5 research outputs found

    The role of AI classifiers in skin cancer images

    Get PDF
    Background: The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities. Materials and methods: The bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods. Results: The search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision. Conclusion: Different imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome.info:eu-repo/semantics/publishedVersio

    A Review on Skin Disease Classification and Detection Using Deep Learning Techniques

    Get PDF
    Skin cancer ranks among the most dangerous cancers. Skin cancers are commonly referred to as Melanoma. Melanoma is brought on by genetic faults or mutations on the skin, which are caused by Unrepaired Deoxyribonucleic Acid (DNA) in skin cells. It is essential to detect skin cancer in its infancy phase since it is more curable in its initial phases. Skin cancer typically progresses to other regions of the body. Owing to the disease's increased frequency, high mortality rate, and prohibitively high cost of medical treatments, early diagnosis of skin cancer signs is crucial. Due to the fact that how hazardous these disorders are, scholars have developed a number of early-detection techniques for melanoma. Lesion characteristics such as symmetry, colour, size, shape, and others are often utilised to detect skin cancer and distinguish benign skin cancer from melanoma. An in-depth investigation of deep learning techniques for melanoma's early detection is provided in this study. This study discusses the traditional feature extraction-based machine learning approaches for the segmentation and classification of skin lesions. Comparison-oriented research has been conducted to demonstrate the significance of various deep learning-based segmentation and classification approaches
    corecore