MRI include double lumen and intimal flap. The management with systemic anticoagulation or antiplatelet therapy is aimed to prevent the development of ischemic stroke. In case of medical therapy being ineffective or in case of complication or any disorders suffered by a patient, endovascular treatment is performed. Conclusion With early detection and proper management, traumatic dissection of cervical carotid artery can have a benign outcome. As for the current patient, medical treatment with anticoagulation was sufficient and surgical management was therefore not required. Improvement in the patients’ speech was observed; nevertheless the continuation of speech therapy was indicated

    Simulated hemodynamics in human carotid bifurcation based on Doppler ultrasound data

    Get PDF
    Background: Atherosclerotic lesions commonly develop at arterial branch sites. Noninvasive carotid artery ultrasound is a well-established and effective method which allows real-time images and measurements of flow velocities. We aimed to develop a methodology for patient-specific computational 3D reconstruction and blood flow simulation based on ultrasound image data.Material and Methods: Subject-specific studies based on the acquisition of a set of longitudinal and sequential cross-sectional ultrasound images and Doppler velocity measurements at common carotid artery (CCA) bifurcation were performed at a university hospital. A developed simulation code of blood flow by the finite element method (FEM) that includes an adequate structured meshing of the common carotid artery bifurcation was used to investigate local flow biomechanics.Results: Hemodynamic simulations of CCA bifurcations for six individuals were analysed. Comparing pairs (Doppler, FEM) of velocity values, Lin's concordance correlation coefficient analysis demonstrated an almost perfect strength of agreement (c = 0.9911), in patients with different degrees of internal carotid artery (ICA) stenosis. Numerical simulations were able to capture areas of low wall shear stress correlated with stagnation zones.Conclusions: Simulated hemodynamic parameters can reproduce the disturbed flow conditions at the bifurcation of CCA and proximal ICA, which play an important role in the development of local atherosclerotic plaques. This novel technology might help to understand the relationship between hemodynamic environment and carotid wall lesions, and have a future impact in carotid stenosis diagnosis and management

    Carotid plaque imaging and the risk of atherosclerotic cardiovascular disease

    Get PDF
    Carotid artery plaque is a measure of atherosclerosis and is associated with future risk of atherosclerotic cardiovascular disease (ASCVD), which encompasses coronary, cerebrovascular, and peripheral arterial diseases. With advanced imaging techniques, computerized tomography (CT) and magnetic resonance imaging (MRI) have shown their potential superiority to routine ultrasound to detect features of carotid plaque vulnerability, such as intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous cap (FC), and calcification. The correlation between imaging features and histological changes of carotid plaques has been investigated. Imaging of carotid features has been used to predict the risk of cardiovascular events. Other techniques such as nuclear imaging and intra-vascular ultrasound (IVUS) have also been proposed to better understand the vulnerable carotid plaque features. In this article, we review the studies of imaging specific carotid plaque components and their correlation with risk scores
    corecore