47 research outputs found

    Aeronautical engineering: A continuing bibliography with indexes (supplement 271)

    Get PDF
    This bibliography lists 666 reports, articles, and other documents introduced into the NASA scientific and technical information system in October, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 301)

    Get PDF
    This bibliography lists 1291 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 251)

    Get PDF
    This bibliography lists 526 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 256)

    Get PDF
    This bibliography lists 426 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical enginnering: A cumulative index to a continuing bibliography (supplement 312)

    Get PDF
    This is a cumulative index to the abstracts contained in NASA SP-7037 (301) through NASA SP-7073 (311) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled by the Center for AeroSpace Information of the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes

    Aeronautical Engineering: A continuing bibliography with indexes (supplement 166)

    Get PDF
    This bibliography lists 558 reports, articles and other documents introduced into the NASA scientific and technical information system in September 1983

    Assessment of pilot workload rating in a ship deck landing scenario

    Get PDF
    Slijetanje helikoptera na brodsku platformu predviđenu za takvu misiju, veoma je zahtjevan zadatak za pilote budući da se pri slijetanju moraju uzeti u obzir nasumične kretnje broda na valovima, degradirani vizualni uvjeti i turbulencije struje zraka sa rotora koja nailazi na brodsku platformu. Slijetanje helikoptera na brodsku platformu izvodi se u raznim slučajevima kao na primjer u operacijama spašavanja, prisilnog slijetanja zbog eventualnih kvarova iznad helikoptera iznad vode, vojnim operacijama, edukaciji pilota helikoptera kao i mnogim drugim. Iz tog razloga, motivacija za ovaj diplomski rad upravo je simulacija slijetanja helikoptera na brodsku platformu. Kao alat za provedbu ove simulacije koristit će simulator leta helikoptera (Rotorcraft Simulation Environment) smješten na Tehničkom Sveučilištu u Minhenu. Kako bi se kretnje broda u nastavku projekta mogle implementirati, potrebno je modelirati brod opisan kasnije u diplomskom radu, sa središtem koordinatnog sustava u središtu platforme za slijetanje helikoptera. Baza podataka koja sadrži informacije o nasumičnim kretnjama broda na površini vode preuzeta je iz Systematic Characterization Of the Naval Environment (SCONE) projekta, čiji su podaci dobiveni simulacijom kretanja brodske palube broda tipa DDG-51 korvete. U bazi podataka dostupne su informacije o gibanju broda u svih šest stupnjeva slobode. Glavna zadaća ovog diplomskog zadatka koji je dio Helicopter Ship Deck Operations (HELIOP) projekta je integracija SCONE baze podataka u sam ROSIE simulator koristeći programske pakete Matlab i Simulink, te povezivanje sa postojećim sustavom za simulaciju leta helikoptera. Nakon implementacije podataka o kretanju broda u sam simulator, organizirati će se testni letovi u kojima će se proučavati polu-autonomno i ručno slijetanje helikoptera na brod. Svrha testova je subjektivna i objektivna kvantitativna procjena intenziteta radnog opterećenja koji pilot ulaže prilikom slijetanja, te usporedba istog u različitim slučajevima. Kako bi se provela analiza, osmišljeni su specifični upitnici sa usmjerenim pitanjima na temelju kojih će se prikupiti podaci za usporedbu. Objektivna procjena radnog opterećenja promatrat će se također sa objektivnog stajališta, analizirajući pokrete pilotske upravljačke palice u različitim slučajevima.Helicopter landing on a ship deck is a challenging task due to increased pilot workload while dealing with random ship motion and effects like ship air wake turbulence. There are numerous occasions where the helicopter ship deck landing could be necessary like naval rescue operations, forced landing over the sea due to possible helicopter system failures, military operations and exercises, helicopter pilot training. For that matter, this master’s thesis deals with the simulated ship deck landing scenario. A six degrees of freedom Rotorcraft Simulator Environment (ROSIE) which is situated at the Technical University of Munich (TUM) will be used as a tool to execute the simulation. For that purpose, it was necessary to build a completely new ship model with the coordinate system origin in the center of the ship deck, so the motion data can be implemented later. Afterwards, a realistic ship deck landing simulation scenario could be successfully executed. The movement data which will be implemented is acquired from the Systematic Characterization of the Naval Environment (SCONE) project database and the data is provided for simulated deck motion using a state-of-the-art non-linear seakeeping prediction code (LAMP). Files from the database include a full, consistent set of six degrees of freedom ship deck motion data for a generic surface combatant ship (DTMB Model 5415 hull) which is a representative of a DDG-51 type ship. The main object of this thesis inside the HELIOP project is to integrate the SCONE database as a single Simulink block to the ROSIE environment which is simulated by MATLAB files with a flight model based on recorded data. After the data implementation, integration to the graphical interface, flight test campaigns will be defined for the helicopter ship deck landing in manual and guided mode scenarios. The focus of the flight campaigns will be put on subjective and objective quantitative analysis in terms of required pilot workload during the landing phase. Specific set of questionnaires for the pilots will be presented and used to help with the subjective workload assessment. The objective workload assessment will be conducted by analyzing the cyclic stick input data in different landing scenarios

    Ocjena radnog opterećenja pilota helikoptera za scenarij slijetanja na brodsku platformu

    Get PDF
    Slijetanje helikoptera na brodsku platformu predviđenu za takvu misiju, veoma je zahtjevan zadatak za pilote budući da se pri slijetanju moraju uzeti u obzir nasumične kretnje broda na valovima, degradirani vizualni uvjeti i turbulencije struje zraka sa rotora koja nailazi na brodsku platformu. Slijetanje helikoptera na brodsku platformu izvodi se u raznim slučajevima kao na primjer u operacijama spašavanja, prisilnog slijetanja zbog eventualnih kvarova iznad helikoptera iznad vode, vojnim operacijama, edukaciji pilota helikoptera kao i mnogim drugim. Iz tog razloga, motivacija za ovaj diplomski rad upravo je simulacija slijetanja helikoptera na brodsku platformu. Kao alat za provedbu ove simulacije koristit će simulator leta helikoptera (Rotorcraft Simulation Environment) smješten na Tehničkom Sveučilištu u Minhenu. Kako bi se kretnje broda u nastavku projekta mogle implementirati, potrebno je modelirati brod opisan kasnije u diplomskom radu, sa središtem koordinatnog sustava u središtu platforme za slijetanje helikoptera. Baza podataka koja sadrži informacije o nasumičnim kretnjama broda na površini vode preuzeta je iz Systematic Characterization Of the Naval Environment (SCONE) projekta, čiji su podaci dobiveni simulacijom kretanja brodske palube broda tipa DDG-51 korvete. U bazi podataka dostupne su informacije o gibanju broda u svih šest stupnjeva slobode. Glavna zadaća ovog diplomskog zadatka koji je dio Helicopter Ship Deck Operations (HELIOP) projekta je integracija SCONE baze podataka u sam ROSIE simulator koristeći programske pakete Matlab i Simulink, te povezivanje sa postojećim sustavom za simulaciju leta helikoptera. Nakon implementacije podataka o kretanju broda u sam simulator, organizirati će se testni letovi u kojima će se proučavati polu-autonomno i ručno slijetanje helikoptera na brod. Svrha testova je subjektivna i objektivna kvantitativna procjena intenziteta radnog opterećenja koji pilot ulaže prilikom slijetanja, te usporedba istog u različitim slučajevima. Kako bi se provela analiza, osmišljeni su specifični upitnici sa usmjerenim pitanjima na temelju kojih će se prikupiti podaci za usporedbu. Objektivna procjena radnog opterećenja promatrat će se također sa objektivnog stajališta, analizirajući pokrete pilotske upravljačke palice u različitim slučajevima

    Enhancing 3D Autonomous Navigation Through Obstacle Fields: Homogeneous Localisation and Mapping, with Obstacle-Aware Trajectory Optimisation

    Get PDF
    Small flying robots have numerous potential applications, from quadrotors for search and rescue, infrastructure inspection and package delivery to free-flying satellites for assistance activities inside a space station. To enable these applications, a key challenge is autonomous navigation in 3D, near obstacles on a power, mass and computation constrained platform. This challenge requires a robot to perform localisation, mapping, dynamics-aware trajectory planning and control. The current state-of-the-art uses separate algorithms for each component. Here, the aim is for a more homogeneous approach in the search for improved efficiencies and capabilities. First, an algorithm is described to perform Simultaneous Localisation And Mapping (SLAM) with physical, 3D map representation that can also be used to represent obstacles for trajectory planning: Non-Uniform Rational B-Spline (NURBS) surfaces. Termed NURBSLAM, this algorithm is shown to combine the typically separate tasks of localisation and obstacle mapping. Second, a trajectory optimisation algorithm is presented that produces dynamically-optimal trajectories with direct consideration of obstacles, providing a middle ground between path planners and trajectory smoothers. Called the Admissible Subspace TRajectory Optimiser (ASTRO), the algorithm can produce trajectories that are easier to track than the state-of-the-art for flight near obstacles, as shown in flight tests with quadrotors. For quadrotors to track trajectories, a critical component is the differential flatness transformation that links position and attitude controllers. Existing singularities in this transformation are analysed, solutions are proposed and are then demonstrated in flight tests. Finally, a combined system of NURBSLAM and ASTRO are brought together and tested against the state-of-the-art in a novel simulation environment to prove the concept that a single 3D representation can be used for localisation, mapping, and planning

    Aeronautical Engineering, a continuing bibliography with indexes, supplement 173

    Get PDF
    This bibliography lists 704 reports, articles and other documents introduced into the NASA scientific and technical information system in March 1984
    corecore