17 research outputs found

    The diplomat's dilemma: Maximal power for minimal effort in social networks

    Full text link
    Closeness is a global measure of centrality in networks, and a proxy for how influential actors are in social networks. In most network models, and many empirical networks, closeness is strongly correlated with degree. However, in social networks there is a cost of maintaining social ties. This leads to a situation (that can occur in the professional social networks of executives, lobbyists, diplomats and so on) where agents have the conflicting objectives of aiming for centrality while simultaneously keeping the degree low. We investigate this situation in an adaptive network-evolution model where agents optimize their positions in the network following individual strategies, and using only local information. The strategies are also optimized, based on the success of the agent and its neighbors. We measure and describe the time evolution of the network and the agents' strategies.Comment: Submitted to Adaptive Networks: Theory, Models and Applications, to be published from Springe

    Bounded Confidence under Preferential Flip: A Coupled Dynamics of Structural Balance and Opinions

    Full text link
    In this work we study the coupled dynamics of social balance and opinion formation. We propose a model where agents form opinions under bounded confidence, but only considering the opinions of their friends. The signs of social ties -friendships and enmities- evolve seeking for social balance, taking into account how similar agents' opinions are. We consider both the case where opinions have one and two dimensions. We find that our dynamics produces the segregation of agents into two cliques, with the opinions of agents in one clique differing from those in the other. Depending on the level of bounded confidence, the dynamics can produce either consensus of opinions within each clique or the coexistence of several opinion clusters in a clique. For the uni-dimensional case, the opinions in one clique are all below the opinions in the other clique, hence defining a "left clique" and a "right clique". In the two-dimensional case, our numerical results suggest that the two cliques are separated by a hyperplane in the opinion space. We also show that the phenomenon of unidimensional opinions identified by DeMarzo, Vayanos and Zwiebel (Q J Econ 2003) extends partially to our dynamics. Finally, in the context of politics, we comment about the possible relation of our results to the fragmentation of an ideology and the emergence of new political parties.Comment: 8 figures, PLoS ONE 11(10): e0164323, 201

    Stochastic network formation and homophily

    Full text link
    This is a chapter of the forthcoming Oxford Handbook on the Economics of Networks

    Distress propagation in complex networks: The case of non-linear DebtRank

    Get PDF
    We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank assumes that losses are propagated linearly between connected banks. Here we relax this assumption and introduce a one-parameter family of non-linear propagation functions. As a case study, we apply this algorithm to a data-set of 183 European banks, and we study how the stability of the system depends on the non-linearity parameter under different stress-test scenarios. We find that the system is characterized by a transition between a regime where small shocks can be amplified and a regime where shocks do not propagate, and that the overall stability of the system increases between 2008 and 2013

    The diplomat's dilemma: Maximal power for minimal effort in social networks

    Full text link
    Closeness is a global measure of centrality in networks, and a proxy for how influential actors are in social networks. In most network models, and many empirical networks, closeness is strongly correlated with degree. However, in social networks there is a cost of maintaining social ties. This leads to a situation (that can occur in the professional social networks of executives, lobbyists, diplomats and so on) where agents have the conflicting objectives of aiming for centrality while simultaneously keeping the degree low. We investigate this situation in an adaptive network-evolution model where agents optimize their positions in the network following individual strategies, and using only local information. The strategies are also optimized, based on the success of the agent and its neighbors. We measure and describe the time evolution of the network and the agents' strategies.Comment: Submitted to Adaptive Networks: Theory, Models and Applications, to be published from Springe

    Model of Multilayer Knowledge Diffusion for Competence Development in an Organization

    Full text link
    Growing role of intellectual capital within organizations is affecting new strategies related to knowledge management and competence development. Among different aspects related to this field, knowledge diffusion has become one of interesting areas from both practitioner and researchers perspective. Several models were proposed with main goal to simulate diffusion and to explain the nature of these processes. Existing models are focused on knowledge diffusion and they assume diffusion within a single layer using knowledge representation. From the organizational perspective connecting several types of knowledge and modelling changes of competence can bring additional value. In the article we extended existing approaches by using multilayer diffusion model and focused on analysis of competence development process. The proposed model describes competence development process in a new way through horizontal and vertical knowledge diffusion in multilayer network. In the network, agents collaborate and interchange various kind of knowledge through different layers and this mutual activities affect the competences in a positive or negative way. Taking under consideration workers cognitive and social abilities and the previous level of competence the new competence level can be estimated. The model is developed to support competence management in different organizations

    The complexity of transitions

    Get PDF
    No abstract

    Introducing serendipity in a social network model of knowledge diffusion

    Get PDF
    In this paper, we study serendipity as a possible strategy to control the behavior of an agent-based network model of knowledge diffusion. The idea of considering serendipity in a strategic way has been first explored in Network Learning and Information Seeking studies. After presenting the major contributions of serendipity studies to digital environments, we discuss the extension to our model: Agents are enriched with random topics for establishing new communication according to different strategies. The results show how important network properties could be influenced, like reducing the prevalence of hubs in the network's core and increasing local communication in the periphery, similar to the effects of more traditional self-organization methods. Therefore, from this initial study, when serendipity is opportunistically directed, it appears to behave as an effective and applicable approach to social network control

    On a General class of stochastic co-evolutionary dynamics

    Get PDF
    This paper presents a unified framework to study the co-evolution of networks and play, using the language of evolutionary game theory. We show by examples that the set-up is rich enough to encompass many recent models discussed by the literature. We completely characterize the invariant distribution of such processes and show how to calculate stochastically stable states by means of a treecharacterization algorithm. Moreover, specializing the process a bit further allows us to completely characterize the generated random graph ensemble. This new result demonstrates a new and rather general relation between random graph theory and evolutionary models with endogenous interaction structures.
    corecore