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Abstract 

 

 
The incidence rates of skin cancer lesions have increased worldwide over the last years, due 

to excessive exposure to UV radiation. The current diagnostic methods depend greatly on 

physicians’ experience, resulting in distinct diagnosis for the same skin lesion. Consequently, new 

diagnostic techniques have been developed, in order to reduce the uncertainty of this analysis. 

Infrared Thermal Imaging (IRT) is an innocuous method that enables the detection of skin 

physiological alterations, through temperature changes. The implementation of image analysis and 

processing algorithms to thermograms, allied with artificial intelligence classifiers, make this 

imaging modality a potential optimal tool for skin cancer diagnosis. Thus, being the central topic 

of this dissertation. 

This research work was focused on the assessment of skin neoplasms with medical infrared 

thermal imaging. An acquisition protocol for static and dynamic application of this technique in a 

clinical scenario was developed, as well as different strategies for image analysis and processing. 

Machine learning algorithms for classification purposes were explored, with different learners and 

input vectors. 

The results show that the distinction between different skin neoplasm types is doable, using 

medical infrared imaging, specially in the task of melanoma and nevi differentiation. These results 

get better when thermal information retrieved from images acquired dynamically is used, 

achieving an accuracy of 84.2% and a specificity of 91.3% with a learner based on support vector 

machines. 
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Resumo 

 

 
A taxa de incidência de lesões cancerígenas da pele tem aumentado nos últimos anos, a nível 

mundial, devido à exposição excessiva a radiação UV. Os métodos de diagnóstico atuais dependem 

da experiência do clínico, sendo que análises díspares podem ser encontradas para a mesma lesão. 

Desta forma, novas técnicas de diagnóstico têm sido exploradas, com o objetivo de reduzir a 

incerteza do processo. A termografia médica é um método de imagiologia inócuo que permite a 

deteção de alterações fisiológicas a nível cutâneo, através de diferenças de temperatura. A 

aplicação de algoritmos de análise e processamento de imagem aos termogramas, aliada a 

estratégias de classificação com métodos de inteligência artificial, potencia o uso desta técnica 

como uma ferramenta auxiliar ao diagnóstico de cancro de pele. Assim, este será o tópico central 

desta dissertação. 

Este trabalho de investigação focou-se na avaliação térmica de neoplasias da pele. Elaborou-

se um protocolo de aquisição adequado para um cenário clínico e desenvolveram-se algoritmos de 

análise e processamento de imagens com base nos termogramas adquiridos com a aplicação 

estática e dinâmica deste método de imagiologia. A implementação de machine learning para 

tarefas de classificação foi também explorada com diferentes classificadores e vetores de input. 

Os resultados obtidos demonstram que a distinção de diferentes tipos de neoplasias de pele 

é possível, utilizando termografia médica infravermelha, principalmente quando o objetivo 

principal é a diferenciação de melanomas e nevos melanocíticos. As métricas de classificação 

melhoram quando esta distinção é realizada com base em informação extraída de imagens obtidas 

dinamicamente, atingindo valores de exatidão de 84.2% e especificidade de 91.3% com um 

algoritmo baseado em support vector machines. 
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Chapter 1 

Introduction 

The incidence rates of melanoma (MSC) and non-melanoma skin cancer (NMSC) have increased 

over the last decades [1], affecting more than 2 million individuals worldwide [2]. Only in 2012, 

European countries registered an incidence rate for MSC of 11.1 per 100 000 population, having 

Portugal contributed with an 8.2 [3], excluding NMSC. Even though, detailed statistics concerning 

the occurrence of non-melanoma is rare, it is of knowledge that its number exceeds largely the 

one of MSC and, for this reason, increased attention has been given to this type [1]. 

When skin fails to adapt to aggressive environmental changes, a defect occurs in the 

maintenance of physiological balance. The external stimuli can result in dermal and/or epidermal 

lesions, like skin neoplasms, and an abnormal process is triggered in the most exposed organ of 

the human body [4].  

Skin neoplasms are formed when damaged skin cells multiply in a rapid and uncontrolled 

manner, as oppose to dying and being replaced by healthy ones, due to faulty apoptotic and 

regulatory mechanisms. This continuous abnormal growth of tissue leads to the formation of a 

mass on site, that displays no function for the host organism [5]. Its classification as benign or 

malignant lesions resides in particular features. The first tumour type includes, e. g., nevi and 

seborrheic keratosis, and is characterized by low growth rates, being unable to spread to adjacent 

tissues. Malignant tumours grow at high rates and frequently metastasize, invading other body 

locations. This latter neoplasm type may further be divided into melanoma (MSC) and non-

melanoma skin cancer (NMSC), such as basal cell carcinoma (BCC) and squamous cell carcinoma 

(SCC), according to its origin [6], [7]. 

Throughout the years, authors have appointed several factors and risky behaviours as possible 

causes for skin neoplasms to arise, especially the malignant ones. Exposure to arsenic [8], 

immunodeficiency [9], phenotypic characteristics [10], high number of nevi, family background of 

MSC or previous record of NMSC [11] have been linked to this pathological process. However, 

excessive exposure to ultraviolet (UV) radiation and history of sunburns during childhood are, most 

definitely, the primary causes for skin cancer development, justifying its common appearance in 

bare regions of the body, such as head, face, arms and dorsum of the hands [12]. 
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One of the main challenges for skin cancer is its detection, since most malignant tumours are 

treatable if detected at an early stage [13]. Currently, visual inspection is the primary method for 

skin cancer diagnosis and is typically performed by a physician, taking into account the ABCDE 

clinical rule (Asymmetry, Border, Colour, Diameter, Evolution). This examination presents varying 

precision rates, since it highly depends on the experience of the health care professional [14]. In 

addition, early detection is complex and often non-existent, decreasing the chances of a successful 

treatment, when dealing with non-benign tumours [15]. If a lesion is suspected to be malignant, 

surgical excision is performed, followed by an histopathological study to establish an accurate 

diagnosis [16]. In order to improve skin cancer detection, reducing the mortality rates associated 

with this disease, and avoiding discomfort and unnecessary scar tissue provoked by the current 

time-consuming procedures, new diagnostic methods have been explored, such as dermoscopy, 

laser Doppler imaging and infrared thermal imaging (IRT) [14], [15]. 

IRT takes advantage of the ability of the outer layer of the skin to emit IR radiation, to aid in 

medical diagnosis. The electromagnetic waves, in the range of 1 to 14 μm, emitted by this coat 

due to the underlying vasculature, are detected by infrared cameras, producing images according 

to the skin’s emissivity of natural infrared radiation, i. e., thermograms [17], [18]. The recorded 

temperature values can be analysed, with different image processing tools, and used to detect 

normal or abnormal physiological processes[17], as those that take place in skin lesions. This non-

invasive and non-ionizing[19] method has been applied, in different studies, in static experiments, 

i. e., without any thermal stimulus prior to the image acquisition process, or dynamically, with 

the application of a thermal stress to the lesion site before the thermogram formation. The second 

methodology has shown better results in skin cancer detection, particularly in the diagnosis of 

early stage melanoma [20]. 

Still, understanding the information supplied by thermograms can be a challenging task for 

the physician. Thus, the introduction of artificial intelligence (AI) computational methods in this 

task can be of value, to supply a second opinion. The use of AI for decision support systems in 

medicine has been present for over 50 years. Machine learning algorithms represent a key branch 

of this area, specially when dealing with medical decisions, due to its ability to learn before 

drawing a conclusion [21]. In the case of skin cancer diagnosis, the set of variables retrieved during 

image analysis and processing can be used as inputs for a classifier, that delivers an output result, 

assigning each lesion to a given group [21]. High accuracy and efficiency rates are one of the main 

advantages of the application of these algorithms in medical diagnosis, since the developed 

learners can capture and integrate information a way that the human brain cannot, in a fraction 

of the time.  

1.1 – Motivation 

The increasing rates of skin cancer and associated numbers of death are a current problem in 

global population. Since its detection and diagnosis are the primary mean to reduce its impact, 
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new methodologies, like IRT, are needed to overcome some of the weaknesses of the current 

diagnosis processes and provide future assessment of treatment efficiency. 

1.2 – Aim 

In this dissertation, IRT will be used dynamically, with the aim of characterizing the thermal 

signature of different skin lesion types, diagnosed in patients of IPO-Porto. Machine learning 

classifier will be used for classification purposes, using thermal information retrieved from image 

analysis and processing. 

At the end, it is expected the differentiation of malignant and benign lesions, the distinction 

between distinct types of skin neoplasms and the correlation of such with the statistical data 

related to the studied population. 

1.3 - Contribution 

The results of this research project can be applied further along, in a clinical scenario, 

supplying complementary information to health care professionals, in the area of dermatology and 

plastic and reconstructive surgery. The outcomes can aid in the early diagnosis of skin lesions and 

subsequent distinction, lessening biopsy procedures, or in the prevention of recurrences, working 

as a screening tool. In any event, improving healthcare for patients and reducing costs associated 

with the pathology. 

The knowledge acquired throughout this dissertation contributed for the publication of 4 

scientific articles, included in Appendix I. 

1.4 – Dissertation outline 

The presented work is divided in eight chapters. The current, - Introduction –, explaining the 

problem, motivation, aim and contribution of this work. In chapter II, an overview of the skin’s 

constitution and associated thermoregulatory mechanisms is encountered, followed by a collection 

of sections dedicate to skin cancer formation, types and related statistics. The diagnosis and 

treatment techniques currently on the market are also regarded. In the next chapter, an 

introduction to medical thermography is performed and a literature review is included to define 

the current state of the application of IRT in the detection/monitoring of skin neoplasms and 

understand its faults. A bibliographic research is also found in chapter IV but focused on the 

application of artificial intelligence classifiers in skin cancer detection with different imaging 

modalities. Chapter V includes a detailed description of the materials and methodology of this 

project, particularly the developed static and dynamic image analysis strategy and implemented 

classifiers. The comparison between the images acquired using static and dynamic thermography 

are addressed in Chapter VI, followed by the discussion of such in VII. Lastly, Chapter VIII, the 

conclusion, contains the primary achievements and the suggested future improvements. 
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Chapter 2 

Skin oncological conditions 

In this chapter, a brief description of the skin’s constitution is presented, as well as the 

process involved in the thermoregulation of the human body. Following, the formation of skin 

neoplasms and the anatomic and physiological alterations involved are addressed, risk factors and 

potential triggers. A distinction between malignant and benign lesions is regarded with a more 

detailed description of the different neoplasms encompassed by each type. The main treatments 

and diagnosis techniques currently utilized are also appointed. 

2.1 – Skin constitution 

The skin of an adult weights between 3 to 5 kg, and coats, approximately, an area of 2 m2, 

varying in thickness from 1.5 to 4.0 mm, depending of the body region that is covered [4], [22]. 

Being the biggest and most exposed organ of the human body, it is responsible for interacting with 

the external environment, transmitting outside stimuli to the interior [23]. Its constituents 

accomplish the specific functions for which the skin is responsible. 

The skin is composed by two main layers: epidermis and dermis – Figure 2.1A (adapted from 

[24]). 

The first and topmost coat – epidermis – is defined as a stratified squamous epithelium and is 

commonly divided into four sheets of cells: stratum basale or stratum germinativum, stratum 

spinosum, stratum granulosum and stratum corneum; which perform barrier functions [25]. The 

cellular content of this layer includes, in its majority, keratinocytes (85-95%), that play a key role 

in Vitamin D synthesis [4]. Additionally, Langerhans’s cells and melanocytes, are also found in this 

layer, providing protection against antigens or microbes and UV radiation, respectively, as well as 

Merkel cells that possess a sensory function. No blood vessels are encountered in the epidermis 

[25]. 

The underlying sheet of connective tissue – dermis – presents lymphocytes, mononuclear 

phagocytes, Langerhans’s cells and mast cells in its cellular composition [25]. In addition, it 

presents a high number of fibroblasts, that are responsible for the production of collagen and 
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elastin fibres, granting structural support and resistance to mechanical stress [26]. Other 

structures, such as hair follicles, sweat glands, sebaceous glands, apocrine glands, nerves and 

lymphatic vessels can also be encountered in this layer [26]. 

 

 

 
Figure 2.1 – Scheme of human skin: A – Layers and its main structures; B – Capillary loop. 

 

In contrast to epidermis, dermis is highly vascularized, presenting a vascular structure 

organized, mostly, in two horizontal levels. On the lowest part of the dermis lies the deeper plexus, 

nurturing hair follicles and sweat glands with its arterioles, while on the upper part, the arterioles 

and venules that compose the superficial plexus, give rise to capillary loops [4] – Figure 2.1B 

(adapted from [27]). 

Some authors [26] consider, yet, a third coat, the hypodermis or subcutaneous tissue, which 

is basically composed by the fat that lies beneath the dermis. This skin layer presents an important 

venous plexus whose blood flow is regulated by arteriovenous anastomosis (AVA), i. e., thick-

walled vessels that connect arteries to veins [28], [29] – Figure 2.2 (adapted from [29]). Together 

with the dermis vascular network, these structures play an essential role in the regulation of body 

temperature, fulfilling one of the most important functions of the skin - thermoregulation [30]. 
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Figure 2.2 - Skin layers and vascular structures encountered. 

2.2 – Thermophysiology 

The maintenance of body temperature is vital for the proper functioning of the human 

organism, since a small deviation of 3.5 °C, from the core temperature (Tc) of 37 degrees Celsius, 

can lead to physiological complications and even death [31]. This thermal equilibrium is 

maintained or achieved by the thermoregulatory system, through heat loss and heat generation, 

after the detection of a temperature alteration by thermoreceptors [18], [32].  

The Tc is completely regulated by the hypothalamus and maintains its value thoroughly 

constant, whereas the shell temperature (Ts), i.e., the temperature of skin, subcutaneous tissue 

and muscle tissue, is regulated, primarily, by skin’s microvasculature and thermal changes in the 

surrounding environment, and oscillates in a wider range of temperature values [31]. Under a 

normal physiological status, Ts is lower than Tc [28]. 

When in a cold environment, the cold receptors located in the skin transmit information to 

the hypothalamus, through the sympathetic nerve system [29]. Following, a motor response, that 

includes vasoconstriction of the AVA in the periphery is send lowering blood flow in the dermis. As 

a consequence, a decrease in Ts is verified, as an effort to resemble the environmental conditions, 

decreasing, therefore, heat losses [32] – Figure 2.3A (adapted from [33]). In contrast, when in a 

hotter atmosphere, vasodilation is encouraged to increase blood circulation in the periphery and 

raise skin temperature. Thus, heat losses increase with the mentioned purpose [29] – Figure 2.3B 

(adapted from [33]).  

Figure 2.3 - Thermoregulation of skin temperature: A-Vasoconstriction, B–Vasodilation.
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These thermoreceptors vary in their constitution and number, making the time-response of 

thermal stimulus different, depending on the temperature range. While cold receptors are 

composed by myelinated Aδ fibres, hot sensors present unmielated C fibres. This histological 

difference affects the response times of both nerve types, making the transduction of information 

through action potentials much faster in Aδ fibres [34] – Table 2.1 [35]. Its location also varies, 

with cold sensors situated at, approximately, 0.15 to 0.17 mm from the skin surface and hot ones 

at a depth of 0.3-0.6 mm [29]. These facts, combined with the excess of cold sensors in relations 

to warm ones, makes the detection of cold stimulus much faster than the detection of warm ones 

[34]. 

It is of interest to point that the activation of different sensors depends on the temperature 

stimuli. For example, cold receptors will not respond to hot stimuli and the contrary is verified in 

warm ones. When a temperature below 20°C or above 45°C is reached, the thermal receptors are 

inactivated and pain sensors – nociceptors – are stimulated [36]. This immediate activation is 

mediated by Aδ fibres [35], explaining the sensation of pain before heat when burning occurs. 

Table 2.1 - Nerve fibres classification and respective conduction velocities. 

Fibre type Aβ Aδ C 

Conduction velocities (m/s) 36-90 5-36 0.2-1 

 

The temperature regulation mechanisms located on the surface of the body can also be 

applied to control Tc. This process happens at all times when heat generated by metabolic activity 

is directed, by blood vessels, to the skin, in order to maintain the core temperature value [28]. 

Thus, as the metabolic rate of tissues increases, its temperature also rises, and an increment of 

blood flow in the periphery is needed to lower this value [28]. 

The heat losses that take place on the skin-environment interface are influenced by external 

factors, occurring by convection, conduction and radiation, and evaporation [17]. The latter is 

observed when the core temperature is risen, as in physical activities, transferring water in a liquid 

form to the gaseous state, at the expense of energy that is released in the form of heat [28]. 

Convection takes place when heat is transported through a moving medium [28], e.g., blood 

circulation pathways, as the one described previously. In opposition, conduction only occurs with 

a non-moving medium, mainly with solid objects, since exchanges with gaseous or liquid 

environments are achieved by convective processes [29]. An example of this physical process is 

heat conducted between the skin surface and cloth items [29]. Lastly, radiation heat losses consist 

on the emission of infrared waves by the skin’s surface, being the greater contributor for heat 

transferences during mild thermal situations [30]. 

All the mentioned contributions for heat transferences can be summarized by the Heat 

balance equation (1) that describes the generation of heat (M), its transfer to the surrounding 

environments (E, R, K and C) when in excess after mechanical work (W), and its storage (S) [37] : 
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𝑀 − 𝑊 = 𝐸 + 𝑅 + 𝐶 + 𝐾 + 𝑆       (1) 

 

being M, W, E, R, C, K and S metabolic rate of the body, mechanical work, evaporation, radiation, 

convection, conduction and heat storage, respectively. 

2.3 – Skin neoplasms: formation and angiogenesis 

Like any cell in human body, skin cells are controlled by regulatory mechanisms, in order to 

assure its replacement, if needed. When this process is defective, by cellular damage or 

degenerative alterations, apoptosis fails to occur and the deficient cell continues to growth and 

multiplies in an uncontrolled manner. Ultimately, a skin neoplasm, also referred to as skin tumour, 

i. e., an accumulation of cells with no biological purpose, can arise at this site [7]. When in the 

presence of these cell aggregations physiological alterations, that interfere with the normal 

functioning of the body, can take place. 

In the early stages of development, tumour cells do not present nutritional needs or oxygen 

depletion, due to the sufficient blood perfusion in this area, assured by pre-existent blood vessels 

[17]. Yet, the vascular flow encountered is boosted thanks to a neuronal messenger: nitric oxide 

(NO); produced intra and extravascular by the vasculature that nurtures neoplastic cells [17]. Its 

release causes vasodilation, increasing the perfusion in the lesion site [38]. In the case of skin 

tumours, that are generally localized in or close to the skin surface, this perfusion changes can 

prevail over the thermoregulatory system in the area, causing alterations in heat transfers [17]. 

When the metabolic needs of the neoplasm cell population exceeds oxygen and nutrient supply, 

new blood vessels are recruited from surrounding arteries and arterioles [17] and tumour induced 

angiogenesis takes place [39]. The formation of these neovessels is triggered by the tumour’s 

environment, but also by growth factors, such as vascular endothelial growth factors (VEGF) and 

fibroblast growth factors (FGF) [40]. The neovascularization rate depends on the tumour 

malignancy, being that benign lesions undertake neovascularization less quickly than malignant 

ones [41] and are mostly related to blood vessels ectasia and hyperaemia [42]. 

The formation of skin lesions, despite their malignancy, can be related to numerous factors. 

Phenotypic characteristics, such as skin and hair colour, weakened immune system and family 

history of skin neoplasms can influence the person’s predisposition for skin tumour development. 

However, excessive exposure to UV light is considered a primary risk factor [11]. This radiation 

type can cause DNA defects and mutate genes, being, thus, regularly associated with the arising 

of all types of skin cancer [12]. Exposure to tar or arsenic is also a hazardous behaviour [43]. 

Neoplasms can be classified as benign or malignant according to a specific set of 

characteristics. Benign lesions present low growth rates, taking a considerable amount of time to 

double its size. This type of tumours is constituted by well differentiated cells that are 

encapsulated by connective tissue, easing its surgical removal, and are unable to penetrate its 

surroundings. For this reason, benign neoplasms grow in a localized manner, pushing the 
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surrounding healthy tissue – expansion growth [6], [7]. In contrast, malignant tumours exhibit 

poorly differentiated cells with an elevated growth rate, recruiting blood vessels to supply its high 

metabolic needs. These cells are able to invade adjacent tissue, growing by infiltration, and can 

often metastasize through the vascular and lymphatic system. For these reasons, if not detected 

early, malignant lesions can stablish secondary tumour sites throughout the body and kill its host 

[6], [7]. According to its tissue or cell of origin, skin neoplasms can be named and identified [44]. 

2.3.1 – Malignant skin neoplasms 

Malignant skin tumours can be divided in melanoma skin cancer (MSC) and non-melanoma skin 

cancer (NMSC). The latter, is usually used to refer to basal cell carcinoma (BCC) and squamous cell 

carcinoma (SCC), even though many other types, e.g., Merkel cell carcinoma, can be included in 

this group [10]. 

Melanoma starts developing in melanocytes, growing horizontally – radial growth – or vertically 

– vertical growth – to invade deeper tissue. The second growth phase is responsible for 

metastasization, since the damaged cells gain access to blood and lymphatic vessels, as they pass 

from the epidermis to the dermis [45]. They are mostly classified as lentigo maligna, superficial 

spreading (Fig. 2.4A, adapted from [45]), acral lentiginous or nodular melanoma [44]. This type of 

tumour, responsible for most of skin cancer related deaths, is usually flat, presenting high border 

irregularity and a multicolour appearance that ranges from brown and dark purple tones to skin 

like colours [44], [46]. Its different variations are normally encountered in light skin subjects, with 

red or blond hair, as oppose to darker individuals [45], being its appearance connected not only to 

sunlight exposure and genetic factors, but also to previously existent melanocytic nevi, that can 

evolve to a malignant form [44]. 

The most common malignant skin tumour, BCC, arises when basal cells proliferate and invade 

the dermis – (Fig. 2.4B, adapted [47]). They may be noduloulcerative, cystic, cicatricial, superficial 

and pigmented. Its appearance might vary from blue to pink nodules, according to its type, being, 

at times, in an ulcerative state [44]. This cancer type is mainly located on the face of light-skinned 

subjects and it is mainly connected to UV exposure during childhood years [46]. 

A faulty proliferation of keratinocytes is responsible for the emergence of squamous cell 

carcinoma [48] – Fig. 2.4C (adapted from [48]). SCC incidence is often associated with long-term 

sun exposure, evolving, in most cases, from other skin lesions already present, i.e., actinic 

keratosis [10]. It usually presents a smooth surface that tends to adopt a verrucous texture that 

can further evolve and form a crusty horn-like structure [48]. Its variants may include verrucous 

carcinoma, scrotal, vulvar, lip and penile squamous cell carcinoma [48]. 

Even though rare, Merkel cell carcinoma is considered to be one of the deadliest skin cancers. 

A purple or pinkish nodular structure, prone to recurrences, appears on the skin of, normally, elder 

Caucasian individuals [49]. The trigger of this dermal lesion has not been established, though its 

common appearance in skin areas exposed to the sun, such as neck and head [46] – Fig. 2.4D 

(adapted from [49]). 
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Figure 2.4 - Malignant skin lesions: A - Superficial spreading melanoma; B – Basal cell carcinoma; C - 
Squamous cell carcinoma; D - Merkel cell carcinoma. 

 

2.3.2 – Benign skin neoplasms 

The most common skin lesions encompassed by benign neoplasms are nevi, keratoses, angiomas 

and lipomas [44], [50]. 

Benign nevi comprise several types of skin lesions, such as melanocytic and dysplastic nevi. 

The first tumour, commonly known as mole, finds its source site, like all existing nevi, in 

melanocytes, i.e., the cells responsible for the skin pigmentation [7] – Fig. 2.5A (adapted from 

[44]). Usually, these neoplasms present a congenital origin, being already present at birth. 

However, they can also be acquired, mostly due to family genetics associated with excessive 

sunlight during infant years, appearing mainly before the age of 20. It normally presents a diameter 

smaller than 10 mm and colours ranging from black to brown or blue, with a flat or prominent 

structure [44]. Even though its benignity, some melanocytic nevus can evolve and give rise to 

malignant lesions [51]. Dysplastic nevus is a particular type of atypical melanocytic nevus, being 

interpreted as an intermediate stage between its mother lesion and melanoma – Fig. 2.5B (adapted 

from [51]). Most of these skin tumours present irregular borders and uneven pigmentation [51]. 

Both types of nevi are frequently encountered in people with fair-skin [44]. 

As the name implies, keratoses originate in the upper layer of the skin when keratinocytes are 

damaged. Actinic and seborrheic keratoses are the main examples of this skin tumour class [44]. 

Actinic lesions are often provoked by excessive exposure to UV radiation, appearing, particularly, 

in elderly people with clear complexion – Fig. 5C (adapted from [52]). These grey or pink tumours 

with crusty surfaces are considered pre-malignant lesions, being frequently indicated as precursor 

neoplasms for the development of SCC [10], [48], [52]. In opposition, seborrheic keratosis tends 

to remain benign through the course of life, despite its worrying appearance – Fig. 5D (adapted 

from [44]). It usually presents itself with a warty shape and pigmentation varying from yellow to 

dark brown[44], [53]. 

Hemangiomas or angiomas, are tumours composed by an excessive accumulation of blood 

vessels [45]. Some may arise in early childhood years, i. e., strawberry nevus, presenting itself as 

a puff-like structure with colours in the red/purple spectrum – Fig. 5E (adapted from [44]). It 

usually appears on the head and tends to regress almost completely until the age of 10 [44], [45]. 
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Angiomas that have its origin during adulthood – cherry angiomas – do not recede, emerging as 

multiple papules with a red colour [44], [45]. Its cause have not yet been defined, even though 

the suspicion of specific hormones and the exposure to certain chemical products are believed to 

have relevance [50]. 

The last benign tumour type - lipoma - is composed by an aggregation of fat cells, present in 

the hypodermis layer, that manifests as a round structure, rubbery to the touch [44] – Fig. 5F 

(adapted from [44]). Like cherry angiomas its triggers are unknown, being related, at times, with 

traumas or chromosome 12 reassortment [50]. The removal of this benign tumour only occurs if 

any pain or discomfort is reported by the patient or if a doubtful diagnosis reached [50]. 

 

 

Figure 2.5 - Benign skin lesions: A - Melanocytic nevi; B - Dysplastic nevi; C - Actinic keratosis; D - 
Seborrheic keratosis, E – Strawberry nevus; F – Lipoma.  

 

2.4 – Skin cancer statistics: incidence and associated costs 

The number of skin tumours diagnosed over the last decades has increased considerably, 

making MSC and NMSC the cancer types with highest incidence in Caucasian individuals [1]. Each 

year, 2 to 3 million cases of non-melanoma tumours are estimated to occur worldwide, having an 

incidence rate 15 to 22 times greater than melanoma skin cancer [2]. Despite that, MSC is 

accountable for over 80% of the number of deaths linked to malignant skin tumours [54]. Only in 

Europe, an incidence rate of 11.1 per 100 000 was registered in 2012 for MSC, with a mortality 

rate of 2.3. Countries such as Portugal, with high numbers of sunny hours, are among the most 

affected, presenting a skin cancer mortality rate of 2.45, according to the WHO, in 2014 [55]. 

Despite these alarming trends, the mortality rates of malignant skin neoplasms have been 

stabilizing or rising lower [1], as it is verified in Table 2.2 [56]. 

Table 2.2 - Incidence and mortality rate of melanoma and other skin malignant neoplasms in Portugal per 
100 000 malignant tumours. 

Year 
Melanoma Skin – Others 

Incidence rate Mortality rate Incidence rate Mortality rate 

2010 8.9 2.3 1.3 1.5 

2008 8.2 2.0 1.2 1.4 

2007 7.5 1.8 1.1 1.5 

 

The increase of the incidence rates aforementioned has affected healthcare finances 

associated with, not only diagnosis, treatment and patient follow-up, but also monetary losses 
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caused by absence at work due to illness [57]. In 2005, Sweden spend 142.4 million euros due to 

skin tumours, being the diagnosis of melanoma the number one contributor for this expense. The 

costs related to NMSC also influenced the final amount, being one of primary cause for such a great 

expenditure [57]. The “increase incidence – increase cost” factor was documented in the United 

States, with an increment of 4.5 billion dollars in the space of 5 years for skin cancer treatment, 

due to a large number of new cases [58]. Apart from these examples, several other countries 

present a high financial load related to skin neoplasms [59]. A status that could be avoided or 

diminished with early detection methods associated with preventive measures [60]. 

2.5 – Diagnostic methods 

The detection of skin lesions begins with a visual inspection, frequently based on the ABCDE 

clinical rule, even though other diagnosis methods, like the 7-check point list or the Menzies 

method, can also be applied [61]. This search is normally performed by a dermatologist that checks 

the lesion for Asymmetry, Border irregularity, Colour and Diameter and Evolution. However, self-

monitoring systems to evaluate skin lesions are a current reality, having many companies 

developed smartphones apps for this purpose, like Melanoma detection from Fraunhofer Institute 

[62]. At any indication of malignancy, a biopsy, i.e., the partial – incisional – or complete removal 

– excisional – of the lesion, is performed, followed by a set of tests, e.g., a histological study to 

establish a diagnosis. However, this time-consuming process can be painful and increase patient 

stress, leaving, at times, unaesthetic and/or unnecessary scars [63]. Despite its disadvantages, 

this method continues to be the gold standard for skin cancer diagnosis. 

For this reason, the search for advanced diagnosis techniques, that are innocuous for the 

patient, is an emerging quest.  

Dermoscopy, dermatoscopy or epiluminescence microscopy is a non-invasive technique that 

has been used by practitioners as a diagnosis tool for pigmented skin lesions, particularly, 

melanomas. An immersion oil is placed over the tumour and a hand-held microscope, with a 

magnification of 10x to 100x, allows the visualization of epidermal and upper dermal structures, 

allowing an in-vivo examination [14], [63]. Some equipment provide image storing, facilitating the 

posterior comparison of lesions in patient follow-up. Due to its successful results in melanoma 

diagnosis, with reported specificity of 95% and increased sensibility [64], it is considered the gold 

standard for non-invasive diagnosis methods, even though its accuracy drops when used by 

clinicians with none to less experience [65]. For cancerous neoplasms, several evaluations 

throughout time can be required to determine the malignancy of the tumour, leading to lesion 

worsening and, subsequently, increased life risk [66]. In addition, some dermatologists still 

consider this method a bit pricey [67]. 

Another non-invasive diagnosis technique, explored mainly for melanoma skin cancer 

screening, is Laser Doppler Imaging (LDI). LDI uses a monochromatic laser beam to irradiate the 

lesion site. When the tissue is reached, scattering, absorption and spectral broadening of the laser 

occurs, according to the existent blood flow at that region, reflecting radiation with a different 
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wavelength. The encountered wavelength differences can be used to calculate flux [14], [68]. 

Thus, knowing that malignant tumours display high vascular networks, LDI has been used to 

distinguish melanomas from benign lesions. However, this is a costly technique and it has been 

showed that its application can result in a high number of false-negatives [69]. 

Another harmless imaging technique that has been introduced in the diagnosis of skin cancer 

is Optical Coherence Tomography (OCT). Cross sectional images of the damaged tissue are 

obtained after incidence of a longitudinal infrared beam, allowing the visualization of the macro 

structures that compose it, as well as its vascular and adnexal components. Nonetheless, the 

tumour expansion for adjacent tissues is not detectable, since cellular and subcellular features 

are not visible [70]. Some primary research has shown the use of OCT for basal cell carcinoma and 

actinic keratosis characterization, but more research is needed to attain the usefulness of this tool 

in skin cancer detection [71]. 

2.6 – Treatment methods 

The treatment of choice for skin neoplasms depends on the lesion type, size, location and 

stage, as well as the patient’s health condition and age [10]. A vast selection of options is 

available, with more aggressive techniques, such as surgical excision and Mohs micrographic 

surgery (MMS), and mild ones, e.g., cryotherapy, photodynamic therapy (PDT) and topical 

immunotherapy. 

When leading with doubtful malignant lesions, excisional surgery of the skin neoplasm, almost 

certainly, will be the first treatment step. Depending on the lesion extent, a radius of excision is 

selected, to ensure complete removal, and other methods, such as radio or chemotherapy, can be 

used as adjuvant treatments, especially when the needed radial borders are impossible to obtain 

[49]. The discomfort and stress added to the skin tissue loss, that can, in more aggressive tumours, 

leave an unaesthetic scar, are some of the inconveniences appointed. Benign lesions are often left 

untouched, being only removed if unsightly or easily injured [44]. 

MMS can be interpreted as an improved version of a standard excision procedure, being only 

implemented for the removal of skin cancers. It is more expensive and consumes more time, but 

the chances of cure are higher [72]. The surgeon removes the lesion with a given margin, examines 

histologically on-site the removed tissue and, if any residual tumour is detected in the neoplasm 

borders, an additional portion of skin is removed [72]. In terms of aesthetics, this technique 

provides the best outcome possible [73].  

Yet, these aggressive treatments should be avoided in elder and/or debilitated patients [44]. 

As an alternative, non-invasive options have also been applied, with less frequency, to skin lesions. 

In PDT, a photosensitizer is applied to the lesion site, causing the tumour destruction, after 

activation with a light source. It can be used for the treatment of basal cell carcinomas and actinic 

keratoses, allowing the cure of multiple lesions at the same time. Additionally, it eases the 

treatment of tumours located in areas that are surgically hard to access [72]. 
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Cryotherapy has also been used in BCC, SCC and keratoses treatments, where liquid nitrogen 

or CO2 in a snow form, is used to freeze the lesion that eventually falls on its own. However, some 

precaution is advised to avoid any nerve damage due to over freezing [74]. 

BCC, SCC and melanoma have also been cured by topical immunotherapy. Depending on the 

lesion type a contact sensitizer, e.g., imiquimod, is applied. Even though the mechanisms involved 

in this process are not clear, it is believed that a cellular response against this substance is 

triggered, entrapping the cancer agent through hapten bounds [75]. 

Even though the non-invasiveness of these techniques is a plus, the time needed to witness 

the treatment success can lead to recurrences in some cases, hence the preference for surgical 

excisions [76]. 

 

2.7 – Summary 

 In short, the detection of skin cancer has yet to evolve in order to overcome the current 

difficulties that are presented. Since metabolic activity is highly connected to the malignancy of 

skin lesions, a diagnosis method that focus its results on the vascular response of the tumour site 

seems to be the best approach. IRT fulfils that need and is, therefore, the focus of the next 

chapter.
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Chapter 3 

Infrared thermal imaging 

Chapter 3 approaches a brief history of IRT in the medical field, followed by the process 

involved in the implementation of this diagnostic technique. A review of the application of IRT in 

skin cancer detection, in recent studies, is presented, with detailed research strategy and main 

conclusions obtained. 

3.1 – Principles 

The human skin separates the body core from the surrounding environment. When subjected 

to an internal or external stimulus its status alters, leading, frequently, to skin temperature 

variations [77]. 

This disturbance has been used for several ages as a diagnostic symptom, being first reported 

in 480 B.C., when Hippocrates placed mud over a patient body and witnessed its change in dryness 

over time. The skin emission of thermal radiation allowed the differentiation of cold and hot spots, 

as the drying process occurred [39]. Centuries later, Santorio used a “thermometer”, inspired by 

Galilei’s “thermoscope”, to measure body temperature [78]. After great advances, this technique 

was used by Czerny, to obtain a thermogram of the human body, in Frankfurt (1928), being later 

accessible for medical use in the mid 1950’s [17]. Since then, several research studies have been 

conducted in order to explore the full potential of this tool in healthcare applications. 

IRT uses thermal cameras to record the infrared (IR) radiation that is emitted by the body in 

the range of 1-14 μm. In other words, natural heat losses that occur in the outer layer of the human 

skin, due to, mostly, underlying vasculature, are detected and translated to images representative 

of that radiation – thermograms [17], [18]. The human skin presents an emissivity value of 0.98, 

being closest to a blackbody, i. e., an object with perfect emissivity, value of 1 [78]. Thus, it is 

an optimum candidate for thermal evaluation, since the released energy, that is recorded, can be 
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used to estimate the temperature values of a given body region, through the Stefan-Boltzmann 

equation (2) [79]. 

𝐽 = 𝜀 × 𝜎 × 𝑇4                                                         (2) 
 

being J, ε, σ and T, total irradiated energy, emissivity, Stefan-Boltzmann constant and absolute 

temperature, respectively. 

The amount of emitted heat varies according to environmental factors [17]. For this reason, 

some precautions need to be adopted in order to avoid incorrect thermal measurements. First, 

room temperature and humidity need to be monitored and kept at, approximately, 21±1°C and 

≤50%, respectively, for subject acclimatization and measurement execution [80]. Following, any 

cloth items need to be removed from the lesion site, as these would act as an insulator, as well as 

hair, if possible. Additionally, make-up, nail polish, lotions or any other products that might 

camouflage the skin surface should be removed before performing the thermal recordings [77]. If 

all these aspects are considered, thermal images can be used as a representation of a person 

physiological state [78]. 

3.2 – Applications in medicine: skin neoplasms 

The application of IRT can be verified in several medical areas. In rheumatology it has been 

used for the treatment monitoring of inflammatory arthritis, in clinical dermatology for the 

assessment of burn areas and, most recently, for the evaluation of skin areas affected by malignant 

neoplasms [19]. 

As explained in detail in chapter 2, when a physiological abnormality, e.g., the formation of 

a tumour, occurs, metabolic alterations take place, changing the dynamic of the organism. Most 

of these changes can be verified by blood flow differences in the lesion site, when compared to a 

healthy situation, resulting, ultimately, in a disturbance of the thermal equilibrium [19]. In skin 

neoplasms, this disruption has been reported in several studies, using this alternative tool. 

Normally, benign neoplasms are portrayed by hypothermic patterns, appearing colder than the 

surrounding skin tissue. In contrast, malignant tumours are usually represented by elevated 

temperatures, creating a hyperthermic pattern in the final thermogram, thus, being frequently 

referred to as “hot spots” [81]. This increase in temperature is attributed to the increment of 

blood flow, in the lesion site, that is necessary to maintain the elevated growth rate of this type 

of neoplasms, as well as increased metabolism. 

Different thermal methodologies can be adopted, according to the user needs and final goals. 

In static or steady-state IRT the image acquisition process occurs without any prior 

stimulation.  

When used dynamically, a chemical, thermal or mechanical stress can applied on the location 

of interest, followed by the capture of the images, while skin recovery occurs [82]. The advantage 

of applying the latter method lies on the fact that, after a disruption of the thermal balance, 

different temperature outlines representative of beneath structures can arise and be visible in the 
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obtained thermograms [83]. This allows a more detailed diagnostic information, since physiological 

alterations that occur in the interior might not be expressed in external temperature differences, 

as in the case of early stage melanoma. This approach also eases the identification of malignant 

lesions located in body regions that are characteristically hot, e. g., neck, axilla, temple and 

Scarpa’s triangle [80]. Additionally, the thermal patterns verified in raw thermograms can also be 

of service for surgeons, helping in the outline of excisional margins [81]. For these reasons, IRT, 

particularly dynamic, has been the focus of recent studies related to skin neoplasms diagnosis and 

treatment screening, as described in the following sub-sections. 

3.3 – Literature Review 

A systematic review was conducted to ascertain the current state of the applications of 

medical IRT in skin neoplasms diagnosis, as well as to understand the possible challenges that can 

arise during this process. At the end, some improvements for future studies conducted in this area 

are established and some points are regarded for the future collection of IRT images. 

3.2.1 – Methodology 

 Search Strategy 

The literature research was conducted, using the following combination of keywords, in the 

bibliographic databases: Scopus, PubMed and ISI Web of Science, respectively: ((TITLE-ABS-KEY 

(skin cancer) AND TITLE-ABS-KEY (thermography OR (infrared imaging) OR (thermal imaging)))); 

((skin cancer [Title/Abstract]) AND (thermography[Title/Abstract] OR (infrared 

imaging[Title/Abstract]) OR (thermal imaging[Title/Abstract])); TOPIC: (skin cancer) AND TOPIC: 

(thermography OR (infrared imaging) OR (thermal imaging)). The terms used for the search were 

clear and basic, to increase the number of results encountered, and the field selection applied 

in each reference source was used to guarantee the consistency of the research. The Boolean 

operator OR was included in the search, since “infrared imaging” and “thermal imaging” are 

often used as synonyms of “thermography”. Only publications with dates from 01/01/2014 to the 

date of this research, i. e., 31/03/2017 were included. A duplicate removal was performed at 

the end. 

Screening and eligibility results 

The title and abstracts of the encountered publications were, firstly, analysed, including 

only the articles that referred the use of medical thermography for the evaluation of skin 

neoplasms. 

The first eligibility criterion involved the elimination of articles that reported the use of IRT 

in skin cancer cells, instead of the neoplasm itself. Additionally, meeting abstracts and revision 

articles were eliminated, making the second criterion. The third selection parameter consisted 

in keeping the articles written in English, excluding publications in other languages. Considering 
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that this review is focused in a single imaging modality, i. e., thermography, some articles based 

on the use of infrared spectral imaging, encountered due to the terms used in the bibliographic 

research, were removed, making the fourth eligibility criteria. Finally, publications focused on 

the description of thermal technology used for the detection of skin cancer, were eliminated 

from the remaining results. 

The final set of articles were then separated into three main classes: clinical studies for 

diagnosis applications, treatment monitoring in clinical situations and theoretical studies, for a 

full text review. The entire process was performed taking into account the PRISMA rules for 

systematic reviews described in [84], [85]. Figure 3.1 (adapted from [85]) summarizing the phases 

of this revision process. 

 
Figure 3.1 – PRISMA flow diagram. 

3.2.2 – Results 

The conducted bibliographic search resulted in a total of 51 publications, being 10, 9 and 32 

encountered in ISI Web of Knowledge, PubMed and Scopus, respectively. Four additional records 

were identified through Google Scholar, being included in the literature search results. After 

duplicate removal, 29 articles were kept. The abstract and title screening resulted in the exclusion 

of 3 articles, since no application of medical thermography to skin neoplasms was studied in the 

publication. The eligibility criteria previously mentioned lead to the elimination of 12 articles, 

being the first, second, third and fourth criterion responsible for the exclusion of 1, 3, 3 and 5 

publications, respectively. Thus, 14 full-text articles remained for revision, 6 articles describe the 

use of IRT as a diagnosis support tool in clinical applications, 3 concern the use of thermography 
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for skin neoplasms treatment screening in clinical studies and 5 are included in the theoretical 

studies category, for diagnosis purposes. 

Diagnosis support method – Clinical studies 

Concerning the use of IRT for the detection and identification of skin lesions, a consent is 

verified in all the articles, indicating that thermography, applied with all its variants, has the 

possibility to be an effective complementary diagnostic support tool. 

The differences in temperature encountered between lesion areas and the surrounding 

tissue proved to be useful in the distinction between malignant and benign skin neoplasms [86], 

[87].  

Godoy et al. [86] used one of the most elaborated and though strategies to acquire dynamic 

IR images. A plastic square marker, surrounding the lesion site, was used as a spatial reference 

to allow the subsequent alignment of the collected IRT images.  

A visible picture of this ensemble was taken to allow the correct localization of the skin 

tumour in the thermal images. Following, a longwave infrared camera captured a sequence of IR 

images for 15 s, for future reference, and the skin neoplasm was subjected to a cold stimulus, 

using a Ranque-Hilsch vortex, with a 30 second duration. The thermal recovery was then recorded 

for 2 minutes. The developed algorithm for the processing of the thermal data in MATLAB 

performed, firstly, the alignment of the collected images, through the Harris corner detector 

method. Then, the user delimitated the lesion site with imellipse and, to offset any non-uniform 

cooling, only pixels inside and outside the neoplasm location with the same initial temperature 

were selected for thermal analysis. If the temperature difference verified between these two 

areas was higher than a given threshold, then, the lesion was considered malignant. They 

achieved a sensitivity and specificity value of 95% an 83%, respectively, after analysing 43 skin 

cancers and 59 benign skin neoplasms. The described methodology presents very strong points, 

such as, the pixel selection and the use of a temperature difference – threshold – to distinguish 

between benign and malignant lesion, regardless of the mathematical sign of that value, as it is 

commonly verified in similar studies. However, the threshold selection is performed in order to 

maximize the sensitivity and specificity value based on the population enrolled in that specific 

study, meaning that different results may be encountered for a different study group if the same 

threshold is to be used. The use of a plastic marker also needs to be re-evaluated, since its 

placement in some body areas, and subsequent thermal measurements, might be impossible. 

The characterization of distinct types of skin lesions, using IRT, has also been successfully 

studied, with the goal of providing more information to the practitioner, during the diagnosis 

process, either by a steady-state [88] or a dynamic [89] process.  

A common idea is denoted by Di Carlo et al. [89], in respect to the thermal patterns 

presented by the neoplasms, referring that, in general, malignant lesions are characterized by 

hyperthermic patterns, while the benign ones, present lower emissivity values. The use of video 

thermography associated with thermostimulation - +5°C for 20 seconds –  allowed the complete 
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separation between basal cell carcinomas (BCC) and actinic keratosis (AK) lesions, having the 

first type of skin neoplasm displayed a hypothermic halo and the latter a hyperthermic one [89], 

conflicting with the previously mentioned assumption. The dermoscopy results, used as a 

comparison tool, were not as satisfactory with an inconclusive diagnosis of 22% of lesions, 

showing that IRT might be more promising in the distinction of certain skin lesion types. 

The work of Stringasci M. et al. [88], with steady-state thermography, reinforced, partly, 

these findings, having BCC displayed lower emissivity values. When compared to intradermal 

nevus, this latter displayed lower temperatures than the basal type. The distinction between 

squamous cell carcinoma (SCC), which showed an hyperthermic pattern, and AK, with 

temperature values similar to the skin, was also successfully carried out. A contradictory result 

of what is usually encountered in the literature was reached, having nodular melanoma displayed 

a hypothermic pattern in relation to the surrounding healthy tissue. According to Stringasci M. 

et al. this outcome could be justified by a thermal absorption caused by the dense pigmentation 

of this type of lesion. However, since only one lesion of each type was analysed the conclusions 

drawn are questionable and more patients would be needed to obtain statistically significant 

findings. 

For the last two articles mentioned, none contained any detailed information, concerning 

the analysis of the IRT images. 

IRT proved to be a secure tool to aid in the detection of melanoma [90], [91] with high 

specificity, even though it presents varying sensitivity values, depending, partly, on the 

equipment used. 

Solivetti et al. [90] tested the use of telethermography (TT), associated with thermo-

stimulation, for the detection of melanoma in-transit metastasis. A high-frequency ultrasound 

equipment was used as the gold standard, resulting in 100% sensitivity. In opposition, TT only 

diagnosed 15 lesions (22%), but with no false-positives, meaning 100% specificity. For bigger 

nodules, especially if located closer to the skin’s surface, the probability of identifying melanoma 

metastasis as such increased and an even greater augment was verified when TT was combined 

with a cold stress. It is not safe to say that TT can replace ultrasound in the detection of this 

type of skin neoplasm, however it could be used as a complementary tool to avoid patient’s 

discomfort and stress with unnecessary biopsies. Additionally, more test subjects would be 

needed to support the results, since the population size of the study – 52 lesions – was not very 

significant. 

Concluding, in a distinct study [91], dynamic thermal imaging (DTI) was employed to monitor 

atypical skin neoplasms, indicative of early melanoma lesions. A metal plate was used for the 

cooling process - 5°C during 20 seconds – and a thermal recovery of 30 seconds was monitored. 

Hot patterns were detected in 60.78% of lesions. Even though atypical nevi may lead to melanoma 

development, its presence does not always indicate an abnormal metabolic activity in the lesion 

site, hence the detection value obtained in this research. All and all, the potential of this tool 

for precocious diagnosis is demonstrated, but a histological exam of the encountered 

hyperthermic lesions should have been considered to increase the credibility of the final results. 
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Treatment monitoring – Clinical studies 

Apart from diagnosis, medical IRT has demonstrated its usefulness on the patient follow-up, 

through the evaluation of skin lesions, such as actinic keratosis [43] and melanoma [92], after 

treatment. 

Laino et al. [43] used active TT to successfully evaluate the reduction of the hyperthermic 

halo (HH) of AK, after its removal and lesion site treatment with Eryfotona. The lesions were 

cooled with a balloon, for 20 seconds, filled with an alcohol and water mix at +5°C. Before lesion 

removal the HH was verified in all the patients, having an average size of 3.46 cm2 and fast 

thermal recovery times (TRTs). Dynamic thermography allowed the visualization of the reduction 

of both these parameters, after treatment with Eryfotona, having a mean HH of 0.64 cm2 and 

TRTs similar to healthy skin tissue, i. e., longer than 2 minutes. The calculations of HH and TRT 

were performed by a computer, but detailed information regarding this step is not supplied. 

IRT also helped in the monitoring of melanoma tumours, during electrical stimulation 

therapy via liquid metal printed electronics on mice skin, as seen in [92]. Li J. et al. resorted to 

thermography to monitor the temperature of the skin, covering the tumours, and demonstrate 

that no significant thermal alterations occurred during the treatment stage. 

Additionally, steady-state thermographic measurements have been used to verify the 

changes that occur in the skin temperature gradient of basal cell carcinomas, during treatment 

with photodynamic therapy [81]. Cholewka et al. stated that the extent of thermal changes, 

exceeds the place of injury, suggesting that the treatment itself might affect a larger area than 

expected and, for that, the conclusions drawn need to be well thought-out. 

 

Theoretical studies 

Medical IRT has shown its potential, in theoretical studies, for the detection of melanoma, 

in distinct phases of development. Bonmarin and Le Gal constructed a computational model, that 

emulated different skin cancer stages, and tested the ability of steady-state and transient-state 

– lock-in thermal imaging (LIT) – thermography in the detection of such tumours. In LIT the 

thermal stimulation is periodically performed at a given frequency and the thermal images are 

processed, by the lock-in principle, commonly used in materials testing, obtaining an amplitude 

and phase image [54]. The melanoma skin models – stage I, II, III, IV and V – were constructed 

with varying blood perfusion, due to the Pennes bio-heat equation, and different metabolic 

activities. As expected the thermal signal of stage I was poorly detected when steady-state was 

used. In dynamic testing, the phase images, retrieved from the demodulation of the transient 

skin surface temperature signals, seemed promising for the detection of such precocious lesions. 

However, the modulation frequency used influences the depth of the skin tissue evaluated, 

meaning that higher frequencies would be sufficient for the detection of early stage melanoma, 

while higher values are needed for more penetrating tumours. This decrease of frequency, 

encompasses an increase of 13 minutes in the time necessary for the evaluation, complicating 

its use in a medical scenario. 
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Another mathematical model, developed by Bhowmik et al. [93], studied the use of dynamic 

infrared imaging - +10°C during 60 seconds –, in 4 different melanoma stages, i. e., early stage 

(ES I), Clark II (CL II), III (CL III) and IV (CL IV), for its detection and establishment of criteria for 

the early diagnosis. The detection of advanced phases was easily performed, in contrast with the 

thermal evaluation of ES I, since the heat from the vascular structures of the skin under analysis, 

override the lesion. The thermographic evaluation of stage I melanoma was achievable only after 

lesion location, showing the presented model was not fully efficient in this detection.  

In a more recent study, the same author [94] proposed the use of frequency modulated 

thermal wave imaging, for the detection of the abovementioned stages, in a 3-D computational 

model. After heating, most lesions were detectable. However, as in [93], ES I was camouflaged 

by blood vessels, as well as CL II, showing that the active thermal imaging method proposed, 

displays a low efficiency in the detection of ES I and CL II. Its identification was only possible 

after the merging of the thermograms with the phase images acquired from the thermal signals. 

Steady-state IRT was also successfully applied by Agyingi et al. [95], to distinguish between 

benign lesions and melanomas with no vasculature, depending on the metabolic rate and tumour 

size selected for the theoretical model. However, the presented model was tested in a 2-

dimensional space, which is somewhat inaccurate when compared to a real scenario. 

Cheng and Herman [96] used DTI, in a 2-D skin surface model, to study the most suited 

cooling method and parameters for the detection of early stages melanoma. The tested 

hypothesis included cooling: at a constant temperature, e.g., gel pack, cotton patch previously 

immersed in cold water and air flow or liquid submersion; with varying temperatures – 4, 12 and 

20°C – for a period longer than 30 seconds. The encountered optimal conditions included constant 

cooling at 20ºC for a period of 2 min, that could be adjusted according to the stage of the lesion 

under evaluation. These thermostimulation parameters differ widely from the ones normally used 

in thermographic studies, especially the suggested temperature. Even though comfortable for 

the patient, 20 degrees Celsius does not differ greatly from the normal skin temperature. Thus, 

it seems inefficient in the creation of the thermal gradient necessary to detect these types of 

lesions. 

3.2.3 – Study’s population 

Concerning clinical studies for diagnosis purpose [86]–[91], the number of participants varied 

from 15 [90] to 110 [87], with a minimum of 52 lesions evaluated [90] and a maximum of 135 [89]. 

Article [88] did not report on the number of patients or tumours included in its research. The age 

interval was not specified in [86]–[88]. In the remaining articles, 13 and 91 were the younger [87] 

and older age [89]. The average population age was only indicated by [89] and [91], being 72 and 

38 years, respectively. 

The studies focused on treatment monitoring [43], [81], [92] presented a minimum of 6 

participants [81] and a maximum of 30 [43]. The lesion number was the same as the participant’s 
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one. Only [43] referred the age of the youngest and older patient, 55 and 75, respectively, and 

correspondent mean age, 64,3 years. 

No population data is included for theoretical studies [54], [93]–[96], since the implemented 

computer models shape the assessed skin neoplasms. 

3.2.4 – Trends and future challenges 

For clinical studies, the increase of the patient population number is one of the main trends 

appointed for future work, by some authors [81], [86], [89], [90], in order to confirm the validity 

of the presented methods and attain extensive statistical analysis. The development of new image 

acquisition protocols is also of concern, due to the common presence of hair, that affects the 

thermal measurements, and the need of patient immobility, during the image acquisition process, 

which can be uncomfortable for the subject under test [86]. Further research, focusing on the 

development of new diagnosis algorithms, for the analysis and processing of the IRT images, are 

needed, to improve the final results [88]. It is of value to exploit, in a more detailed way, the 

physiology of skin neoplasms, to better understand the differences in temperature, between the 

lesion site and the surrounding healthy skin, during the thermal recovery [86].  Additionally, the 

definition of rates of specificity and sensitivity of the thermal information, retrieved from the 

results of the studies, are also of importance [88]. 

Concerning theoretical approaches, the construction or refinement of 3D skin lesion 

computational models is necessary, in order to resemble, as much as possible, with a real biological 

model [95]. Upcoming research, related to the study of different modulation frequencies in LIT is 

appointed as necessary for the diagnosis of stage I and II melanoma [54]. Moreover, the 

investigation of different tumour sizes, locations and varying blood vessel sizes could also be of 

interest, for future work [93], [95]. 

The dynamic use of IRT appears to be a rising tendency in skin cancer studies [54], [86], [88]–

[91], [93], [94], [96], as a means of improving thermal patterns, facilitating the detection and 

characterization of different skin cancer types. This technique appears to be often allied with a 

cold stress, which seems appropriate considering the cold thermoreceptors located on the skin. 

The suggested duration of the stimulus varied between 20 seconds [43], [89], [91] to 2 minutes 

[96], being 1 minute a possible candidate to shorten the test time and assure, simultaneously, the 

effective cooling of the leased area. Most reports did not include the duration of the thermal 

measurements, being 2 minutes the selected time in the ones that do [86], [96]. 

Thus, taking in account all the remarks abovementioned, an acquisition protocol, for the 

collection of DTI images, is presented in chapter 5.
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Chapter 4 

Machine learning classifiers 

The use of artificial intelligence (AI) for decision support systems in medicine has become a 

closer reality in clinical scenarios. Machine learning algorithms represent a key branch of this area, 

specially when dealing with medical decisions, due to its ability to learn before drawing a 

conclusion. In the case of skin cancer diagnosis, a secondary opinion can be reached, using a set 

of input variables, retrieved from image analysis and processing. Thus, aiding in medical decisions 

with the hopes of improving patient care and reduce costs. 

This chapter includes a detailed bibliographic research concerning the use of machine learning 

classification algorithms for medical diagnosis with different imaging modalities. Recent 

implementations of AI algorithms using information retrieved from medical infrared images are 

also mentioned. 

4.1 – Literature review: AI and imaging 

4.1.1 – Methodology 

 Search Strategy 

The presented bibliographic research was performed in the reference sources ISI Web of 

Science, PubMed and Scopus, with the following keyword combinations, respectively: TOPIC: 

(skin cancer) OR TOPIC (skin neoplasm) AND TOPIC: (imaging) AND (classification methods); ((skin 

cancer[Title/Abstract]) OR (skin neoplasm)) AND (imaging) AND (classification methods 

[Title/Abstract])); (TITLE-ABS-KEY ("skin cancer") OR TITLE-ABS-KEY ("skin neoplasm" 

) AND TITLE-ABS-KEY (imaging) AND TITLE-ABS-KEY ("classification methods")). The selected 

fields of search, in each database, were used to assure uniformity in the results encountered and 

the use of complex and unclear terms was avoided to guarantee a maximum number of results. 

Since the terms “skin cancer” and “skin neoplasm” are common interchangeable expressions, 
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the Boolean operator OR was applied. No time restriction was considered. After the database 

search a duplicate removal was followed. 

 Screening and eligibility results 

A title and abstract screening of the encountered articles was initially performed to consider 

only those that reported the use of classification methods in skin cancer images. 

The first eligibility criterion consisted in the removal of meeting abstracts and revision 

articles. Secondly, only publications written in English were kept, eliminating articles submitted 

in other languages. Considering that this review focused on the use of classifiers for skin cancer 

classification, articles that described the use of classification methods for other purposes were 

excluded, as well as research studies that classified skin neoplasms with different approaches, 

e.g., ABCDE rule, making the third and fourth selection rule, respectively. Lastly, publications 

that did not report values of accuracy, sensitivity, specificity or other classification metrics, 

were also removed. 

The remaining publications were categorized based on the imaging modality used to 

characterize the skin neoplasm: Dermatoscopy, Microscopy, Spectroscopy, Digital photography, 

Histopathological images and Others. A full text review was conducted following the PRISMA rules 

for systematic reviews detailed in [84], [85]. The revision process is described in Figure 4.1 

(adapted from [85]). 

 

Figure 4.1 - PRISMA flow diagram. 
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4.1.2 – Results 

A total of 526 publications were selected from the database search, with 251, 194 and 81 

publications found in ISI Web of Science, PubMed and Scopus, respectively. The duplicate removal 

lead to the exclusion of 183 articles. The remaining 343 publications were submitted to a title and 

abstract screening process, that resulted in the elimination of 195 records, since artificial 

intelligence computational classification methods were not applied to skin cancer images for 

classification purposes. Following, 83 articles were removed from the final results, due to the 

eligibility criteria defined, being 19, 7, 33, 15 and 9 eliminated due to the first, second, third, 

fourth and fifth criterion, respectively. The end results included 65 publications eligible for 

revision with 34, 6, 7, 12, 3 and 3 articles concerning the use of dermoscopy, microscopy, 

spectroscopy, digital photography, histopathology, combination of several and other imaging 

modalities to analyse the neoplasia, respectively. 

Dermoscopy 

The successful use of artificial intelligence methods for the assessment of skin lesions 

represented by computerized digital dermatoscopy images, is one of the most documented 

subjects of this field. 

The majority of authors reporting on this topic, demonstrate the usefulness of several 

classification algorithms in the evaluation of lesion’ malignancy, distinguishing benign from 

malignant melanocytic tumours. Grzesiak-Kopec et al [97] presented 2 different strategies for this 

purpose, using single classifiers: Naive Bayes, Random Forest and k-Nearest Neighbour (k-NN); and 

a meta-learning approach with Bootstrap Aggregating and Vote Ensemble Classifier. The k-Nearest 

Neighbour classifier is one of the easiest to comprehend and execute. In spite of its simplicity, it 

can compete with other more complex learners, outperforming them in some situations. The 

classification of a given instance is performed according to the label attributed to its k nearest 

neighbours, with the possibility of implementing different metric measurements for distance 

calculation [98]. The research outcomes of the metaheuristics exceeded the ones of single-

classifiers, having bagging applied to Random Forest presented the highest sensitivity value 

(0.851). Pairwise coupling (PWC) of SVM, k-NN and Gaussian maximum likelihood was applied by 

Rahman et al [99] to different colour and texture features extracted from skin lesion’ images. The 

implementation of fusion by sum of the single classification results exceed the performance of the 

lone machine learning algorithms, delivering an accuracy (ACC) of 75.69%. Pennisi at al [100] 

showed the ability of Naive Bayes, Adaptative Boosting (AdaBoost), k-NN and Random Trees 

machine learning methods in the detection of melanomas among benign lesions, segmented with 

Delaunay Triangulation. The best results were encountered with AdaBoost, with sensitivity (SN) 

and specificity (SP) values of 0.935 and 0.871, respectively. With the same purpose, Ruiz et al. 

[101] uses k-NN, Artificial Neural Networks (ANN) and Bayes learners in a collaborative method, 

improving the end results. The functioning of Artificial Neural Network (ANN) algorithms is often 

compared to the workings of the human brain. This comparison is justified by the presence of 
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neurons in the NN, that compose three different types of layers: input, hidden and output. The 

neurons communicate through interconnections, exchanging information, until the final output is 

reached [102], [103]. A number of 7 neighbours and 7 hidden layers, were encountered as the 

optimal parameters for the k-NN and ANN algorithm, respectively. A part from these, several other 

authors choose similar approaches, comparing single learners to select the classifier that best 

performs, depending on the provided data [104], [105]. 

The implementation of more complex approaches for the purpose of classifying pigmented 

skin lesions was performed by Masood et al [106] , with the development of a Deep belief network, 

using labelled and unlabelled data, in parallel with a self-advised single vector machine learning 

algorithm responsible for improving the classification results. This strategy addressed the frequent 

problem of insufficient training data, delivering classification errors lower than other common 

classifiers. Schaefer et al [107] presented another method to tackle this data imbalance, using an 

ensemble of various one-class-classifiers based on support vector data description. The Support 

Vector Machine (SVM) classifier is a supervised learning algorithm commonly applied in pattern 

recognition tasks. This method constructs several n-hyperplanes that maximize the separation 

between two classes. Depending in the type of input data, i. e., liner or non-linear, several kernel 

functions can be selected to acquire the optimum classification results [103], [108]. The final 

classification results showed its superiority in comparison to other ensemble classifiers based on 

SVM, commonly used in this situation. The combination of Multilayer Perceptron (ANN), Naive 

Bayes, Decision tree, k-NN and SVM classifiers documented by Castillejos-Fernández et al [109] 

also exceed the performance of the single classifiers in the task of malignancy classification. The 

relevance of the features selected for input is stressed, as the ensemble accuracy decreased with 

the increase of feature number. This topic is also highlight by Faal et al [110], after achieving 

better classification results with an ensemble of k-NN, SVM and Linear-discriminant analysis (LDA) 

algorithms with different feature inputs for the different classifiers, as oppose to the same shape, 

colour and textural components. The impact of input vectors was also tested by Rastgoo et al [111] 

with the implementation of an ensemble learning with Random Forest (RF) and Weighted 

combination constructed with RF, SVM and LDA, where the combination of several features achieve 

higher specificity results (94%), instead of the use of a single characteristic. This exact conclusion 

was reached by the same author [112], but applying single learners, namely, SVM, RF and Gradient 

boosting. In both articles, RF outperforms the others. Fengying et al [113] build a meta-ensemble 

model for the classification of melanocytic lesions, composed by 3 different ensembles based on 

NN, each feed with different inputs, with posterior combination of the outputs. Its overall 

sensitivity and accuracy exceeded RF, Gentle AdaBoost, SVM, k-NN, Fuzzy NN and systems based 

on Bagging of Features (BoF) models. Lastly, Abbas et al. [114] manipulated image features 

representative of lesion’ patterns to classify pigmented skin tumours, through the use of majority 

voting with support vector machine, achieving accuracy, sensitivity and specificity values of 93%, 

94% and 84%, respectively. 
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Apart from ensemble models and meta-learning approaches, the implementation of single 

learners for melanocytic lesion classification is also fairly common. SVM is the favoured learning 

model, being used standardly by the majority of authors, that preferred to focus on elaborate 

feature extraction and selection methods [115]–[118]. Specifically, Jaworek-Korjakowska et al. 

[119] used this type of learning algorithm to develop a Computer-Aided Diagnosis (CAD) system 

for the detection of micro malignant melanoma that outdid other literature models, with 

sensitivity of 90% and specificity of 96%. La Torre et al. [120] tested the performance of support 

vector machine classifiers with different function kernels, namely, 𝜒2, Gaussian and Generalized 

Gaussian. The latter showed remarkable results, detecting all cancerous lesions. Codella et al. 

[121] explored the application of SVM to whole and partitioned images, segmented using 

ensemble approaches, resulting in an area under the receiver operating characteristic (ROC) 

curve of 0.843. 

Support Vector Machine has also been used to deal with class imbalance situations for 

melanoma classification. Celebi et al. [122] implemented Random under-sampling and Synthetic 

minority oversampling technique (SMOTE) and concluded that SMOTE is a better approach, since 

the first option can eliminate valuable data and reduce drastically the number of samples, 

hardening the learning process. Since SVM can ignore input samples that are not linearly 

separated during the training step, Masood and Al-Jumaily [123] opted for a Self-Advising SVM 

(SA-SVM) strategy, to retrieve information from the misclassified data, during this phase. SA-SVM 

presented higher accuracy, sensitivity and specificity, followed by SVM with radial basis function, 

quadratic, polynomial, linear and multi-layer perceptron kernel, decreasingly. The classification 

capacity of SVM with different kernel functions was also explored by Wahba [124], defending the 

importance of kernel selection, according to the type of features included in the input vector. 

Since the supplied dataset was non-linearly separable, the quadratic polynomial function kernel 

delivered the top results. The same kernel was found to be the most adequate by Yuan et al. 

[125] to prevent the increase of error rate. 

Few authors exceed the 1 level distinction with SVM, introducing a second classification 

step. Suganya [126] developed a model to, firstly, categorize melanocytic and non-melanocytic 

lesions, followed by the differentiation of melanoma from nevus and BCC from seborrheic 

keratosis, respectively. Joseph and Panicker [127] divided normal and abnormal skin lesions, 

further classifying the last into Atypical nevi or melanoma. Both achieved sensitivity, specificity 

and accuracy values close to or above 90%. 

Melanoma detection also proved to be doable with the implementation of back-propagation 

neural networks (NN) classifiers, although with inferior performance metrics when compared to 

SVM. Premaladha and Ravichandran achieved an accuracy value of 87%, considering an error 

lower than 𝑒−0.5, while Messadi et al. [128] established a maximum error of 0.1, achieving a 

correct classification rate of 76.76%. The implementation of additional algorithms for the 

optimization of ANN performance in skin cancer classification is also found. Common methods 

include the use of Genetic Algorithms (GA) [129] and Particle swarm optimization (PSO) [130]. 
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Additionally, Random Forests learning methods have also been applied to dermatoscopy 

images for both melanoma [131] and BCC [132], [133] classification. Ferris et al. [131] 

constructed a model of 1000 decision trees and a threshold for malignant diagnosis of 0.4, with 

sensitivity results higher than the ones of physicians and specificities lower. Kharazmi et al. 

[132], [133] explored the use of vascular features for basal cell carcinoma automatic detection 

with 100 trees. No reference is made to the reasons considered for the selection of tree number. 

When compared to the abovementioned classifiers, the implementation of k-NN outside of 

ensemble models or comparative approaches is more uncommon. For melanoma recognition in 

dermatoscopy images, Ganster et al. [134] choose a 24-NN strategy, achieving a better overall 

performance when only two classes (benign and malignant) were considered, as oppose to three 

(benign, dysplastic and malignant). A neighbourhood of 24 was selected, considering that it 

ensured the best results, according to the available dataset. 

 Microscopy 

Machine learning algorithms have demonstrated their potential in the detection of 

melanoma tumours, analysed through microscopy techniques. The use of decision trees appears 

to be the preferred choice for the classification phase, whether the image collection is performed 

by confocal laser-scanning microscopy (CLSM) [135]–[137] or reflectance confocal microscopy 

(RCM) [138]. The reported sensitivity and specificity values of CLSM papers exceed the 90% mark, 

with values reaching 97% and 96% [136], [137], respectively. The same classification and 

regression tree (CART) software is implemented by all authors, although no mention of the 

parameters selected is encountered. 

The use of features extracted from fluorescence images, as inputs for machine learning 

classifiers, has also been approached, with Odeh et al. [139] reporting excellent results, for the 

k-NN algorithm, in the classification of benign and malignant skin lesions and not so good 

outcomes in the differentiation of BCC and AK tumours. A Euclidean distance metric was used, 

and several k were tested (1, 3, 5, 7 and 9). The best results were achieved with k=1, however 

this can be misleading due to possible overfit of the date. The author accentuates the relevance 

of feature selection, testing the use of Genetic algorithm and Sequential Scanning selection 

technique for this purpose. Odeh and Baareh [140] explored further one of the authors previous 

works and tested other options, namely, ANNs with GA and an Adaptive Neuro-Fuzzy Inference 

System for the same classification purposes. Nonetheless, k-NN with GA outperformed all the 

others. 

Spectroscopy 

Artificial intelligence algorithms have achieved satisfactory results in the identification of 

the deadliest form of skin cancer, in spectroscopy images. However, these are often worse than 

the ones attained in dermoscopy and microscopy methods. Li et al. [141] trained and tested the 

k-NN, ANN and Naïve Bayes classifiers, detailing the parameters choice. While default values 
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were chosen for the application of the latter algorithm, ANN was used with back-propagation 

and the number of 6 hidden units was justified by the sum of the number of inputs and outputs 

divided by 2. To balance noise and result robustness, a number of 3 neighbours was selected for 

k-NN. SVM was the learner of choice for Liu et al. [142] that verified a particular improvement 

in classification results, when patient age was added to the input feature vector. Tomatis et al. 

[143], [144] focused their research on the implementation of neural networks for classification 

of multispectral images, achieving sensitivity and specificity values higher than 70% on both 

works.  

The use of electrical impedance spectra as input for melanoma detection was successfully 

tested by Mohr et al. [145] with the SVM classifier, achieving high accuracy. With the same goal 

Aberg et al. [146] combined the results of 4 different learners (partial least squares discriminant 

analysis, SVM, ANN and k-NN) to obtain a sensitivity value of 95%. 

Lastly, k-NN was used by Maciel et al. [147] to discriminate other skin disorders, e. g., psoriasis 

from neoplastic lesions, represented in spectral images. Oddly, the increment of k had little to 

none influence on the great sensitivity and specificity results encountered. 

Digital Photography 

 Classification strategies based on Support vector machine learning are favoured when 

evaluating features extracted from macroscopic images. Similar to previously mentioned imaging 

methods, discrimination of melanoma among other lesions is the main objective, and accuracy 

values from 79% [148] to 97% [149] have been achieved. Takruri et al. [150] constructed a multi-

classifier to improve the accuracy of melanoma detection, based on 3 SVM algorithms with Radial 

Basis Function (RBF) kernel. The top result of 88,9% accuracy was achieved when Probability 

Averaging Fusion was used to combine the classifiers results, instead of Majority Voting. The RBF 

kernel was also selected by Oliveira et al. [151], as well as the histogram intersection kernel, 

due to the non-linearity of the data, to increase algorithm efficiency. Likewise, Spyridonos et al. 

[152] made the same kernel selection, but for the detection of AK among healthy skin, attaining 

sensitivity and specificty values in the range of 63.7-80.2% and 65.6-82.3%, respectively. 

Has in other papers with different imaging techniques for skin lesion classification, some 

authors rather focus their work on the development of novel feature extraction and selection 

strategies to achieve the best possible outcomes [153]–[156]. Jafari et al. [157] choose this 

approach, extracting different sets of colour features that were used as inputs for an ANN 

classifier. Neural networks performance in melanoma diagnosis, based on extracted colour 

features, was also studied by Przystalki et al. [158]. SVMs learners with linear, polynomial, 

quadratic and sigmoid kernel were used for comparison, with the highest accuracy (97.44%) 

corresponding to the linear function. 

The implementation of nearest neighbour methods in macroscopic images was described 

only by Cavalcanti and Scharcanski [159]. A k of 1 and the Euclidean distance metric were 

selected to distinguish benign from malignant lesions. In order to reduce the number of false 
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negatives obtained by this approach, a set of Bayes classifiers was applied afterwards, leading 

to an increase in sensitivity of 94.92% to 96.37%. 

Histopathological images 

The detection of non-melanoma skin cancers and pre-cancerous lesions has successfully been 

done with the analysis of histopathological images. SVM is the outperforming machine learning 

algorithm, showing sensitivity and specificity values higher than 90% [160] and 80% [161], 

respectively. Its use in semi-advised learning models is also encountered, but for melanoma 

recognition. Like in [106] for dermoscopy images, Masood et al. [162] choose this strategy to 

address the issue of limited unlabelled data, using SVM to adjust the weight of each sample. The 

SA-SVM outperformed the standard SVM learner. 

Other imaging modalities 

Lesion classification strategies based on information retrieved from uncommon imaging 

modalities, have also been studied by some authors. Parameters from teraheart pulse images of 

BCC lesions were retrieved and used for its distinction from healthy skin, using SVM algorithms 

[163]. Kia et al. [164] classified healthy skin, melanoma, BCC and benign lesion’ sonograms with 

multilayer perceptron (ANN), achieving sensitivity of 98% and specificity of 5%. Even though the 

authors emphasize the importance of high sensitivity, the obtainment of specificity as low is not 

acceptable, since unnecessary patient stress would be caused, due to the high number of false 

positives. Hence, the proposed classifier needs improvements. Lastly, Ding et al. [165] used 3D 

texture features and 2D ABCD parameters for melanoma diagnosis with support vector machine. 

A multilayer perceptron kernel was selected, reaching accuracy of 87.8%. 

4.1.3 – Trends and future challenges 

Most publications [109]–[112], [115], [116], [118], [139], [153]–[157] concerning the use of 

classifiers for skin cancer detection seem to highlight the importance of feature extraction and 

selection stages to attain the best results. Thus, it is expected further research in this area, 

focusing on image analysis and processing, in preference of new machine learning strategies. 

In fact, there is a loophole in the description of the classification task, since some papers 

[97], [117], [127], [132], [161] lack any reference to the parameters selected for the 

implementation of the algorithm of choice. The decision of using platforms that already include 

pre-written algorithms, i. e., WEKA, MATLAB and LIBSVM, could be the cause, since some authors 

prefer the implementation of standard models, instead of exploring other parameter options. 

Nonetheless, papers concerning the development of highly complex classification systems can also 

be found [106], [123], [162] and its increment should be pursued. 

The increase of available labelled data is of concern to improve the training task. However, 

the majority of studies rely on images available on databases [100], [139] or supplied by 
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hospitals[111], [134], being dependent of the number of samples that is given. Therefore, 

strategies to address this issue are of interest for future work and have already been explored by 

some authors [106], [162]. 

The use of Support Vector Machine (SVM) algorithms seems to be the prime choice for skin 

cancer classification, either on basic models [119], [120] or more complex algorithms [107], [150], 

suggesting upcoming research with this tendency. 

Lastly, new publications pertaining to classification models for skin cancer detection, should 

focus on finding a good balance between specificity and sensitivity values, to avoid faulty diagnosis 

for healthy and ill patients, respectively. 

4.2 – Literature review: AI and thermal imaging 

The use of machine learning algorithms for classification purposes using thermal infrared 

imaging, is a fairly recent topic [103]. Its application towards medical diagnosis has grown, 

particularly in breast cancer detection [166]–[169], being also applied towards the identification 

of other medical conditions, e.g, thyroid cancer [170], extreme fatigue [171], rheumatoid arthritis 

[172], hypertension [173] and psoriasis [174]. 

Such as in publications [170], [171], [173] concerning other imaging modalities, most authors 

focus on feature selection and extraction strategies to improve classification results. In IRT these 

parameters normally include statistical measurements. 

Algorithms based on support vector machine, neural networks and k-nearest neighbours seem 

to be the preferred choice [103], for AI application in IRT images, with accuracy, specificity and 

sensitivity values competitive with other imaging modalities, has it is verified in Table 4.1. 
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Table 4.1 – Recent publications regarding the use of machine learning classifiers for medical diagnosis using 
IRT imaging. 

 

4.3 – Summary 

 The conducted bibliographic research presented in this chapter allowed a better 

understanding of the implementation of different classifiers in medical diagnosis. Concerning 

classification tasks with IRT, the classifiers SVM, k-NN and ANN seem to be the most adequate and 

will be utilized in the following chapter for this purpose. The selection of some parameters will 

also be performed based on the knowledge acquired in this literature review. 

 

 

Publication Objective Classifier Best performance 

Strąkowska et al. (2018) Psoriasis screening SVM, LDA, k-NN (k=3, 7, 9, 11, 13) k-NN: ACC=96% 

Umapathy et al. (2017) 
Diagnosis of arthritis 
rheumatoid 

k-means, k-fuzzy means (k=3) 
k-means: SN=86.6%, 
SP=79% 

Acharya et al. (2012) Breast cancer diagnosis SVM 
ACC=88.10%, SN=85.71%, 
SP=90.48% 

Lashkari et al. (2016) Breast cancer diagnosis 
SVM, k-NN, Naïve Bayes, 
Probability NN, AdaBoost 

AdaBoost: ACC>80% 

Francis et al. (2017) Breast cancer diagnosis SVM (cubic polynomial kernel) 
ACC=94.4%, SN=97.2%, 
SP=91.7% 

González et al. (2017) Thyroid cancer diagnosis k-NN ACC=91% 

Kandlikar et al. (2017) Breast cancer diagnosis ANN, SVM 
SVM: ACC=90.9% 

ANN: ACC=80.95% 

Lopez et al. (2017) 
Detection of extreme 
fatigue 

Deep convolutional NN ACC=81.51% 

Alpar and Krejcar (2018) Detection of vasospasms Fuzzy c-means (c=2) - 

Ramesh and 
Thiruvengadam (2018) 

Diagnosis of hypertension SVM 
ACC=93%, SN=90%, 
SP=94% 



 
 

 

Chapter 5 

Materials and methods 

The methodology followed in this study is based on the collection and analysis of skin 

temperature values representative of dermic and epidermic tumours.  The selected equipment, 

study’s population and image acquisition protocol are described in this chapter, as well as the 

adopted data analysis strategies. 

5.1 – Equipment 

The equipment used for the collection of thermal data consisted on the thermographic 

camera FLIR E60sc – Figure 5.1 (adapted from [175]) –, mainly characterized by the properties 

included in Table 5.1A [176]. To assure the quality of the captured images, the camera was 

previously calibrated with a blackbody ISOTECH HYPERION R 982. A hygrometer TESTO 175H1 

was used to monitor the ambient temperature and relative humidity, guaranteeing optimal 

conditions for the thermal recordings. 

For thermal provocation, an aluminium medal with a diameter and height of 50 and 20 

mm, respectively, was used – Figure 5.1B. The selection of this particular metal is justified by 

the elevated thermal conductivity that it presents, e. g., 237 W cm-1 K-1 at 298,2 K [177], 

providing a high heat transfer rate across the medal. 

 
Figure 5.1 – Equipment for image acquisition: A - Thermal imaging camera: FLIR E60sc; B – Aluminium 
medal. 

Diameter = 50 mm 

Height = 20 mm 

A B 
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Table 5.1 - Properties of thermal imaging camera FLIR E60sc. 

The software tools for thermogram manipulation, included ThermaCAM Researcher 

Professional 2.10 [178] and MATLAB R2016a [179]. Excel 2016 was used for gathering and data 

organization, as well as for statistical calculations. Statistical analysis was also performed in 

Statistical Package for the Social Sciences (SPSS) v24. Lastly, Waikato Environment for 

Knowledge Analysis (WEKA) 3.8 [180] was used for classification purposes with machine learning 

algorithms. 

5.2 – Focus group 

The study’s population group included individuals aged 18 years old or above. No maximum 

age restriction was specified, being that individuals mentally unfit or legally unable to authorize 

its participation had the option of being represented by a legal representative. Each subject 

needed to present, at least, one possible neoplastic lesion for inclusion in this research and 

non-cooperating individuals, were discarded. Some exclusion criteria regarding necessary 

precautions before and during the thermal acquisition process were also established – Table 

5.2. Image acquisition was performed from October 2017 to May 2018, at a minimum of 3 days 

a week. 

Table 5.2 – Exclusion and inclusion criteria defined for the research study. 

 

Property Property value/specification 

Size of focal plane array 320 x 240 

Field of view 25° x 19° 

Frame rate 60 Hz 

NETD 50mK at 30° C 

Measurement uncertainty ± 2% of the global reading range 

Detector type Uncooled microbolometer 

Focus Manual 

Minimum focus distance 1.3 ft/0.4 m 

Measurement correction 
Automatic, based on the inputs of ROI’s distance, ambient 
temperature and relative humidity 

Inclusion criteria Exclusion criteria 

 Ingestion of a heavy meal 

Age equal or above 18 years old Partake in tiring and stressful activities 

Presence of, at least, one 
plausible skin neoplasm 

Ingestion of alcohol or caffeine-based beverages 

Smoking until 2 hours before thermal capture 

 Non-removal of jewelry items 

 Applying lotions to the leased area 
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The thermograms were collected at Instituto Português de Oncologia do Porto Francisco 

Gentil, E.P.E. (IPO-Porto) after the approval of the ethics Committee – Appendix II. The 

evaluated lesions were present in patients assigned to the Plastic and Reconstructive Surgery 

department, being previously diagnosed by a physician at this service. All diagnoses were 

confirmed by histopathological analysis. 

5.3 – Capture protocol 

Prior to image capture, the patient was subjected to a period of acclimatization (≈ 10 

minutes). During this time, the participant took knowledge of the current investigation work – 

Appendix III – and filled the necessary documentation, i. e., the informed consent and biometric 

data questionnaire associated with the pathology – Appendix IV and V, respectively. The 

biometric data form allowed the registration of patients’ skin neoplasm type, age, sex, height, 

weight, eye colour, Fitzpatrick scale type [181], presence/absence of skin marks and skin 

neoplasm location. 

Following, images of the affected skin area (Image X) and respective contralateral location 

(Image Y) were captured and, with the aid of the aluminium medal, a cold stimulus, with the 

duration of 1 minute, was applied to the lesion site. A new thermal image was acquired 

immediately after the thermal stress (Image 0) and at each following minute, until the 5-minute 

mark, collecting 5 images representative of the thermal recovery (Images 1, 2, 3, 4 and 5). A 

summarized scheme of the capture protocol is presented in Figure 5.2. 

 

Figure 5.2 - Stages involved in the acquisition protocol. 
 

5.4 – Data analysis 

 The analysis of thermal data was divided in infrared thermal image analysis, statistical 

treatment and machine learning classification, using the software tools mentioned in section 

5.1. The steps involved in each phase are detailed in the following sub-sections. 

5.4.1 – Infrared thermal image analysis 

Unlike other diagnostic methods, e. g., dermatoscopy, thermograms provide information 

concerning the physiological status of the object under evaluation, in preference to anatomic 
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knowledge [17]. For this reason, a temperature gradient is frequently encountered between 

the tumour site and the surrounding healthy skin, instead of a precise boundary, making lesion 

segmentation impossible by the means of algorithms [182]. Thus, an image analysis process that 

included a user input for lesion localization seemed to be the preferred option. 

Before image loading, the thermograms were converted to MAT-files, using ThermaCAM 

Researcher Professional 2.10. 

Following the upload of the file to MATLAB, a pre-processing step was performed, 

including: image conversion from RGB to grayscale, histogram equalization and resizing. The 

original image was rescaled for twice its original size, in order to ease the visualization of the 

lesion site in the user input stage. To guarantee that the average temperature of the 

thermograms was maintained, the nearest neighbour method was used for the rescaling. 

Since the separation of the region of interest (ROI) from the background returns faulty 

results when performed by segmentation algorithms, a user input was requested in the lesion 

segmentation stage, to box the leased area. The selected zone was, subsequently, cropped in 

a 40x40 square, having into account the centre of the original box. The use of a 40x40 matrix 

was chosen as a standard size to completely include the majority of tumours presented in the 

thermograms. 

The analysis of the thermograms acquired statically and dynamically was performed by 

two different algorithms, sharing only the previously-mentioned steps – Figure 5.3. 

Figure 5.3 – Infrared thermal image analysis scheme of static and dynamic acquired images. 

Steady-state 

The analysis of the thermograms acquired with static thermography consisted mainly in 

the construction of a temperature profile representative of the lesion under evaluation. Only 
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the tumour’s thermogram acquired in a steady-state, i. e., Image X, was considered for this 

stage. 

Following lesion segmentation in MATLAB, the temperature values of the two main 

diagonals of the 40 by 40 squared area – Sd1 and Sd2 –  were collected – Figure 5.4A – and, 

subsequently, multiplied in two manners: top to bottom and left to right – Figure 5.4B. As a 

result, a vertical (Sv) and a horizontal (Sh) temperature vector, characteristic of the skin lesion, 

were attained – Figure 5.4C. 

Figure 5.4 – A – Selected skin tumour area; B - Scheme of temperature diagonals and its multiplication; 
C - Vertical and horizontal temperature vectors. 

After concluding from previous work that both temperature vectors supplied meaningful 

information, an averaging of the values composing the two curves was made, using equation 

(3), to guarantee the best representation of the lesion’s temperature profile. 

𝑆(𝑥) =
𝑆𝑣(𝑥) + 𝑆ℎ(𝑥)

2
⁄  ,                                                          (3) 

 

being 𝑥 horizontal profile coordinates, with 𝑥 ∈ {1, 2, 3, … , 40}. 

In addition, the average temperature (SM) and standard deviation (SSTD) of the 40x40 

lesion area were also collected, for posterior classification purposes, and the average 

temperature of the healthy collateral region (SMY) was obtained, using Image Y. 

The steady-state parameters acquired for each participant are summarized in Table 5.3. 

Table 5.3 – Steady-state parameters collected from Image X and Y. 

Image Steady-state variables 

X S1, S2, …, S40 SM SSTD 

Y SMY 
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Dynamic state 

The dynamic analysis focused on the retrieval of the maximum temperature differences 

between the central and the peripheral regions of the selected tumour area, before and after 

thermal recovery. 

As seen in Figure 5.5, the lesion was, firstly, divided in 2 regions: a central (C) and a peripheral 

(P) one. Following, the algorithm searched region C for the 5-connected pixels whose values 

originated the highest average temperature (𝑥𝐶̅̅ ̅). The same task was performed in region P, but 

the 5-connected pixels that resulted in the lowest average temperature were selected instead 

(𝑥𝑃̅̅ ̅). The maximum temperature difference (𝐷) was then calculated, using 𝐷 = |𝑥𝐶̅̅ ̅ − 𝑥𝑃̅̅ ̅|. 

Figure 5.5 – Scheme of image partition and scanning performed by the MATLAB algorithm. 

 

The average temperature (DM) and standard deviation (DSTD) of the 40 by 40 tumour area 

were also collected. 

All of the aforementioned tasks were performed using images X, 0, 1, 2, 3, 4 and 5 of each 

patient. Table 5.4 summarizing the collected dynamic parameters, according to selected image. 

Table 5.4 – Dynamic variables collected from Image X and Y. 

Image Dynamic variables 

X DX DMX DSTDX 

0 D0 DM0 DSTD0 

1 D1 DM1 DSTD1 

2 D2 DM2 DSTD2 

3 D3 DM3 DSTD3 

4 D4 DM4 DSTD4 

5 D5 DM5 DSTD5 

 

5.4.2 – Statistical treatment 

Microsoft Excel 2016 

The temperature values retrieved during the infrared thermal image analysis stage were used 

for statistical calculations and chart construction in Microsoft Excel 2016.  

Concerning static thermography, the Excel tool was used to acquire the average temperature 

profile for each skin neoplasm type, using the parameters S1, S2, …, S40. Separately, the average 

40x40 

20x20 

P 

C 
Division Scanning 
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tumour temperature (SM) and standard deviation (SSTD) were utilized for the comparison of 

different skin neoplasm types. The differences between healthy and leased skin were also 

evaluated, using SM and SMY for each skin tumour group. 

The dynamic parameters were employed with the same principal, attesting the ongoing 

changes in tumour temperature difference (DX, D0, …, D5), average temperature (DMX, DM0, …, 

DM5) and standard deviation of lesion temperature (DSTDX, DSTD0, …, DSTD5), during the dynamic 

acquisition process. 

A frequency histogram concerning lesion location was also constructed, using this tool. 

 Statistical Package for the Social Sciences (SPSS) 

The statistical treatment was primarily performed with Statistical Package for the Social 

Sciences (SPSS) v24 software. For this, the categories Skin neoplasm, Age group, Sex, Height, 

Weight, Body Mass Index (BMI), Fitzpatrick scale type, Eye colour and presence/absence of Skin 

marks, relative to each participant, were considered. The skin neoplasm types were divided into 

squamous cell carcinoma (SCC), basal cell carcinoma (BCC), melanoma, actinic keratosis (AK), 

melanocytic nevus (Nevi), seborrheic keratosis (SK), other benign neoplasia (Other) and skin 

neoplasm scar tissue lesions(Non-neoplastic). The eye colour included blue, green and brown and 

the Fitzpatrick scale was evaluated from I to V. The factors Age group, Height, Weight and BMI 

were divided into classes and a label was assigned to each category’ component– Table 5.5. 

Table 5.5 – Labels assigned to each category. 

Label 
Skin neoplasm 

type 
Age 

Group 
Sex Height (m) 

Weight 
(kg) 

BMI 
Fitzpatrick 

scale 
Eye 

Colour 
Skin 

marks 

0 SCC [18 - 29] F < 1.50 < 50 < 18.5 I Blue No 

1 BCC [30 - 39] M [1.50 – 1.60] [50 – 59] [18.5 – 24.9] II Green Yes 

2 Melanoma [40 - 49]  ]1.60 – 1.70] ]60 – 69] [25 – 29.9] III Brown  

3 AK [50 - 59]  ]1.70 – 1.80] ]70 – 79] [30 – 34.9] IV   

4 Nevi [60 - 69]  > 1.80 ]80 – 89] [35 – 39.9] V   

5 SK [70 - 79]   > 90 > 40    

6 Cyst ≥ 80        

7 Other         

8 Non-neoplastic         

 

In addition to these categories, the parameters collected for each participant, during infrared 

thermal image analysis, were introduced as variables – Table 5.4. Thus, from the static analysis, 

40 temperature values (S1, …, S40), average lesion temperature (SM) and standard deviation (SSTD) 

were included, and from the dynamic evaluation 7 values of temperature difference (DTX, DT0, 

…, DT5), average lesion temperature (DMX, DM0, …, DM5) and standard deviation (DSTDX, DSTD0, 

…, DSTD5) were considered. 

First, a frequency and descriptive analysis was performed to characterize the sample. 
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Then, the Kolmogorov–Smirnov test was used to assess the normality of the data with a 

significance level of 0.05. 

Due to the k-s test result, non-parametric tests, namely, U-Mann Whitney and Kruskal Wallis 

test, were applied to verify if the categories representative of the patient biometric data 

influenced any of the variables collected during the infrared thermal image analysis. The U-Mann 

Whitney is a non-parametric test equivalent to the parametric independent sample t-test, when 

the normality of the data is not verified. It is used to test whether two samples belong to the same 

population, i. e., present the same median value [183]. The Kruskal-Wallis test is the non-

parametric alternative to ANOVA for independent samples, not requiring a normality distribution 

of the data. It compares more than two samples, evaluating if they arise from the same 

distribution. A significance level of 0.05 was used for both tests. 

5.4.3 – Machine learning classification 

For the classification stage Waikato Environment for Knowledge Analysis (WEKA) was used. 

Six different classification tasks were defined: 

- Lesion type – Distinction between benign neoplasia, malignant neoplasia1 and non-

neoplastic lesions; 

- Benign – Distinction between actinic keratosis (AK), melanocytic nevi (Nevi), 

seborrheic keratosis (SK), cysts (Cyst) and other benign neoplasia (Other); 

- Malignant – Distinction between squamous cell carcinoma (SCC), basal cell carcinoma 

(BCC) and melanoma; 

- Melanoma vs Nevi – Distinction between melanoma and melanocytic nevi lesions; 

- SCC vs AK - Distinction between squamous cell carcinoma and actinic keratosis lesions; 

- Ben vs Mal – Distinction between benign and malignant lesions. 

In order to compare the classification results obtained with different thermal image 

acquisition methods, separate data sets were assembled with static and dynamic parameters. 

Concerning steady-state thermography, the temperatures composing each lesion thermal 

profile (S1, S2, …, S40), average lesion temperature (SM) and standard deviation (SSTD) were used. 

To assess if one statistical measurement could outperform the other, S1, S2, …, S40 were, firstly, 

used as inputs with SM and then tested with SSTD. Thus, each steady-state classification test 

included 41 input features – Table 5.6. 

The dynamic parameters were used with the same logic, coupling, first, maximum 

temperature differences (DX, D0, …, D5) with average lesion temperatures (DMX, DM0, …, DM5) 

and then with standard deviation values (DSTDX, DSTD0, …, DSTD5). Therefore, each dynamic 

classification stage comprised 14 input features – Table 5.6. 

 

                                                           
1 Nevi, AK, SK, Cyst and Other lesions were included as benign tumours, while SCC, BCC and melanomas 
were considered malignant. 
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Table 5.6 – Possible feature combination for input vector, according to image acquisition process. 

 

For classification the machine learning algorithms Multilayer Perceptron, SMO and iBk were 

selected. Multilayer perceptron is a type of artificial neural networks (ANN) that classifies 

instances based on the backpropagation concept [184]. The inputs are processed by a set of 

functions to obtain the contribution error, of each input neuron, at the output layer. These values 

are “sent back” and serve as a guidance to adjust the weights of each input, in order to obtain the 

best classification possible [184], [185]. Sequential Minimal Optimization is used when Support 

Vector Machine learning is applied to a set of data that is represented by a quadratic function of 

multiple variables [186]. The main goal is to find the longest distance between each class, which 

can be time consuming with large data sets [187]. Thus, SMO decomposes the complex quadratic 

problem into smaller parcels, solving them from the smallest to the greatest [186]. In the IBk 

classifier the features of a given instance are compared to the features its k-nearest neighbours, 

based on distance, being the instances labelled as its closest k-neighbour [188]. 

The classification results were evaluated based on the performance metrics: accuracy (ACC), 

sensitivity (SN) and specificity (SP). The sensitivity and specificity values were only computed 

when the classification task included distinction between cancerous and non-cancerous lesions, i. 

e., Melanoma vs Nevi, SCC vs AK and Ben vs Mal. The accuracy indicates the percentage of 

instances that were correctly classified by the learner. It is an excellent metric to use when the 

available data set is balanced, i. e., the number of instances between each class does not differ 

greatly [190]. In a scenario of an unbalance data set other metrics should be considered. Sensitivity 

measures the ability of the learner to correctly identify those with the disease, while specificity 

regards the correct classification of those who don’t. These metrics are calculated with equations: 

Accuracy =
TP+TN

TP+FP+TN+FN
                                                      (4) 

Sensitivity =
TP

TP+FN
                                                           (5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                           (6), 

where TP, FP, TN and FN are, respectively, True Positive (malignant lesion classified as malignant), 

False Positive (benign lesion classified as malignant), True Negative (benign lesion identified as 

benign) and False Negative (malignant lesion identified as benign). The TP, FP, TN and FN values 

are commonly displayed using confusion matrices – Figure 5.6.  

Image acquisition method Input feature vector 

Static S1, S2, …, S40   ∧   SM   ∨   SSTD 

Dynamic DX, D0, …, D5  ∧  DMX, DM0, …, DM5  ∨  DSTDX, DSTD0, …, DSTD5 
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Figure 5.6 – Confusion matrix model. 

According to the selected classifier some parameters were defined. For the support vector 

classifier two different kernels functions were tested, namely, Radial Basis Function (RBF) and 

Quadratic Polynomial kernel, since the data set was not linearly separable. 

For the implementation of Multilayer Perceptron, the number of hidden units was calculated 

for each classification task, according to the number of inputs and outputs for that specific trial – 

Table 5.7. An illustrative example, follows: 

Classification task: Malignant – Steady-state data 

Number of input features: 41 (S1, S2, …, S40, SM) 

Number of possible classifications: 3 (SCC, BCC, Melanoma) 

𝑛𝑢𝑚𝑏𝑒𝑟 ℎ𝑖𝑑𝑑𝑒𝑛 𝑢𝑛𝑖𝑡𝑠 = (41 + 3) 2⁄ = 22 

Table 5.7 – Number of hidden layers selected for each classification test, according to image acquisition 

process. 

Classification task Steady-state Dynamic 

Lesion type 22 9 

Benign 23 10 

Malignant 22 9 

Melanoma vs Nevi  22 8 

SCC vs AK   22 8 

Ben vs Mal 22 8 

For the k-nearest neighbour learner 3 different values of k were evaluated2: 

- k = 1 – usually delivers the best classification results; 

- k = 7 – retrieves a high classification accuracy while keeping the classification error 

low; 

- k = √n – following the “rule of thumb”, the square root of the number of instances (n) 

used during the training phase should deliver the best result [189] – Table 5.8. An 

illustrative example follows: 

                                                           
2 The values of k=1 and k=7 where selected using cross-validation in previous tests. The correlation between 
classification accuracy and mean squared error is presented in Appendix VI. 

TP FN 

FP TN 

a b 

a - Malignant 

b - Benign 
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Classification task: Malignant – Steady-state data 

Training set size: 185 instances 

𝑘 = √𝑛 = √185 ≈ 14 

Table 5.8 – Number of nearest neighbours (k) considered for each classification task, according to image 

acquisition process. 

Classification task Steady-state Dynamic 

Lesion type 9 8 

Benign 11 9 

Malignant 14 13 

Melanoma vs Nevi  5 5 

SCC vs AK   6 6 

Ben vs Mal 13 12 

The default settings of the remaining parameters correspondent to each classifier were kept. 

The unsupervised Resample instance filter was selected for the construction of the training 

and test sets, each with 60% and 40% of instances, respectively. 
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Chapter 6 

Results 

This chapter includes the results attained from this research work. First, characterization of 

the study’ sample is presented, followed by the results acquired from steady-state and dynamic 

analysis.  The influence of participants’ characteristics in the retrieved temperature variables is 

included. Lastly, the machine learning classification results are presented.

6.1 – Sample characterization 

 In total, 320 IPO-Porto patients participated in this study, resulting in the thermal 

evaluation of 320 skin lesions. More than 35% of skin tumour were encountered on the facial region, 

followed by hands, arms and chest area – Figure 6.1. 

Figure 6.1 Skin neoplasm incidence according to body region. 

The majority of lesions corresponded to basal cell carcinoma (BCC) (36.8%), followed by 

squamous cell carcinoma (SCC), melanocytic nevi (Nevi), actinic keratosis (AK), other benign 

neoplasia (Other), skin neoplasm scar tissue (Non-neoplastic), melanoma, seborrheic keratosis (SK) 

and cysts – Figure 6.2A. These lesions were mostly present in patients aged 80 years or above with 

only 0.6% of participants having 18 to 29 years old – Figure 6.2B. The number of female patients 
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was fairly proportional to the number of males, surpassing it only by 10% - Figure 6.2C. The 

characteristics height, weight and BMI tended to follow a normal distribution – Figure 6.2D, E and 

F – with the most populated classes being 1.50-1.60 m, 60-69 kg and 25-29.9 kg/m2, respectively. 

Concerning, eye colour and the Fitzpatrick scale type, the majority of patients shared typical 

mediterranean features, namely, brown iris (49.4%) and slightly tan skin and dark hair (48.8%) – 

Figure 6.2G and H, respectively. Skin marks were absence in most participants – Figure 6.2I. The 

frequency tables, concerning patients’ characteristics are included in Appendix VII. 

 

Figure 6.2 – Frequency of patients’ characteristics in study’s sample. 
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The descriptive analysis showed that the average patient’s age, height, weight and BMI was 

70.66 years, 1.62 m, 69.1 kg and 26.1, respectively – Table 6.1. 

Table 6.1 – Mean and standard deviation value for patients’ age, height, weight and BMI. 

Characteristics Mean ± Standard deviation 

Age (year) 70.66 ± 7.518 

Height (m) 1.62 ± 0.046 

Weight (kg) 69.14 ± 6.316 

BMI (kg/m2) 26.18 ± 1.984 

 

6.2 – Steady-state image analysis 

In total, 320 lesions were evaluated, including 51 SCC, 118 BCC, 16 melanomas, 29 AK, 30 

Nevi, 14 SK, 11 Cysts, 29 other benign neoplasia and 22 scar tissue lesions. 

The main goal of static image analysis was the construction of an average temperature profile 

representative of each skin tumour type. Different thermal profiles were compared, based on the 

defined classification task groups. 

The profiles correspondent to SCC and BCC lesions presented thermal valleys, indicating that 

the lesion temperature decreased as we move towards its centre. This depression was more 

accentuated in the squamous cell carcinoma type. Contrarily, melanomas were represented by 

hyperthermic curves, since a temperature increase was verified as we move away from the 

periphery. Thus, an overlap occurs between basal and melanoma tumours in the central profile 

coordinates – Figure 6.3. 

 

Figure 6.3 – Static thermal profile characteristic of SCC, BCC and melanoma lesions. 

The static curves of melanocytic nevi, seborrheic keratosis and cystic tumours were quite 

similar, with an almost complete overlap in nevi and cyst lesions. The thermal profile of actinic 

keratosis presented the same shape as these benign tumours, however with lower temperature 
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values. An accentuated hypothermic curve was obtained for the other benign neoplasia, while 

actinic lesions showed a smoother thermal profile – Figure 6.4. 

 

Figure 6.4 – Static thermal profile characteristic of AK, Nevi, SK, Cyst and Other lesions. 

The comparison of melanoma and nevi tumours showed a clear distinction between these type 

of lesions, having melanoma a hyperthermic curve and melanocytic nevi a hypothermic one – Figure 

6.5. 

 

Figure 6.5 – Static thermal profile characteristic of melanoma and melanocytic lesions. 

Both SCC and AK displayed hypothermic profiles that overlap in the central region. The 

hypothermic valley of squamous cell carcinoma is more pronounced, reaching lower temperatures 

than actinic lesions – Figure 6.6.
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Figure 6.6 – Static thermal profile characteristic of SCC and AK lesions. 

Lastly, the benign and malignant lesions were described by thermal curves that decrease its 

value as the tumour’s centre is reached, with the second presenting a smoother depression. The 

non-neoplastic lesions exhibited an almost stable pattern, with temperatures lower than the 

neoplastic lesions – Figure 6.7. 

 

Figure 6.7 – Static thermal profile characteristic of benign, malignant and non-neoplastic lesions. 

The average lesion temperature and standard deviation of different skin neoplasm types were 

also likened for differentiation purposes. 

In the case of malignant tumours, the first statistical measurement was higher for BCC lesions 

and lower for melanomas, while the standard deviation of SCC exceeded the ones of melanoma 

and BCC – Figure 6.8A and B, respectively. 
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Figure 6.8 – SCC, BCC and melanoma lesions: A - average lesion temperature; B - Standard deviation. 

The benign tumours were similar in both average lesion temperature and standard deviation, 

except for the values correspondent to other benign lesions, that differ greatly in the latter 

statistical measurement – Figure 6.9B. 

Figure 6.9 – AK, Nevi, Cyst, SK and Other lesions: A - average lesion temperature; B - standard deviation. 

In general, melanoma lesions presented lower average temperatures than benign 

melanocytic tumours. The contrary was verified in the standard deviation measurement – Figure 

6.10. 

Figure 6.10 – Melanoma and Nevi lesions: A - average lesion temperature; B - standard deviation. 
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In the comparison of SCC and AK the standard deviation also showed a greater discrepancy 

than the average – Figure 6.11 A and 6.11B. 

 Figure 6.11 – SCC and AK lesions: A - average lesion temperature; B - standard deviation. 

When relating different lesion malignancies, non-neoplastic lesions presented the lowest 

average temperature, followed by malignant and benign neoplasia. For the standard deviation the 

highest value was attained for malignant lesions and the smallest corresponded to tumours’ scared 

tissue – Figure 6.12. 

Figure 6.12 – Malignant, benign and Non-neoplastic lesions: A - average lesion temperature; B - standard 
deviation. 

The comparison of leased skin areas and healthy skin tissue showed that the highest 

temperature difference between these regions was verified in malignant lesions, i. e., SCC, BCC 

and melanoma, and nevi tumours. 

All presented lower temperatures for the tumour region, when compared to the healthy 

opposite area. The contrary was only verified for cysts and seborrheic tumours – Figure 6.13. 
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Figure 6.13 – Malignant, benign and non-neoplastic lesions: A - average lesion temperature; B - standard 
deviation. 

6.3 – Dynamic image analysis 

 The dynamic analysis was performed in 274 tumours, including 30 SCC, 104 BCC, 12 

melanomas, 27 actinic keratosis (AK), 29 melanocytic nevi (Nevi), 14 seborrheic keratosis (SK), 11 

cysts, 27 other benign neoplasia and 20 scar tissue lesions. Not all 320 skin neoplasms were 

thermally stressed, since not every lesion was passible of stimulation, due to injury risk or 

impossible access. 

The main goal of this stage was to evaluate the thermal behaviour of different skin neoplasm 

types after the application of a cold stress. Different thermal recovery curves were compared, 

based on the established classification task groups. 

Concerning malignant lesions, the main differences, during the thermal recovery phase, were 

verified in Image 0. The highest maximum temperature difference (D) occurred for SCC lesions, 

followed by BCC and melanomas. The latter also presented the lowest average lesion temperature 

and standard deviation. After thermal stress, the average temperature of basal lesions decreased 

greatly and slightly for squamous tumours. Both lesion types displayed similar standard deviations 

– Figure 6.14. 
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Figure 6.14 – Thermal chances during stimulation process – Malignant: A – Maximum temperature 
difference; B – Average lesion temperature; C – standard deviation of lesion temperature. 

The benign lesion types presented low D, except for cystic lesions. The maximum temperature 

difference for other benign tumour types was mostly constant during the entire process. The 

average temperature profile was quite similar for all lesions, with an accentuated decrease on 

point 0. Lastly, the standard deviation measurement was constantly stable for other benign tumour 

types and elevated at the 0 time mark for the remaining lesions – Figure 6.15. 
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Figure 6.15 – Thermal chances during stimulation process – Benign: A – Maximum temperature difference; B 

– Average lesion temperature; C – standard deviation of lesion temperature. 

The squamous lesions exceeded the actinic tumours in all measurements, specially in the 

moment immediately after the cooling process. The most significant difference was verified in D, 

with an increased slope between images X and 0 and images 0 and 1 – Figure 6.16. 
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Figure 6.16 – Thermal chances during stimulation process – SCC vs AK: A – Maximum temperature 

difference; B – Average lesion temperature; C – standard deviation of lesion temperature. 

In the evaluation of melanoma and nevi thermal recovery curves it was possible to assess that 

the malignant lesion type presented higher values for D and standard deviations of temperature 

then the benign melanocytic lesions. For melanomas the slopes between images X and 0 and images 

0 and 1 were also more accentuated than the ones verified in nevi’s thermal curve. However, 

equal temperature values were encountered for the leased area of both types in the majority of 

the thermal recovery process – Figure 6.17. 
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Figure 6.17 – Thermal chances during stimulation process – Melanoma vs Nevi: A – Maximum temperature 

difference; B – Average lesion temperature; C – standard deviation of lesion temperature. 

In the same line, the benign lesions presented smaller curve slopes between images X and 0 

and images 0 and 1 than the malignant skin tumours. The standard deviation was also higher for 

cancerous lesions, followed by non-cancerous pathologies. The overall lesion temperature was 

slightly higher for malignant tumours – Figure 6.18. 
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Figure 6.18 Thermal chances during stimulation process – Ben vs Mal vs Non: A – Maximum temperature 

difference; B – Average lesion temperature; C – standard deviation of lesion temperature. 
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6.4 – Statistical analysis 

The statistical analysis included all the 320 participants and the correspondent biometric 

information and static and dynamic data collected during the infrared thermal image analysis 

stage. 

The Kolmogorov–Smirnov test showed that not all variables followed a normal distribution, so 

the non-parametric tests U-Mann Whitney and Kruskal Wallis were applied with the purpose of 

assessing the influence of the factors Skin neoplasm type, Age group, Sex, Height, Weight, BMI, 

Eye colour, Fitzpatrick scale type and Skin marks in the steady-state (S1, S2, …, S40; SM; SSTD) 

and dynamic variables (DX, DO, …, D5; DMX, DM0, …, DM5; DSTDX, DSTD0, …, DSTD5). 

For the Kruskal-Wallis test, the skin neoplasm type was predominantly associated with 

standard deviation, maximum temperature difference and average variables, while the age group 

was only linked to standard deviation measurements. Both test showed statistical evidence of 

rejecting the null hypothesis (p < 0.05) in the Sex class, which demonstrated the influence of such 

in variables D2 and DSTD4. The Eye colour characteristic was only connected to STD0 by the 

Kruskal-Wallis test – Table 6.2. 

No other factor was considered to influence any variable. 

Table 6.2 – Results of U-Mann Whitney and Kruskal-Wallis test: variables influenced by patients’ factors. 

Category U-Mann Whitney Kruskal-Wallis 

Skin neoplasm type - 
SSTD, DX, D0, D1, D2, D4, 

DM0, DM1, DM2, DM3, DM4, 
DM5, DSTD4, DSTD5 

Age group - 
DSTDX, DSTD0, DSTD1, DSTD2, 

DSTD4, DSTD5 

Sex D2, DSTD4 D2, DSTD4 

Eye colour - DSTD0 

 

6.5 – Machine learning classifiers 

The classification stage had the primary goal of differentiating distinct skin neoplasm types, 

using different machine learning algorithms, e. g., Sequential Minimal Optimization (SMO), 

Multilayer Perceptron and instance Based k-nearest neighbour (iBk). For this, the acquired static 

(S1, S2, …, S40; SM; SSTD) and dynamic variables (DX, DO, …, D5; DMX, DM0, …, DM5; DSTDX, 

DSTD0, …, DSTD5) were used for different classification tasks. 

Steady-state: S1, S2, …, S40 and SM feature vector 

The classification results based on lesion profile temperature values (S1, S2, …, S40) and 

average lesion temperature (SM) are displayed in Figures 6.19-6.21 and Table 6.3-6.5. 
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The correct classification of different skin lesion types (benign, malignant and non-neoplastic 

lesions) was more difficult to achieve, than the distinction of benign and malignant tumours alone. 

The differentiation among the benign lesion group was inconceivable, with accuracy (ACC) 

values of 19-29%, while different malignant lesions were more easily distinguished by the majority 

of classifiers, with the best accuracy corresponding to SMO-RBF and iBk (K=7) (ACC=60.8%). 

The SMO learner with a quadratic polynomial kernel outperformed other classifiers in the task 

Melanoma vs Nevi (ACC=84.2%), while the highest correct classification of instances for SCC vs AK 

was achieved by the SMO with RBF and iBk (k=√n) algorithms (ACC=71,9%) – Figure 6.19 and Table 

6.3. 

 

Figure 6.19 – Accuracy results for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SM constituting the input vector. 

Table 6.3 – Accuracy values for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SM constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly 59.4% 28.3% 59.5% 84.2% 68.8% 60.8% 

SMO – RBF 57.8% 19.6% 60.8% 52.6% 71.9% 58.3% 

iBk (k=1) 46.9% 21.7% 43.2% 57.9% 47.8% 55.8% 

iBk (k=√n) 52.3% 19.6% 55.4% 52.6% 71.9% 56.7% 

iBk (k=7) 49.2% 21.7% 60.8% 52.6% 50.0% 55.0% 

Multilayer Perceptron 59.8% 23.9% 59.4% 78.9% 56.2% 59.2% 
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The best sensitivity values (SN) for the Melanoma vs Nevi, SCC vs AK and Ben vs Mal tasks were 

encountered, using SMO-Poly and iBk(k=1) (SN=66.7%), SMO-Poly and iBk (k=√n) (91.3%) and SMO 

with RBF (100.0%), respectively – Figure 6.20 and Table 6.4. 

 

Figure 6.20 – Sensitivity results for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SM constituting the input vector. 

Table 6.4 – Sensitivity values for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SM constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly  -   -   -  66.7% 91.3% 87.1% 

SMO – RBF  -   -   -  0.0% 100.0% 100.0% 

iBk (k=1)  -   -   -  66.7% 39.1% 72.9% 

iBk (k=√n)  -   -   -  0.0% 91.3% 82.9% 

iBk (k=7)  -   -   -  0.0% 60.9% 71.4% 

Multilayer Perceptron  -   -   -  55.6% 52.2% 98.6% 

 

The best specificity values (SP) for the Melanoma vs Nevi, SCC vs AK and Ben vs Mal tasks were 

achieved by all the classifiers, except iBk (k=1) (SP=100.0%), Multilayer perceptron (66.7%) and iBk 

(k=1 and k=7) (SP=32.0%), respectively – Figure 6.21 and Table 6.5. 
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Figure 6.21 – Specificity results for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SM constituting the input vector. 

Table 6.5 – Specificity values for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SM constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly  -   -   -  100.0% 11.1% 24.0% 

SMO – RBF  -   -   -  100.0% 0.0% 0.0% 

iBk (k=1)  -   -   -  80.0% 55.6% 32.0% 

iBk (k=√n)  -   -   -  100.0% 22.2% 20.0% 

iBk (k=7)  -   -   -  100.0% 22.2% 32.0% 

Multilayer Perceptron  -   -   -  100.0% 66.7% 4.0% 

 

Steady-state: S1, S2, …, S40 and SSTD feature vector 

The classification results using lesion profile temperature values (S1, S2, …, S40) and average 

lesion standard deviation (SSTD) as inputs for the feature vector are displayed in Figure 6.22-6.24 

and Table 6.6-6.8. 

Like in the previous mentioned classification results, the distinction between different lesion 

types was worse than the solo differentiation between benign and malignant lesions. The benign 

classification task was also poorly performed. The separation of different malignant types was best 

achieved by the learner SMO-RBF (ACC=60.8%), the melanoma task displayed a high accuracy with 

Multilayer perceptron (ACC=84.2%) and the best SCC vs AK result was encountered with the SMO-

Poly (ACC=75.0%) – Figure 6.22 and Table 6.6. 

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

S
p
e
c
if

ic
it

y
 

(%
)

Melanoma vs Nevi

SCC vs AK

Ben vs Mal



66 – Results 

 
 

 

Figure 6.22 – Accuracy results for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SSTD constituting the input vector. 

Table 6.6 – Accuracy values for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SSTD constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly 59.8% 23.9% 56.8% 78.9% 75.0% 59.2% 

SMO – RBF 57.8% 19.6% 60.8% 52.6% 71.9% 58.3% 

iBk (k=1) 50.8% 23.9% 45.9% 57.9% 59.4% 56.7% 

iBk (k=√n) 50.8% 26.1% 56.8% 57.9% 71.9% 54.2% 

iBk (k=7) 48.4% 21.7% 55.4% 52.6% 56.2% 53.3% 

Multilayer Perceptron 56.2% 26.1% 58.1% 84.2% 53.1% 60.0% 

 

The sensitivity values (SN) for the Melanoma vs Nevi task reached the 77.8% mark with the 

classifier Multilayer perceptron. The sensitivity for the tasks SCC vs AK and Ben vs Mal reached the 

100.0% mark with the learners SMO-RBF and SMO-Poly – Figure 6.23 and Table 6.7. 
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Figure 6.23 – Sensitivity results for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SSTD constituting the input vector. 

Table 6.7 – Sensitivity values for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SSTD constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly  -   -   -  55.6% 91.3% 100.0% 

SMO – RBF  -   -   -  0.0% 100.0% 100.0% 

iBk (k=1)  -   -   -  44.4% 60.9% 72.9% 

iBk (k=√n)  -   -   -  11.1% 91.3% 84.3% 

iBk (k=7)  -   -   -  0.0% 65.2% 75.7% 

Multilayer Perceptron  -   -   -  77.8% 47.8% 98.6% 

 

The 100% specificity value was reached by several classifiers for the differentiation of 

melanoma and nevi lesions. The Multilayer perceptron algorithm outperformed the others for the 

distinction of SCC and AK (SP=66.7%) and the iBk (k=1) gave the best, even though low, result 

(SP=34.0%) for the Ben vs Mal classification task – Figure 6.24 and Table 6.8. 
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Figure 6.24 - Specificity results for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SSTD constituting the input vector. 

Table 6.8 – Specificity values for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with S1, S2, …, S40 and SSTD constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly  -   -   -  100.0% 33.3% 2.0% 

SMO – RBF  -   -   -  100.0% 0.0% 0.0% 

iBk (k=1)  -   -   -  70.0% 55.6% 34.0% 

iBk (k=√n)  -   -   -  100.0% 22.2% 12.0% 

iBk (k=7)  -   -   -  100.0% 33.3% 22.0% 

Multilayer Perceptron  -   -   -  90.0% 66.7% 6.0% 

 

Dynamic: DX, DO, …, D5 and DMX, DM0, …, DM5 feature vector 

The classification results using maximum temperature differences (DX, DO, …, D5) and 

average lesion temperature (DMX, DM0, …, DM5) are displayed in Figure 6.25 -6.27 and Table 6.9-

6.11. 

The percentage of correct classified instances for Lesion Type and Ben vs Mal was more 

balanced, with some classifiers performing better in the first, e.g., iBk (k=√n) and iBk (k=7), and 

others in the second task, namely, SMO-Poly, SMO-RBF, iBk (k=1) and Multilayer perceptron. The 

accuracy for Benign improved slightly when compared with the static results. Even though lower, 

the accuracy reached 45.4% with the iBk (k=√n). The Malignant task followed the same tendency 

presenting all accuracy values above 60.0%. Contrarily, the distinction of melanoma and nevi 

tumours worsened, having the Multilayer perceptron learner reached an accuracy of 70.6%. The 

iBk (k=√n) classifier was the best performer in SCC vs AK (ACC=78.3%) – Figure 6.25 and Table 6.9.
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Figure 6.25 – Accuracy results for different classification tasks with SMO, iBk and Multilayer perceptron 

classifiers with DX, DO, …, D5 and DMX, DM0, …, DM5 constituting the input vector. 

Table 6.9 – Accuracy values for different classification tasks with SMO, iBk and Multilayer perceptron 

classifiers with DX, DO, …, D5 and DMX, DM0, …, DM5 constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly 55.4% 38.6% 66.1% 52.9% 73.9% 55.9% 

SMO – RBF 56.4% 20.4% 67.8% 64.7% 52.2% 60.8% 

iBk (k=1) 45.4% 25.0% 61.0% 70.6% 52.2% 50.0% 

iBk (k=√n) 57.3% 45.4% 66.1% 64.7% 78.3% 56.9% 

iBk (k=7) 60.0% 40.9% 66.1% 64.7% 69.6% 52.9% 

Multilayer Perceptron 55.4% 36.4% 62.7% 70.6% 69.6% 56.9% 

 

The distinction of melanoma and nevi tumours presented low sensitivity values, varying from 

0.0% to 34%. In contrast the SCC vs AK task obtained high sensitivity values, with SMO with RFB 

kernel reaching the 100%. The same result was reached with the same classifier for the distinction 

of benign and malignant lesions – Figure 6.26 and Table 6.10. 
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Figure 6.26 – Sensitivity results for different classification tasks with SMO, iBk and Multilayer perceptron 

classifiers with DX, DO, …, D5 and DMX, DM0, …, DM5 constituting the input vector. 

Table 6.10 – Sensitivity values for different classification tasks with SMO, iBk and Multilayer perceptron 

classifiers with DX, DO, …, D5 and DMX, DM0, …, DM5 constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly  -   -   -  0.0% 58.3% 79.0% 

SMO – RBF  -   -   -  0.0% 100.0% 100.0% 

iBk (k=1)  -   -   -  33.3% 66.7% 62.9% 

iBk (k=√n)  -   -   -  0.0% 75.0% 83.9% 

iBk (k=7)  -   -   -  0.0% 83.3% 67.7% 

Multilayer Perceptron  -   -   -  16.7% 66.7% 72.6% 

 

The maximum specificity was reached by several classifiers in the Melanoma vs Nevi task, 

while poor performance was encountered for the Ben vs Mal one. The best SP for the 

differentiation of squamous cell carcinomas and actinic keratosis lesions was achieved with SMO-

Poly (SP=90.9%) – Figure 6.27 and Table 6.11. 
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Figure 6.27 – Specificity results for different classification tasks with SMO, iBk and Multilayer perceptron 

classifiers with DX, DO, …, D5 and DMX, DM0, …, DM5 constituting the input vector. 

Table 6.11 – Specificity values for different classification tasks with SMO, iBk and Multilayer perceptron 

classifiers with DX, DO, …, D5 and DMX, DM0, …, DM5 constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly  -   -   -  18.1% 90.9% 20.0% 

SMO – RBF  -   -   -  100.0% 0.0% 0.0% 

iBk (k=1)  -   -   -  90.9% 63.6% 30.0% 

iBk (k=√n)  -   -   -  100.0% 81.8% 15.0% 

iBk (k=7)  -   -   -  100.0% 54.5% 30.0% 

Multilayer Perceptron  -   -   -  100.0% 72.7% 32.5% 

 

Dynamic: DX, DO, …, D5 and STDX, STD0, …, STD5 feature vector 

The accuracy (ACC), sensitivity and specificity values acquired using maximum temperature 

differences (DX, DO, …, D5) and standard deviation of lesion temperature (STDX, STD0, …, STD5) 

are presented in Figure 6.28 -6.30 and Table 6.12-6.14. 

 The accuracy results for Lesion type and Ben vs Mal classification tasks were, once again 

close, with both reaching accuracies values around 60.0%. Improvements in the Benign and 

Malignant tasks were also verified when compared to the steady-state accuracies. Like in the 

previous dynamic results the Melanoma vs Nevi only reached the 70.6% mark, but with the SMO-

Poly learner. The distinction of squamous cell carcinomas and actinic lesions only achieved 

accuracy values of 52.2%, with the implementation of SMO-RBF and iBk (k=1) – Figure 6.28 and 

Table 6.12. 
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Figure 6.28 – Accuracy results for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with DX, DO, …, D5 and DSTDX, DSTD0, …, DSTD5 constituting the input vector. 

Table 6.12 – Accuracy values for different classification tasks with SMO, iBk and Multilayer perceptron 
classifiers with DX, DO, …, D5 and DSTDX, DSTD0, …, DSTD5 constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly 58.2% 38.6% 67.8% 70.6% 43.5% 60.8% 

SMO – RBF 56.4% 20.4% 67.8% 64.7% 52.2% 60.8% 

iBk (k=1) 43.6% 31.8% 42.4% 58.8% 52.2% 46.1% 

iBk (k=√n) 50.9% 34.1% 50.8% 58.8% 39.1% 52.0% 

iBk (k=7) 58.2% 34.1% 62.7% 64.7% 34.8% 49.0% 

Multilayer Perceptron 59.1% 43.2% 67.8% 47.1% 47.8% 58.8% 

The sensitivity values for Melanoma vs Nevi were very low, with a best sensitivity of 20.0%. 

Contrarily, the remaining classification tasks presented maximum sensitivities with the classifier 

SMO-RBF – Figure 6.29 and Table 6.13. 
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Figure 6.29 – Sensitivity results for different classification tasks with SMO, iBk and Multilayer perceptron 

classifiers with DX, DO, …, D5 and DSTDX, DSTD0, …, DSTD5 constituting the input vector. 

Table 6.13 – Sensitivity values for different classification tasks with SMO, iBk and Multilayer perceptron 

classifiers with DX, DO, …, D5 and DSTDX, DSTD0, …, DSTD5 constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly  -   -   -  16.7% 83.3% 98.4% 

SMO – RBF  -   -   -  0.0% 100.0% 100.0% 

iBk (k=1)  -   -   -  0.0% 50.0% 50.0% 

iBk (k=√n)  -   -   -  0.0% 25.0% 69.4% 

iBk (k=7)  -   -   -  0.0% 50.0% 59.7% 

Multilayer Perceptron  -   -   -  20.0% 41.7% 88.7% 

A maximum specificity was reached for the Melanoma vs. Nevi and SCC vs AK tasks with 

the SMO-Poly classifier. The SP values for the differentiation between benign and malignant lesions 

was somewhat low, with values from 0.0% (SMO-RBF) to 40.0% (iBk (k=1)) – Figure 6.30 and Table 

6.14. 
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Figure 6.30 – Specificity results for different classification tasks with SMO, iBk and Multilayer perceptron 

classifiers with DX, DO, …, D5 and DSTDX, DSTD0, …, DSTD5 constituting the input vector. 

Table 6.14 – Specificity values for different classification tasks with SMO, iBk and Multilayer perceptron 

classifiers with DX, DO, …, D5 and DSTDX, DSTD0, …, DSTD5 constituting the input vector. 

Classifier Lesion Type Benign Malignant 
Melanoma vs 

Nevi 
SCC vs AK Ben vs Mal 

SMO – Poly  -   -   -  100.0% 100.0% 2.5% 

SMO – RBF  -   -   -  100.0% 0.0% 0.0% 

iBk (k=1)  -   -   -  90.9% 45.4% 40.0% 

iBk (k=√n)  -   -   -  90.9% 45.4% 25.0% 

iBk (k=7)  -   -   -  100.0% 18.1% 32.5% 

Multilayer Perceptron  -   -   -  36.3% 45.4% 12.5% 

The True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) values 

obtained for the classification tasks Melanoma vs Nevi, SCC vs AK and Ben vs Mal are included in 

Appendix VIII, according to the features selected for the input vector. 

The best overall classification results for each classification task are summarized in Table 

6.15 and will be discussed in the following chapter. 
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Table 6.15 – Best overall classification results. 

Classification 
task 

Classifier Input vector ACC SN SP 

Lesion type Multilayer perceptron 
DX, DO, …, D5 
DMX, DM0, …, DM5 

60.0% - - 

Benign iBk (k=√n) 
DX, DO, …, D5 
DMX, DM0, …, DM5 

45.4% - - 

Malignant 
SMO-Poly or Multilayer 
perceptron 

DX, D0, …, D5 
DSTDX, DSTD0, …, DSTD5 

67.8% - - 

Melanoma vs Nevi SMO-Poly 
S1, S2, …, S40 
SM 

84.2% 91.3% 11.1% 

SCC vs AK iBk=(√n) 
DX, D0, …, D5 
DMX, DM0, …, DM5 

78.3% 75.0% 81.8% 

Ben vs Mal SMO-Poly 
S1, S2, …, S40 
SM 

60.8% 87.1% 24.0% 
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Chapter 7 

Discussion 

 This chapter includes the discussion of results acquired with steady-state image analysis, 

dynamic image analysis, influence of patient’s characteristics in the collected variables and 

classification using machine learning classifiers. 

7.1 – Steady-state image analysis 

The static analysis included the evaluation of 320 lesions, with the goal of attaining the 

lesions’ average temperature profile, average lesion temperature and standard deviation for 

differentiation purposes. 

Concerning malignant lesions, the concavity encountered in squamous cell carcinoma (SCC) 

tumours can be justified by the characteristic anatomy of this type of skin cancer. In fact, SCC 

tend to grow on height, due to the accumulation of a crust in the lesion site. This structure causes 

an insulated environment, leading to the depression verified in the resultant temperature profile. 

The concavity encountered for basal lesions could be explained not by anatomical features, but 

rather by physiological alterations that take place when this cancerous tumour is formed [191], 

[192]. The melanoma hyperthermic profile was expected, being reported several times in the 

literature. It is commonly associated with the increased vasculature on the lesion site, that results, 

ultimately, in an increase of tumour temperature when compared to the surrounding healthy skin 

[80], [193]. 

Looking at the benign tumours’ temperature profiles, it is expected for its distinction to be 

difficult, due to lesion overlap and profile shape similarity. The only type of benign neoplasia more 

easily identifiable is the other benign lesion group, that presents an accentuated valley, suggesting 

that most neoplasm that compose it have a hypothermic nature. 

The static curves of melanomas and nevi shows that its differentiation should be easier than 

the abovementioned situations, so better classification results can be anticipated. The overlap of 

SCC and AK in the central region indicates that the differentiation of these tumours might only be 

achievable when focusing on peripheral temperature values. Since actinic tumours are precursor 



78 – Discussion 

 
 

lesions of SCC, the valley found for this type of skin neoplasms is justified by the same anatomical 

alterations. Even though a scale-like structure is also encountered in this type of lesion, the 

thermal insulation process is weaker, due to the low thickness of the formed crust. Hence, the 

less accentuated depression in the thermal profile of AK.  

The resemblance of benign and malignant temperature curves could difficult its distinction, 

while non-neoplastic lesions should be more easily separated from the remaining others. The 

constant temperature of this group validates the absence of any skin physiological alteration, i. 

e., the complete removal of the skin cancer. 

The comparison of average and standard deviation of lesion temperature could provide 

information regarding the performance of one or another statistical measurement in the 

classification tasks that followed. For Malignant, Benign and Lesion type groups, both parameters 

presented overlaps, indicating that similar classification results should be achieved. The 

discrepancy verified in the average lesion temperature values for melanoma and nevi neoplasms 

suggest better classification results with the use of this statistical measurements. The contrary is 

expected for SCC vs AK. 

 Lastly, the higher contralateral temperatures for SCC and BCC are justified by the 

previously mentioned reasons, while melanomas were expected to exceed the temperature of 

healthy skin areas. Since most evaluated melanoma lesions were of small size, the average 

temperature of the 40x40 area could have included a great portion of healthy skin, resulting in an 

overall lower temperature value. The melanocytic nevi showed a greater temperature for healthy 

skin, confirming the cold pattern previously verified. The remaining lesion types did not display 

substantial differences between these two regions, indicating that no significant physiological 

and/or anatomical alterations occur in this area. 

7.2 – Dynamic image analysis 

The dynamic analysis was performed to assess the thermoregulatory behaviour of different 

skin lesion types after the application of a thermal stress. Contrarily to steady-state analysis, only 

274 tumours were evaluated. The fact that not all lesions were passable of being stimulated, 

indicates that other cooling methods could be tested. Strategies based on convection, like a fan, 

instead of conduction, could be used to diminish the risk of injury caused by the contact between 

the aluminium medal and the skin tumour, and facilitate access to areas that the medal cannot 

reach, e. g., inner ear and eye corner. However, that method would also have disadvantages such 

as not reaching all the surface in the same manner and may cause the spread of bacteria’s infecting 

the areas of injury.  

Like in static analysis, the evaluation of the statistical measurements, average and standard 

deviation of lesion temperature, was also performed to estimate the best classification outcome. 

Concerning the Malignant group, the presence of lower D values for melanoma tumours is 

somewhat unexpected. This feature could indicate that some skin lesion types recover more 

rapidly than others. In the particular case of melanomas, the encountered low value of D, shows 
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that the high vasculature of the lesion site rapidly heats the tumour area, decreasing the 

temperature difference between the centre and the periphery, even before the thermal 

acquisition of image 0. A better distinction between SCC, BCC and melanomas was verified in the 

average lesion temperature curves, suggesting that this parameter might be more suited for 

classification purposes. 

Similarly to static results, the other benign curves outstanded in the benign lesion group, with 

standard deviation appearing to be the best option for lesion distinction. The constant curves 

attained for D and standard deviation of temperature in the other benign lesion category, is 

justified by the fact that this sample group encompasses tumours that are commonly hyperthermic, 

i. e., angiomas, and hypothermic, e. g., lipomas, cancelling each other profiles. 

Concerning SCC vs AK any of the statistical measurements could be allied to the maximum 

temperature differences, while for Melanoma vs Nevi the latter parameter seems to be the most 

adequate. 

Looking at the Lesion type group, the distinction of benign, malignant and non-neoplastic 

lesions appears to be more easily achieved with the dynamic parameters, instead of the static 

ones, since that, even though similar, a clearer separation between the different sets is 

encountered. The use of average lesion temperature coupled with maximum temperature 

difference seems to give the highest separation. 

7.3 – Statistical treatment 

 All 320 participants were considered for statistical treatment with the goal of attesting 

the influence of different patient characteristics in the variables collected during static and 

thermal image analysis. 

The statistical analysis results showed that the distinction of different skin neoplasms types 

would be very difficult to achieve with statistical methods, since a very small number of variables 

was connected to the patient’s categories. 

Nonetheless, the verification that most of the dynamic values were considered to be 

influenced by the skin neoplasm type is a good indication that these parameters could be of value 

for classification purposes. 

The linking of lesion standard deviation to age group is also curious and could indicate that 

skin imperfections associated with age, contribute with noisy information during thermogram 

formation. 

 

7.4 – Machine learning classifiers 

 For the classification of different skin neoplasm types, the classifiers Sequential Minimal 

Optimization (SMO), Multilayer Perceptron and instance Based for k-nearest neighbour (iBk) were 
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applied, using the variables collected during static (S1, S2, …, S40; SM; SSTD) and dynamic (DX, 

DO, …, D5; DMX, DM0, …, DM5; DSTDX, DSTD0, …, DSTD5) image analysis. 

When evaluating the performance of a machine learning algorithm several aspects need to be 

considered. Thus, in this work, accuracy (ACC), sensitivity (SN) and specificity (SP) were chosen 

to select the learner that best performed in each classification task. 

Focusing on the Lesion Type task, the best classification accuracy (60.0%) was acquired with 

the implementation of iBk (k=7), using the dynamic variables DX, DO, …, D5 and DMX, DM0, …, 

DM5. This result validates the conclusions retrieved from the dynamic analysis. 

The SMO with quadratic polynomial kernel was considered to be the learner that best 

performed in the Ben vs Mal task, since it presented the best balance between accuracy (60.8%), 

sensitivity (87.1%) and specificity (24.0%), using the static variables S1, S2, …, S40 and SM. With 

the same accuracy values, maximum sensitivity was achieved with the SMO – RBF learner in the 

dynamic tests, indicating that the classifier was able to identify all malignant lesion as such. 

However, a SP value of 0.0% was obtained, meaning, it failed to recognise any of the benign lesions, 

which is not acceptable in a medical diagnosis scenario. A similar situation was also verified with 

the Multilayer perceptron when the feature input vector included S1, S2, …, S40 and SSTD. Even 

though some k-nearest neighbour-based methods exceeded the specificity of the SMO-Poly learner, 

lower sensitivity and accuracy values were presented, hence, the preference for Sequential 

Minimal Optimization. 

 As anticipated, the distinction among different types of benign lesions was the task that 

presented poorer results, due to profile overlap. A maximum accuracy of 45.4%, using maximum 

temperature differences and average lesion temperature as input features for the feature vector, 

was reached with iBk (k=√n). Nonetheless, an improvement with the use of dynamic variables 

occurred, when compared to the results acquired with the static parameters, validating the 

conclusions previously reached. 

In the same line, the Malignant task was best performed when dynamic input values were 

used (67.8%), particularly, DX, D0, …, D5 with DSTDX, DSTD0, …, DSTD5. This value was achieved 

by the classifiers SMO-Poly, SMO-RBF and Multilayer perceptron. However, since SMO with radial 

basis function kernel seems to result in a high number of false positives, the other classifier options 

are advised. 

Again, the classifiers SMO-Poly and Multilayer perceptron presented the best overall results, 

retrieving accuracy values of 84.2% for the differentiation of melanoma and nevi lesions, with the 

S1, S2, …, S40 with SM and S1, S2, …, S40 with SSTD, respectively. The first learner performed 

better in melanoma detection (SN=91.3%), while the second achieved better results in the 

identification of benign lesions (SP=66.7%). Even though with a low specificity value (11.1%), SMO-

Poly was considered the top learner for this task, since the correct classification of cancerous 

lesions was considered of more importance. 

Lastly, the SCC vs AK classification task was best accomplished with the iBk (k=√n), using DX, 

D0, …, D5 with DMX, DM0, …, DM5. A good balance was achieved for the classification metrics, 

with accuracy, sensitivity and specificity of 78.3%, 75.0% and 81.8%, respectively. 



 

 

Chapter 8 

Conclusion 

The presented research work focused on the use of medical infrared imaging for 

characterization of skin oncological conditions. This goal was achieved with the construction of an 

acquisition protocol for static and dynamic images, and image analysis algorithms allied with 

machine learning techniques for classification purposes. 

The developed methodology, concerning thermal assessment, proved to be doable in a clinical 

scenario, allowing the retrieval of several parameters that reflect thermophisiological alterations 

characteristic of different skin tumour types. 

Its distinction was accomplished varying classifiers and features used for input vectors, with 

classification results that showed the relevance of dynamic parameters over steady ones. It is 

worth highlight the classification results of classification tasks that involve the differentiation of 

benign and malignant tumours, particularly, the distinction of melanoma from nevi lesions, with 

accuracy, sensitivity and specificity values reaching 84.2%, 91.3% and 11.1%, respectively, with 

the learner based on support vector machines. Some needed improvements include: 

- reduction of false negatives to raise sensitivity; 

- reduction of false positives to raise specificity. 

Nonetheless, the dynamic application of medical infrared thermography proved to be a 

potential tool for the assessment of skin neoplasms, aiding in medical diagnosis. 

8.1 – Future work 

In order to surpass some limitations and progress towards better results, a few tasks are 

suggested: 

- combination of thermal characterization data with clinical and visual characterization 

information, for better classification; 
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- the use of feature selection methods to guarantee the best representation of the data 

set; 

- construction of a multi-classifier based on SVM, ANN and k-NN methods to improve the 

final classification outcomes. 

- expand the correlations of these findings with the biopsies histology results. 

- the use of upcoming high definition, mobile devices attachable infrared cameras, to 

ease the implementation of the presented methodology in a medical environment. 
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Abstract  

The cases of benign and malignant skin neoplasms have been rising over the last decades. They are an esthetical 
and health threat and require prompt attention, the current diagnostic methods are the biopsy (expensive and invasive) 
and the dermatoscopy (experience dependent), so new objective methods are needed. The growth of neoplasms is 
influenced by blood flow, influencing, thereby, skin temperature. Infrared thermal images were taken from 85 patients at 
the cancer hospital, being analysed and classified with different intelligent data methods. The method that outperformed 
the other was the k-Nearest Neighbour with 60% accuracy.  

1. Introduction  

According to the 2012 statistics, in Europe there is an incidence rate for melanomas of 11.1 per 100 000 
population. Comprehensive statistics on the occurrence of non-melanoma skin neoplasia are scarce but is well 
acknowledged that its number exceeds largely those of melanoma [1]. 

The increased number of skin cancer cases has been connected to excessive exposure to ultraviolet radiation, 
particularly during child and young adult years. Poor recurrent lifestyle choices, e.g., use of tanning beds and non-use of 
sunscreen, of younger individuals, indicates that these values are likely to rise [2]. Hence, special attention is required. 

The available diagnostic methods for skin neoplasia are dermatoscopy, used in the evaluation of melanocytic 
lesions, and biopsy, mainly performed when the malignancy of a skin tumor is doubtful. Both methods present 
disadvantages, being the first a subjective technique, due to its’ dependence on physician experience, and the second an 
invasive and costly procedure that is frequently associated with increased patient stress and unaesthetic scars [3]. Thus, 
it is important to explore new methodologies that provide a prompt diagnosis without the disadvantages encountered in 
common strategies.  

Infrared thermal imaging (IRT) is able to monitor the temperature variations of a given skin area, through the use 
of infrared thermal cameras. This imaging technique can be implemented actively – dynamic thermography – with the 
application of a cold or hot stimulus to disturb the thermal balance, or passively – static thermography – when thermograms 
are acquired without any temperature stress [4]. The emitted skin heat is highly dependent on the peripheral blood flow, 
an anatomical characteristic that is largely affected when a physiological alteration, such as the growth of a skin neoplasm, 
takes place [5]. Considering that malignant tumors present metabolic activities that exceed the ones of benign lesions, 
different temperature disturbances should be expected for different neoplasia, namely, hyperthemic patterns for the first 
and hypothermic for the second. This factor associated with the various advantages of IRT, e. g., non-invasiveness, 
contactless, inexpensive, fast and non-ionizing [6], have made authors explore the use of IRT for skin cancer diagnosis 
over the last years [7]. 

The strategy adopted for image analysis and processing is the key to retrieved temperature values and/or 
parameters that allow a distinctive characterization of the skin lesion under evaluation. Artificial intelligence computational 
classification methods are frequently associated with this process and have been employed in medical IRT since 2002 with 
several applications, being the k-Nearest Neighbor (k-NN) the technique that provided better results, followed by Support 
Vector Machines (SVM) and Artificial Neural Networks (ANN) [8]. 

In this study a MATLAB application for the collection of temperature values, of a given skin area, was constructed with 
the goal of attaining the temperature profile of different skin neoplasm types, through thermal images acquired with steady-
state thermography, for posterior classification. 
 

2. Methodology  

The collection of thermal images was performed at Instituto Português de Oncologia do Porto Francisco Gentil, 
EPE, cancer dedicated hospital, being the research project approved by the hospital ethical committee. A total of 85 skin 
oncological patients participated in this study after reading the Participant Information sheet and signing the Informed 
Consent. The lesions were present in several locations such as the face, upper limbs, back, thorax and lower limbs.  

The data collection followed the international guidelines [9], [10] using a 10 minute acclimatization period and the 
room being acclimatized in a ambient temperature around 22ºC with a relative humidity of <50%. The Infrared camera 
used to acquire the thermograms was the FLIR E60sc, with a FPA sensor size of 320x240, a Noise-Equivalent 
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Temperature Difference (NETD) of 50mK at 30ºC and a measurement uncertainty of ±2% of the overall reading range. 
The population studied included 85 skin lesions: 35 Basal Cell Carcinomas (BCC), 26 Melanomas, 10 Melanocytic Nevus 
(MN), 7 Squamous Cell Carcinoma (SCC), 2 Seborrheic Keratosis (SK), 2 Actinic Keratosis (AK), 1 Atypical Nevus (AN), 
1 Merkel Cell Carcinoma (MCC) and 1 Chondritis. All the neoplasia diagnoses were confirmed by a dermatologist and 
histopathologic results, i.e., biopsy. 

The thermal images were opened in the FLIR ThermaCAM Researcher Pro 2.10 software to convert the 
temperature matrix format to MATLAB files. A MALTAB application was developed to read the loaded temperature matrix 
and display the image (Figure 1). A user input was requested to draw a square encompassing the entire lesion. The 
selected area was then dimensioned to a 40 by 40-pixel size (Figure 2A) and the temperature values of the 2 cross-sections 
of the diagonals over the normalized square were multiplied (Figure 2B) to obtain the characteristic thermal profiles (Figure 
2C) of the lesion under evaluation. 

These curves were primarily used for statistical calculations, were the average temperature profile was obtained, 
first, by groups of benign – Melanocytic Nevus, Seborrheic Keratosis, AK and Atypical Nevus – and malignant – Melanoma, 
BCC, SCC and Merkel Cell Carcinoma – neoplasms and second, for each type of skin tumour, separately. All 85 skin 
lesions were included in this analysis. 

Then, the profiles were applied as inputs to the advanced data classification methods: Multilayer Percepton, a 
feedforward ANN model of interconnected nodes that maps, in a non-linear way, the connections between the input and 
the output data [11], a more practical Support Vector Machine (SVM) algorithm that simplifies the calculations performed 
when the number of variables is higher [12], and Instance Based for K-Nearest neighbour (k-NN), that assigns each 
instance to a given group according to the similarity with the majority of its neighbour [13]. The classification methods were 
run into the open-source suite of machine learning software Weka (https://www.cs.waikato.ac.nz/ml/weka). The standard 
values of WEKA parameters were used. Considering the small number of samples for Seborrheic Keratosis, AK, Atypical 
Nevus, Merkel Cell Carcinoma and Chondritis, in this classification stage only 50 lesion profiles were selected: 26 BCC, 
14 Melanomas, 6 Melanocytic Nevus and 4 SCC. The samples were randomly divided into training and test sets of 25 
instances, each. 

 

 
Fig. 1. The Graphic User Interface to process the thermal images of the skin neoplasms developed on Matlab. 
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Fig. 2. Thermal cross-section profile methodology: A – User selected 40x40 area; B – Multiplication of cross-

sections of the diagonals over the normalized square; C – Characteristic thermal profiles. 

3. Results 

In total, 85 skin lesions were examined, being 35 Basal Cell Carcinomas (BCC), 26 Melanomas, 10 Melanocytic 
Nevus (MN), 7 Squamous Cell Carcinoma (SCC), 2 Seborrheic Keratosis (SK), 2 Actinic Keratosis (AK), 1 Atypical Nevus 
(AN), 1 Merkel Cell Carcinoma (MCC) and 1 Chondritis. 

A clear separation between the average radiometric values of malignant and benign neoplasms was observed 
(Figure 3). Furthermore, the characteristic thermal profiles, for the same malignancy, were not significantly different. 

 
Fig. 3. Characteristic thermal profiles – T1xT2 (Horizontal) and T1xT2(Vertical) – for benign and malignant 

groups of neoplasia. 
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The temperature profiles acquired for each skin neoplasm type were also fairly similar (Figure 4 and 5). The 

curves corresponding to malignant lesions, e.g., BCC, Melanoma, SCC and Merkel Cell Carcinoma, presented, in general, 
higher values than the benign ones. Only the radiometric values of AK and Seborrheic Keratosis samples exceed the ones 
of malignant neoplasia. Two temperature valleys were identified, one for SCC and another for Chondritis. 

 

 
Fig. 4. Characteristic thermal profiles for each skin neoplasm type – T1xT2 (Vertical). 

 

 
Fig. 5. Characteristic thermal profiles for each skin neoplasm type – T1xT2 (Horizontal). 

 
 

 
The obtained classification accuracies are shown in table 1, from which it can be seen that the k-NN classifier 

was the classification method with best accuracy (60%), followed by ANN (52%) and the worst result was achieved by the 
SVN (44%). 
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Table 1. Results from the data classification accuracy at Weka. 

Classifiers ANN SVM k-NN 
Accuracy 52% 44% 60% 

 

4. Discussion 

The minor differences observed between the thermal curves T1xT2 (Vertical) and T1xT2 (Horizontal) suggest that 
either one of the profiles could be used for the identification and classification of skin lesions in thermographic studies 
(Figure 2, 3 and 4). As expected the curves obtained for malignant neoplasms showed, in general, higher temperature 
values when compared to the benign ones (Figure 3, 4 and 5). However, SCC, a malignant lesion, displayed a hypothermic 
pattern, instead of a hyperthermic one (Figure 4 and 5). This profile can be justified by the characteristic anatomy of this 
type of skin cancer, since a thick crust is commonly encountered on top of the lesion, acting as a thermal insulator. 
Furthermore, the profiles obtained for actinic and seborrheic keratosis – benign neoplasms – were higher than the 
malignant ones (Figure 4 and 5). Concerning the first, the explanation might be in the fact that this lesion type is usually 
portrayed as a pre-cancerous lesion, so it is possible that some of the actinic keratosis lesions were misdiagnosed, being 
in a more advanced state and having, therefore, higher temperature values. A hypothermic pattern should be characteristic 
of seborrheic keratosis’ lesions. Thus, the contradictory outcome could only be explained by the lack of samples (two) for 
this type of lesion. 

The obtained classification results were not very satisfactory. However, the number of participants enrolled is 
small and it is expected a rise in the accuracy with the increase of sample size. The enhancement of temperature 
differences between the lesion site and healthy skin might also contribute to better classification results. 

 

5. Conclusion 

The temperature values of thermal skin neoplasm images, acquired using steady-state thermography, were 
analyzed with a MATLAB application and used for statistical evaluation and sample classification. 

The temperature profile of each skin tumor type was successfully obtained by either one of the main lesion 
diagonals, being as expected, except for SCC and actinic and seborrheic keratosis. The k-NN classifier was the one that 
attained the best classification results, even though unsatisfactory. The improvement of this results could be achieved with 
the increase of the number of samples included in the data set. For a future approach, instead of a static thermogram over 
the lesion, a cold thermal provocation stimulus with the analysis of its recovery might be more interesting. If successfully 
applied and with good classification results, it could, in most cases, provide a cheaper and faster result than biopsies and 
in an objective manner, contrasting with the dermatoscopy method. 
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Abstract  

Diabetes Mellitus is a top 10 deadly health condition worldwide, one of its consequences is the diabetic foot ulcers 
(DFU) that in severe cases can lead to amputations and death. Preventive measures are required, a rise in skin 
temperature is one of the early signs of a DFU formation. Infrared thermal images were taken from 56 DFU patients at 
early stage, being processed and classified using an intelligent data method (k- Nearest Neighbour), an accuracy of 92.5% 
was achieved. A larger sample is required to improve the results, so it can be used at daily practice for DFU prevention. 

1. Introduction 

According to the International Diabetes Federation [1] a total of 485 million people is affected with Diabetes 
Mellitus (DM) worldwide and 1 in 2 remains undiagnosed. It is known that in their lifetime, 25% of the DM patients develop 
Diabetic Foot Ulcers (DFU), which may lead to minor and major amputations and consequently death [2]. It is also known 
that patients that developed DFU have a great probability (40%) of developing them again [3]. Measures are required to 
early identify the formation of DFU, so health professionals can act promptly and with success. 

The DFU are associated with neuropathy and/or peripheral artery disease in the lower extremity of people with 
diabetes [4], this affects the skin temperature and is object of being monitored with infrared thermal imaging (IRT). IRT in 
medicine is a non-invasive, non-ionizing, fast, safe and remote imaging method that records the skin surface thermal 
energy emitted transforming it in temperature maps, providing real-time physiology data [5]. A formation of a DFU is 
normally associated with a rise in temperature, being this an early sign [6, 7]. 

The artificial intelligence computational classification methods have been employed in medical IRT since 2002 
with several applications, being the k-Nearest Neighbour (k-NN) the technique that provided better results [8]. 

2. Methodology 

A total of 56 DFU early stage patients were examined at the specialized diabetic foot centre, Centro Hospitalar 
do Porto, EPE. The images were collected after the participants signed the informed consent and the procedure have been 
explained to them, being the study approved by the hospital ethical committee. Regions of Interest (ROI) were defined in 
the areas were more often the DFU occur at the plantar foot (Figure 1). The data collection followed the international 
guidelines [9,10] using a 10 minutes’ acclimatization period and the room being acclimatized in a temperature around 22ºC 
with relative humidity of <50%. The Infrared camera used to capture the images was the FLIR A325sc, with a FPA sensor 
of 320x240, a Non-Equivalent Temperature Difference (NETD) of <50mK at 30ºC and a measurement uncertainty of ±2% 
of the overall reading. 

 

 
Fig. 1. The regions of interest (ROI) used to analyse the plantar feet thermal images. 
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A computational tool was developed in C# programming language to read the images, place the ROIs and extract 
the mean temperature, median temperature and standard deviation per ROI, the affected ROIs were signed, this was then 
stored in a PostgreSQL database in that was used by another developed tool to classify the data, for quality assurance an 
open-source suite of machine learning software Weka (https://www.cs.waikato.ac.nz/ml/weka/) was used to compare the 
obtained results. The Figure 2 presents the solution infrastructure. 

 

 
Fig. 2. The infrastructure of the images analysis and data classification. 

 
The temperature in degrees Celsius (T) is obtained from the radiometric value (S) and the Planck constants R1, 

R2, B, F and O, which are obtained from the proprietary thermal image files. The temperature is calculated by equation 1. 

𝑇 º𝐶 = 	 &
'(( *+

*,.(./0)
23)

− 273.15        (1) 

The developed system can be divided into five main parts: the localization and extraction of metadata from binary 
files, image processing, identification of regions of interest (ROI), structuring and populating the database, and finally, the 
development of a tool to allow automatic classification. In order to assess the quality of the results obtained from the 
classification process, a similar operation with the same data was performed in parallel using the Weka framework. The 
determination of the ROIs is presented in the Figure 3, where the image is loaded, an overlay with control points based in 
the model (Figure 1) is displayed over the thermal image, it can be adjusted with the mouse for adequate placement and 
based on it, the ROIs are placed automatically and the mean, median and standard deviation is extracted from each ROI 
to be used as input for classification. 

 

Fig. 3. The ROIs determination process. 

Information Processing Database 
Management Classification
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3. Results 

The thermal parameters (mean, median and standard deviation) per ROI were successfully obtained from each 
ROI of the processed images, to verify the correct classification it was matched with the clinical classification of the location 
of DFU at each image. For producing the classification results, based in the distribution of the thermal parameter it was 
verified that only the k-NN classifier could be used given the low disparity of the data (Figure 4), the positive prediction of 
ANN and SVM methods was 0% and the negative prediction was 100%. The obtained classifications accuracy from the k-
NN operator using the mean and median absolute values of the ROIs is shown at table 1. 
 

 
Fig. 4. The dataset distribution of the thermal parameters selected for classification. 

 
Table 1. Results from the data classification accuracy using the k-NN method for the absolute means and medians. 

 

k Developed program Weka 
accuracy positive prediction accuracy positive prediction 

1 90.8% 28% 91.2% 6.5% 
3 92.1% 14.3% 93.4% 9.7% 
5 92.5% 20% 92.3% 6.5% 
7 92.5% 20% 92.1% 9.7% 

 
 

The configuration of the classifier that obtained better classification from the developed program was the 5 number 
of k-NN classes, with an accuracy of 92.5%. With the same dataset, from the Weka framework the best performance was 
provided from 3 number of k-NN classes, with an accuracy of 93.4%. 

 

4. Discussion 

The developed classification solution has presented higher accuracy for 5 or more classes, 92.5%. Classification 
through k-NN shows very acceptable results. The accuracy value obtained with the developed program is very close to the 
value obtained in the Weka program. 

However, due to the fact that in the program created more ways of calculating the distances between the various 
elements were implemented than in the Weka, a higher positive prediction was obtained with the developed program. 

Since it was not possible to create a representation of the data where a two-dimensional separation was verified, 
it was not possible to develop the SVM and ANN classifiers, as initially planned. A test performed in the Weka for these 
classifiers justified this impossibility, due to the fact that a positive precision of 0% and a negative precision of 100% was 
obtained. 

In either case, the negative accuracy obtained is always greater than the positive precision. This is due to the fact 
that few images of feet with ulcers have been tested, in the elements for the classification there are more samples of ROIs 
without ulcer than of ROIs with ulcers. 

5. Conclusion 

The developed application allowed to classify DFU at ROIs with high accuracy. With a larger number of samples, 
it is expected that this accuracy rises and it could be implemented at specialized units on daily practice for early DFU 
identification, which would lead to prompt care and would avoid any further costs and consequences for the patient. 

Absolute	 values	of	mean	and	
median

Absolute	 values	of	mean	and	
standard	deviation

Absolute	 values	of	mean	and	
asymmetry	of	the	median

Absolute	 values	of	standard	deviation	
and	asymmetry	of	the	median
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1  | INTRODUC TION

Over the last years, skin cancer incidence has risen to a worrying 
level, as a consequence of risky behaviours that people are subject 
to, especially excessive exposure to UV radiation. As the mortality 
rates associated with these tumours decrease with the early detec-
tion, a precise diagnosis is imperative to prevent unnecessary com-
plications.1,2 Thermoregulation is one of the main functions of the 
human skin and is primarily controlled by vasculature alterations 
that occur when the body is subjected to external or internal stimu-
lus, for example, heat exposure and alterations in the carbon dioxide 
level respectively.3 This particular characteristic has been used for 

ages as a diagnosis aid, since skin temperature impairments often in-
dicate health issues. Therefore, methods that take advantage of this 
feature, such as infrared thermal (IRT) imaging, have been explored 
for new applications in the medical field. Thermography, or IRT, is a 
contactless sensing method that uses a thermal camera to record 
the infrared radiation that is emitted by the skin, involving no health 
hazard for the patient, due to the absence of ionizing radiation. The 
temperature distribution of the surface under analysis is displayed in 
a thermogram, providing physiological information that can be used 
to detect temperature abnormalities, like the ones encountered be-
tween a skin neoplasm and the healthy tissue that surrounds it.4-6 In 
addition, this tool can be applied dynamically, that is, with a thermal 
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Abstract
Background: Infrared thermal imaging captures the infrared radiation emitted by the 
skin surface. The thermograms contain valuable information, since the temperature 
distribution can be used to characterize physiological anomalies. Thus, the use of in-
frared thermal imaging (IRT) has been studied as a possible medical tool to aid in the 
diagnosis of skin oncological lesions. The aim of this review is to assess the current 
state of the applications of IRT in skin neoplasm identification and characterization.
Methods: A literature survey was conducted using the reference bibliographic data-
bases: Scopus, PubMed and ISI Web of Science. Keywords (thermography, infrared 
imaging, thermal imaging and skin cancer) were combined and its presence was veri-
fied at the title and abstract of the article or as a main topic. Only articles published 
after 2013 were considered during this search.
Results: In total, 55 articles were encountered, resulting in 14 publications for revi-
sion after applying the exclusion criteria. It was denoted that IRT have been used to 
characterize and distinguish between malignant and benign neoplasms and different 
skin cancer types. IRT has also been successfully applied in the treatment evaluation 
of these types of lesions.
Conclusion: Trends and future challenges have been established to improve the ap-
plication of IRT in this field, disclosing that dynamic thermography is a promising tool 
for early identification of oncological skin conditions.
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stimulus prior to the image acquisition process,7 with the goal of 
increasing the temperature differences between the lesion and the 
surrounding skin, or in a steady-state, without any heat stress. Thus, 
several researchers have studied the use of dynamic infrared in skin 
neoplasms, as a complementary tool in the diagnosis process, to 
improve the accuracy of the procedure, decreasing, simultaneously, 
the stress and discomfort of the patient.8-10 This systematic review 
aims to ascertain the current state of the applications of medical 
thermography in skin neoplasms, as well as understand possible 
challenges that can arise during this process, establishing improve-
ments for future studies conducted in this area.

2  | MATERIAL AND METHODS

2.1 | Search strategy

The literature research was conducted, using the following com-
bination of keywords, in the bibliographic databases: Scopus, 
PubMed and ISI Web of Science respectively: ((TITLE-ABS-KEY 
(skin cancer) AND TITLE-ABS-KEY (thermography OR (infrared 
imaging) OR (thermal imaging)))); ((skin cancer [Title/Abstract]) 
AND (thermography[Title/Abstract] OR (infrared imaging[Title/
Abstract]) OR (thermal imaging[Title/Abstract])); TOPIC: (skin can-
cer) AND TOPIC: (thermography OR (infrared imaging) OR (thermal 
imaging)). The terms used for the search were clear and basic, to 
increase the number of results encountered, and the field selection 
applied in each reference source was used to guarantee the con-
sistency of the research. The Boolean operator OR was included 
in the search, since “infrared imaging” and “thermal imaging” are 
often used as synonyms of “thermography.” Only publications with 
dates from 1 January 2014 to the date of this research, that is, 31 
March 2017 were included. A duplicate removal was performed at 
the end.

2.2 | Screening and eligibility results

The title and abstracts of the encountered publications were, firstly, 
analysed, including only the articles that referred the use of medical 
thermography for the evaluation of skin neoplasms.

The first eligibility criterion involved the elimination of articles 
that reported the use of IRT imaging in skin cancer cells, instead of 
the neoplasm itself. Additionally, meeting abstracts and revision ar-
ticles were eliminated, making the second criterion. The third selec-
tion parameter consisted of keeping the articles written in English 
and excluding publications in other languages. Considering that 
this review is focused in a single imaging modality, that is, thermo-
graphic, some articles based on the use of infrared spectral imaging, 
encountered due to the terms used in the bibliographic research, 
were removed, making it the fourth eligibility criteria. Finally, pub-
lications focused on the description of thermal technology used for 
the detection of skin cancer, were eliminated from the remaining 
results.

The final set of articles was then separated into three main 
classes: clinical studies for diagnosis applications, treatment mon-
itoring in clinical situations and theoretical studies, for a full-text 
review. The entire process was performed taking into account the 
PRISMA rules for systematic reviews described in Refs. (11,12). 
Figure 1 summarizing the phases of this revision process.

3  | RESULTS

The conducted bibliographic search resulted in a total of 51 
publications, being 10, 9 and 32 encountered in ISI Web of 
Knowledge, PubMed and Scopus respectively. Four additional 
records were identified through Google Scholar, being included 
in the literature search results. After duplicate removal, 29 

F IGURE  1 PRISMA flow diagram. 
Adapted from Moher et al12
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articles were kept. The abstract and title screening resulted 
in the exclusion of 3 articles, since no application of medical 
thermography to skin neoplasms was studied in the publication. 
The eligibility criteria previously mentioned lead to the elimi-
nation of 12 articles, being the first, second, third and fourth 
criterion responsible for the exclusion of 1, 3, 3 and 5 publica-
tions respectively. Thus, 14 full-text articles remained for revi-
sion, 6 articles describe the use of IRT as a diagnosis support 
tool in clinical applications, 3 concern the use of thermography 
for skin neoplasms treatment screening in clinical studies and 
5 are included in the theoretical studies category, for diagnosis 
purposes.

3.1 | Diagnosis support method—clinical studies

Concerning the use of IRT for the detection and identification of skin 
lesions, consent is verified in all the articles, indicating that thermog-
raphy, applied with all its variants, has the possibility to be an ef-
fective complementary diagnostic support tool. The differences in 
temperature encountered between lesion areas and the surround-
ing tissue proved to be useful in the distinction between malignant 
and benign skin neoplasms.13,14 Godoy et al13 evidenced these re-
sults, using dynamic thermal imaging (DTI), with the recordings of 
the thermal recovery of skin tumours, after the application of a cold 
stress, achieving sensitivity and specificity values of 95% an 83% 
respectively.

The characterization of distinct types of skin lesions using IRT, 
has also been successfully studied, with the goal of providing more 
information to the practitioner during the diagnosis process, either 
by a steady-state15 or a dynamic16 process. A common idea is de-
noted by Di Carlo et al,16 with respect to the thermal patterns pre-
sented by the neoplasms, referring that, in general, malignant lesions 
are characterized by hyperthermic patterns, while the benign ones, 
present lower emissivity values. The use of video thermography al-
lowed the complete separation (100%) between basal cell carcino-
mas (BCC) and actinic keratosis (AK) lesions, having the first type 
of skin neoplasm displayed a hypothermic halo and the latter a hy-
perthermic one.16 The work of Stringasci et al15 with steady-state 
thermography, reinforced, by and large, these findings, having BCC 
showed lower emissivity values and intradermal naevus lower tem-
peratures than the basal type. The distinction between squamous 
cell carcinoma (SCC), which showed an hyperthermic pattern, and 
AK, with temperature values similar to the skin, was also successfully 
carried out.

Infrared thermal imaging proved to be a secure tool to aid in the 
detection of melanoma17,18 with high specificity, even though it pres-
ents varying sensitivity values, depending, partly, on the equipment 
used. Solivetti et al17 showed that telethermography, associated with 
thermo-stimulation, allows the detection of melanoma skin cancer 
without false positives, avoiding discomfort and stress for patients 
with unnecessary biopsies. Moreover, in a distinct study,18 DTI was 
able to detect 60.87% of early melanomas, showing the potential of 
this tool for precocious diagnosis.

3.2 | Treatment monitoring–clinical studies

Apart from diagnosis, medical thermography has demonstrated its 
usefulness on the patient follow-up, through the evaluation of skin 
lesions, such as AK19 and melanoma,20 after treatment. Laino et al19 
used active telethermography to evaluate the reduction in the hy-
perthermic halo of AK, after its removal and lesion site treatment 
with Eryfotona. Eryfotona. IRT also helped in the temperature moni-
toring of malignant melanoma, during electrical stimulation therapy 
via liquid metal printed electronics on mice skin, as seen in,20 show-
ing no alterations, in the thermal pattern of the lesion site, during 
this step.

Additionally, steady-state thermographic measurements have 
been used to verify the changes that occur, in the skin temperature 
gradient, of BCC, during treatment with photodynamic therapy,21 
having Cholewka et al verified that some temperature changes in the 
place of injury might be caused by the treatment itself and need to 
be considered in the conclusions drawn.

3.3 | Theoretical studies

Infrared thermal imaging has shown its potential, in theoretical 
studies, for the detection of melanoma, in distinct phases of de-
velopment. Bonmarin and Le Gal22 constructed a computational 
model that emulated different skin cancer stages, and tested the 
ability of steady-state and transient-state—lock-in thermal imaging 
(LIT)—thermography in the detection of such tumours. The phase 
images, retrieved from the demodulation of the transient skin sur-
face temperature signals, seem promising for the detection of such 
precocious lesions. Another mathematical model, developed by 
Bhowmik et al23 studied the use of dynamic infrared imaging, in 4 
different melanoma stages, that is, early stage (ES I), Clark II (CL II), 
III (CL III) and IV (CL IV), for its detection and establishment of crite-
ria for the early diagnosis. Even though it was shown that IRT evalu-
ation of stage I melanoma was achievable, with an accurate analysis 
of the thermograms, the presented model was not fully efficient 
in the detection of early stage melanoma. In a more recent study, 
the same author24 proposed the use of frequency modulated ther-
mal wave imaging, for the detection of the abovementioned stages, 
in a 3D computational model. The active thermal imaging method 
proposed, displayed a low efficiency in the detection of ES I and 
CL II, being its identification only possible, when combined with 
the phase images acquired from the thermal signals. Steady-state 
thermography was also successfully used to distinguish between 
benign lesions and melanomas with no vasculature,25 depending 
on the metabolic rate and tumour size selected for the theoretical 
model.

Cheng and Herman26 used DTI, in a 2D skin surface model, 
to study the most suited cooling method and parameters for 
the detection of early stages melanoma. The optimal conditions 
included constant cooling at 20°C for a period of 2 minutes 
that can be adjusted according to the stage of the lesion under 
evaluation.
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4  | DISCUSSION OF TRENDS AND FUTURE 
CHALLENGES

For clinical studies, the increase in the patient population num-
ber is one of the main trends appointed for future work, by some 
authors,13,16,17,21 in order to confirm the validity of the presented 
methods and attain extensive statistical analysis. The development 
of new image acquisition protocols is also of concern, due to the 
common presence of hair, that affects the thermal measurements, 
and the need of patient immobility, during the image acquisition pro-
cess, which can be uncomfortable for the subject under test.13

Further research, focusing on the development of new diagnosis 
algorithms, for the analysis and processing of the thermal images, are 
needed, to improve the final results.15 It is of value to exploit, in a more 
detailed way, the physiology of skin neoplasms, to better understand 
the differences in temperature, between the lesion site and the sur-
rounding healthy skin, during the thermal recovery.13 Additionally, the 
definition of rates of specificity and sensitivity of the thermal infor-
mation, retrieved from the studies’ results, are also of importance.15

Concerning theoretical approaches, the construction or refine-
ment of 3D skin lesion computational models is necessary, in order 
to resemble, as much as possible, with a real biological model.25 
Upcoming research, related to the study of different modulation fre-
quencies in LIT is appointed as necessary for the diagnosis of stage I 
and II melanoma.22 Moreover, the investigation of different tumour 
sizes, locations and varying blood vessel sizes could also be of inter-
est, for future work.23,25

The use of IRT dynamically appears to be a rising tendency in 
skin cancer studies,13,16-19,22-24,26 as a mean of improving thermal 
patterns, facilitating the detection and characterization of different 
skin cancer types.

5  | CONCLUSION

Infrared thermal imaging is a non-invasive, inexpensive imaging mo-
dality that is easy to perform, taking advantage of thermal cameras 
to detect the infrared radiation emitted by the skin, to originate ther-
mal patterns characteristic of a specific body region. It has been used 
not only as an assistive tool for the diagnosis of skin cancer lesions, 
such as, melanoma, BCC, SCC and AK but also for skin lesion moni-
toring after treatment. Even though, its success has been reported 
in the identification of skin cancer, theoretical studies indicate that 
early stage melanoma identification is still not achievable. Several 
improvements for future work have been noted with the goal of de-
veloping this technique to its full potential, particularly its dynamic 
application, increasing the quality of the medical services provided 
to the patients, in skin cancer-related procedures.
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Introduction

There are several sites in which the human body core tempera-
ture can be remotely and minimally invasively assessed, which
could be used to identify febrile states in a threat of pandemic sit-
uations at high populational traffic places (e.g. airports, ports,
universities, schools, public buildings). In those locations, a fast
method is required for temperature screening the masses. How-
ever, attention is needed for its implementation (1). Standards
(2,3) have been released indicating how to act in that situation.
The usual non/or minimal invasive sites used to assess core body
temperature are the axilla, the tympanic membrane and the inner
canthi of the eye. Thus, these sites are bilateral and can be mea-
sured in only one side, there is an absence of data in comparing
bilateral measurements, however it is expected that they present
some variation. The aim of this research is to compare the bilat-
eral differences at human body sites (axilla, inner-canthi and tym-
panic membrane) when using the available remote and minimally
invasive methods.

Methods

198 healthy volunteers (97 males and 101 females) with mean age
23±9 years old, BMI of 22.5±2.9, underwent temperature screen-
ing through axillar and tympanic thermometer and frontal facial
thermal imaging using internationally accepted capture protocol
(4,5) and screening guidelines (2,3) in an environmental con-
trolled examination room. For the axilla temperature assessment,
a Beurer thermometer FT 09/1 (measurement accuracy of
±0.1°C and operational range from 35.5 to 42°C) was used. The
tympanic membrane measurements were obtained with a Hart-
mann Thermoval duo scan thermometer (measurement accu-
racy of ±0.1°C and operational range from 35 to 42°C). The
thermal images were obtained using a thermal camera FLIR E60
(Focal Plane Array sensor size of 320x240, NETD of 50mK at
30º C and a traceability of ±2% of the overall reading). Mean
temperature values were obtained from the different methods.
Every time that a bilateral difference higher than 1ºC was found
in the thermometer methods, the measurement was repeated,
and the smaller difference was taken out of three assessments.
The IR measurements were assessed by three different operators
using the FLIR ThermaCAM Researcher Pro 2.10 software
package. The agreement between the 3 operators was assessed
calculating the intraclass correlation coefficient (ICC) and using
the Bland-Altman method, assessing agreement and limits of
agreement (average ± 2 standard deviation of differences). Dif-
ferences between the three measurement methods were assessed

with the Friedman's two-way analysis of variance by ranks test
with factors methods vs. site. A repeated measures ANOVA was
used to compare the mean differences between the right and left
side in the inner canthi, axillar and tympanic measurement site
separately. All statistics were calculated using the IBM SPSS v24
software package.

Results

The table 1 presents the average temperature (± standard devia-
tion) values, and maximum and standard deviation of bilateral
differences per measurement site. The consistency of data at the
inner canthi of the eye was 0.960 and 0.959 per the left and right
respectively. Among the three evaluators the ICC was 0.922 and
0.918 for the left and right inner canthi respectively. The agree-
ment between the site measurements of the right and left sides
of the body was excellent in the inner canthi (ICC = 0.990), good
for the axillar temperature (ICC = 0.844) and moderate for the
tympanic temperature (ICC = 0.695).

In terms of bilateral differences between assessment methods,
the ICC was 0.99 (p<0.05), 0.844 (p<0.01) and 0.695 per inner
canthi of the eyes thermal imaging, axilla thermometer and tym-
panic membrane thermometer methods correspondingly. The
repeated measures ANOVA detected significant differences in
the differences between the right and left sides of the body
(F=7.920; p=0.002). The agreement between the three methods
was poor. In the pairwise analysis, the agreement between the
different temperature assessment methods was 0.089 for the in-
ner canthi and axilla, -0.009 for inner canthi and tympanic mem-
brane and 0.225 for axilla and tympanic membrane. Significant
differences were found in the temperature measurements for all
sites pairs (p?0.001).

Discussion

The three studied methods were able to estimate the core body
temperature in afebrile participants. The bilateral higher varia-
tions were found at the tympanic membrane assessment method
and the smaller at the inner canthus thermal imaging approach.
The thermal imaging method proved that at the studied areas of
interest there was good data consistency and small inter opera-
tors' variability. There was statistical difference between left and
right sites at the inner canthi and axilla measurements, being
higher for the axilla. The bias analysis demonstrated that the
smaller bias was found in the inner canthi of the eye measure-
ment.

site Mean Temperatures Bilateral differences

Right Left Maximum Mean (± s.d.) Limits of agree-
ment

Inner canthi 36.0 ± 0.5 36.0 ± 0.5 0.3 0.07 (± 0.09) 0.26

Axilla 36.3 ± 0.4 36.2 ± 0.5 1.1 0.26 (± 0.32) 0.91

Tympanic membrane 36.4 ± 0.6 36.4 ± 0.6 2.0 0.32 (± 0.56) 1.36
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Table 1
Mean temperature values, and maximum, mean (± standard deviation) and limits of agreement of bilateral differences per measurement site.



Conclusion

All methods were able to estimate the body core temperature.
However, the major bilateral agreement was found at the inner
canthi of the eye thermal imaging method. Further research is
needed to understand the higher bilateral variability in using the
traditional thermometer axilla and tympanic membrane assess-
ments, since these are the methods currently used within a clini-
cal setup.
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Introduction

Following the outbreak of the highly infectious SARS in the Far
East in 2000 and further pandemic influenza outbreaks around
the world, there was an international response to consider fever
screening particularly among the international travelling public.
This screening was based on the premise that most pandemic
diseases are accompanied by an elevated core temperature. The
International Standards Organisation called a group of experts
together for a series of meetings to create new standard recom-
mendations for the use of infrared imaging to detect passengers
with raised body temperature. The initial methodology had been
published by the Singapore Standards Authority using facial
thermograms. It was recommended that under controlled condi-
tions febrile passengers could be detected by remote sensing. Af-
ter 5 years the ISO committee was reconvened to update this
document.

Areas for revision: The committee was able to draw on experi-
ence from the fact that certain areas of the recommendations
were not clear enough. There was further need for extending the
range of potential pandemic infections where this technology
could be usefully deployed. Finally, more studies had become
available from which the reference list could be updated.

Definitions

These were expanded. A more precise description of the region
of the inner canthus of the eyes was described. Experimental
studies confirmed that with strict protocols this site was the opti-
mal area of the face to indicate fever. The use of the colour dis-
play was clarified e.g. The SCREENING THERMOGRAPH
shall be provided with at least one colour mapping mode where
the colours follow the order of the visible spectrum (e.g., rain-
bow scale) such that blue is cooler and red is hotter. Many exam-
ples of the industrial colour scale were found which is far less
sensitive to the narrow temperature band in a human face
thermogram. The definition of the required correct positioning
of the camera and the subject's face was also expanded. Clarifica-
tions such as the use of the calibration source were also ex-
panded. The EXTERNAL TEMPERATURE REFERENCE
SOURCE should be set at a value near the THRESHOLD
TEMPERATURE. The minimum temperature range of the
EXTERNAL TEMPERATURE REFERENCE SOURCE was

chosen to be slightly broader than the minimum temperature
range of the THRESHOLD TEMPERATURE. The CALI-
BRATION SOURCE is required to be sufficiently large so that
the SCREENING THERMOGRAPH's measurement is not af-
fected by its small size and to allow a clear identification of the
display colour within the WORKABLE TARGET PLANE. The
CALIBRATION SOURCE should not be larger than 10 % of
the FACE, so as to not adversely affect the infrared camera as-
sessment. The target area for measurement has also been ex-
panded: the current evidence indicates that the region medially
adjacent to the inner canthi is the preferred site for fever screen-
ing due to the stability of that measurement site. This is due to
this region being directly over the internal carotid artery.

Relevant Infections:Since the more recent serious problem in
Africa caused by the EBOLA outbreak, a list of potential infec-
tions that can be usefully screened by thermal imaging and those
that do not manifest with an increase in temperature (fever) have
been added.

Conclusion

Significant improvements and expansion of the original ISO
standard for fever screening with infrared thermal imaging for
fever detection have now been achieved and internationally ac-
cepted. Evidence that the original recommendations work when
properly applied as described has been published. Equally there
is evidence that not using the methodology correctly fails to pro-
vide the necessary discrimination for separating febrile from non
febrile persons. To correctly apply this standard requires invest-
ment in both trained personnel and appropriate calibrated tech-
nology. The Ebola crisis demonstrated that this is an economic
challenge for a number of countries, where local hygiene may be
at levels where risk of infection and delays in bringing full medi-
cal care when urgently needed.
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1. O porquê deste projeto de investigação? 

Este projeto pretende caracterizar, com termografia médica dinâmica, a assinatura térmica de 

diferentes tipos de neoplasias da pele. Para tal, serão correlacionados os resultados obtidos, através da 

avaliação dos termogramas recolhidos da área lesada, com os dados clínicos do paciente, 

nomeadamente, o resultado da biopsia. Este trabalho de investigação permitirá no futuro disponibilizar 

mais informação aos profissionais de saúde que poderá ser utilizada como complemento ao diagnóstico 

de lesões da pele, ou prevenção de recorrências destas mesmas, melhorando, assim, os cuidados 

prestados aos pacientes. 

2. O que é um termograma? 

Um termograma é uma imagem que permite visualizar a distribuição da temperatura à superfície da 

pele. Este pode ser observado nas figuras abaixo, representativas de termogramas infravermelhos de 

neoplasias da pele. 

 

 

Estas imagens são obtidas utilizando câmaras termográficas que detetam e capturam perdas de 

calor naturais que ocorrem à superfície da pele, sendo o processo de aquisição idêntico ao método 

utilizado em fotografia convencional. Assim, este é um procedimento não-invasivo e não-ionizante, 

sendo, por isso, inócuo e indolor. Neste projeto de investigação será realizada uma avaliação térmica 

dinâmica, sendo, por isso, aplicado um estímulo térmico, antes do processo de captura, à zona lesada da 

pele. As imagens recolhidas serão usadas para fins médicos e académicos, sendo mantida a 

confidencialidade dos dados de cada paciente, assim como de toda a informação que irá ser gravada de 

modo seguro. A identificação de qualquer indivíduo é impossível através de uma imagem termográfica 

sem que a identificação deste mesmo esteja anexada. 

3. O que é uma neoplasia da pele? 

Uma neoplasia é o resultado de um processo patológico que consiste num crescimento anormal de 

tecido, havendo uma divisão excessiva e descontrolada de células. Estas podem ser malignas, sendo 

designadas por cancros, ou benignas.  

O número de cancros de pele diagnosticados, e. g., melanomas, tem aumentado nos últimos anos, 

sendo uma das doenças mais comuns no mundo. A taxa de incidência é semelhante para homens e 

mulheres, sendo a exposição excessiva à radiação ultravioleta apontada como a principal causa para 



esta doença. Em Portugal são detetados, anualmente, mais de 10000 novos casos de cancro da pele, 

existindo uma taxa de mortalidade de 2,45 em cada 100000 indivíduos, um valor que poderia ser 

reduzido com a deteção precoce deste tipo de lesões. 

Atualmente, o diagnóstico de neoplasias da pele é efetuado por um dermatologista com base na 

regra ABCDE (Assimetria, Bordo, Cor, Diâmetro, Evolução), dependo bastante da experiência do médico. 

Assim, uma lesão minimamente suspeita, conduz à remoção desta mesma e a posterior biopsia, com 

vista a obter um diagnóstico robusto. De forma a evitar procedimentos desnecessários e dolorosos para 

o paciente, e a permitir a identificação antecipada deste tipo de neoplasias, outros métodos para 

auxiliar o processo de diagnóstico de lesões da pele têm sido explorados, como Laser Doppler, 

Dermoscopia e Termografia infravermelha. 

 

4. O que necessito que faça para participar neste projeto? 

Venho por este meio, pedir a sua colaboração num projeto de investigação simples e rápido, onde 

apenas serão retiradas algumas imagens da zona da pele, onde se localiza a lesão. Este processo envolve 

várias etapas. 

Antes da captura das imagens, o paciente deve permanecer numa sala climatizada, expondo a área 

de interesse – pele com lesão –, com o intuito de a mesma atingir a temperatura pretendida. Este 

processo demora cerca de 10 minutos. Enquanto isso, a pessoa deverá preencher e tomar 

conhecimento de alguns formulários. Entre estes incluem-se, o consentimento informado e o 

questionário de dados biométricos associado à patologia.  

No dia das recolhas algumas precauções deverão ser tomadas antes do período de recolha, tais 

como: 

▪ Não ingerir uma refeição pesada; 

▪ Não participar em atividades cansativas e desgastantes; 

▪ Não ingerir bebidas alcoólicas ou café e não fumar num período até duas horas antes da 

recolha das imagens; 

▪ Remover todo o tipo de bijuteria e relógios durante o período de captura; 

▪ Não aplicar à pele da região lesada qualquer tipo de creme corporal; 

▪ Por fim, permanecer estático nas posições solicitadas pelo investigador para o procedimento 

de captura. 

 

5. Quanto tempo vai durar? 

A participação de cada indivíduo neste projeto irá demorar aproximadamente 15 minutos (incluindo 

o tempo de descanso). As recolhas deverão ser feitas quando for da sua conveniência. 

6. Vou ser pago pela minha participação? 

Infelizmente, o financiamento é limitado, pelo que não irá receber qualquer pagamento pela sua 

participação neste estudo. Contudo, irá contribuir significativamente para desenvolvimentos únicos e 

importantes na área da utilização da termografia médica dinâmica na dermatologia. Após a participação 

rebuçados serão oferecidos como sinal de gratidão. As imagens recolhidas poderão também ser 

enviadas via email caso sejam solicitadas pelo voluntário. 

7. Contacto 

Nome: Ana Carolina dos Santos Ribeiro Magalhães 

Instituição: Faculdade de Engenharia da Universidade do Porto 

Email: anacmag1@gmail.com 

Telemóvel: 918775039 



 



 

Biometric data associated with the pathology 
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Frequency table, concerning patients’ characteristics. 
 

 Label Frequency (n) Frequency (%) 

S
k
in

 N
e
o
p
la

sm
 T

y
p
e
 

0 51 15.9 

1 118 36.9 

2 16 5.0 

3 29 9.1 

4 30 9.4 

5 14 4.4 

6 11 3.4 

7 29 9.1 

8 22 6.9 

 

 Label Frequency (n) Frequency (%) 

A
g
e
 g

ro
u
p
 

0 2 0.6 

1 9 2.8 

2 22 6.9 

3 42 13.1 

4 57 17.8 

5 84 26.3 

6 104 32.5 

 

 Label Frequency (n) Frequency (%) 

S
e
x
 0 192 60.0 

1 128 40.0 

 

 Label Frequency (n) Frequency (%) 

H
e
ig

h
t 

0 20 6.2 

1 128 39.6 

2 119 36.8 

3 44 13.6 

4 9 2.8 

 

  



 

 

 
   Label Frequency (n) Frequency (%) 

W
e
ig

h
t 

0 51 15.9 

1 118 36.9 

2 16 5.0 

3 29 9.1 

4 30 9.4 

5 14 4.4 

 Label Frequency (n) Frequency (%) 

B
M

I 

0 5 1.6 

1 125 39.1 

2 131 40.9 

3 56 17.5 

4 2 0.6 

5 1 0.3 

 Label Frequency (n) Frequency (%) 

E
y
e
 

c
o
lo

u
r 0 71 22.2 

1 91 28.4 

2 158 49.4 

 Label Frequency (n) Frequency (%) 

F
it

z
p
a
tr

ic
k
 

sc
a
le

 

0 0 0.0 

1 15 4.7 

2 123 38.4 

3 156 48.8 

4 26 8.1 

 Label Frequency (n) Frequency (%) 

S
k
in

 

m
a
r

k
s 0 193 60.3 

1 127 39.7 



 

 

True Positive (TP), True Negative (TN), False Positive (FP) and False 
Negative (FN) values obtained for the classification tasks Melanoma vs Nevi, 
SCC vs AK and Ben vs Mal., according to the features selected for input 
vector 

Steady-state: S1, S2, …, S40 and SM feature vector 

 

 Classifier TP FP TN FN 

M
e
la

n
o
m

a
 v

s 
N

e
v
i SMO – Poly 6 0 10 3 

SMO – RBF 0 0 10 9 

iBk (k=1) 3 2 8 6 

iBk (k=6) 0 0 10 9 

iBk (k=7) 0 0 10 9 

Multilayer Perceptron 5 0 10 4 

 

 

 Classifier TP FP TN FN 

S
C

C
 v

s 
A

K
 

SMO – Poly 21 8 1 2 

SMO – RBF 23 9 0 9 

iBk (k=1) 9 4 5 14 

iBk (k=6) 21 7 2 2 

iBk (k=7) 14 7 2 9 

Multilayer Perceptron 12 3 6 11 

 

 

 Classifier TP FP TN FN 

B
e
n
 v

s 
M

a
l 

SMO – Poly 61 38 12 9 

SMO – RBF 70 50 0 0 

iBk (k=1) 51 34 16 19 

iBk (k=6) 58 40 10 12 

iBk (k=7) 50 34 16 20 

Multilayer Perceptron 69 48 2 1 



Steady-state: S1, S2, …, S40 and SSTD feature vector 

 

 Classifier TP FP TN FN 

M
e
la

n
o
m

a
 v

s 
N

e
v
i SMO – Poly 5 0 10 4 

SMO – RBF 0 0 10 9 

iBk (k=1) 4 3 7 5 

iBk (k=6) 1 0 10 8 

iBk (k=7) 0 0 10 9 

Multilayer Perceptron 7 1 9 2 

 

 

 Classifier TP FP TN FN 

S
C

C
 v

s 
A

K
 

SMO – Poly 21 6 3 2 

SMO – RBF 23 9 0 0 

iBk (k=1) 14 4 5 9 

iBk (k=6) 21 7 2 2 

iBk (k=7) 15 6 3 8 

Multilayer Perceptron 11 3 6 12 

 

 

 Classifier TP FP TN FN 

B
e
n
 v

s 
M

a
l 

SMO – Poly 70 49 1 0 

SMO – RBF 70 50 0 0 

iBk (k=1) 51 33 17 19 

iBk (k=6) 59 44 6 11 

iBk (k=7) 53 39 11 17 

Multilayer Perceptron 69 47 3 1 

Dynamic: DX, DO, …, D5 and MX, M0, …, M5 feature vector 

 Classifier TP FP TN FN 

M
e
la

n
o
m

a
 v

s 
N

e
v
i SMO – Poly 0 2 9 6 

SMO – RBF 0 0 11 6 

iBk (k=1) 2 1 10 4 

iBk (k=6) 0 0 11 6 

iBk (k=7) 0 0 11 6 

Multilayer Perceptron 1 0 11 5 

 



 

 

 

 

 

 

 

 

 Classifier TP FP TN FN 

B
e
n
 v

s 
M

a
l 

SMO – Poly 49 32 8 13 

SMO – RBF 62 40 0 0 

iBk (k=1) 39 28 12 23 

iBk (k=6) 52 34 6 10 

iBk (k=7) 42 28 12 20 

Multilayer Perceptron 45 27 13 17 

Dynamic: DX, DO, …, D5 and STDX, STD0, …, STD5 feature vector 

 Classifier TP FP TN FN 

M
e
la

n
o
m

a
 v

s 
N

e
v
i SMO – Poly 10 11 0 2 

SMO – RBF 0 0 11 6 

iBk (k=1) 0 1 10 6 

iBk (k=6) 0 1 10 6 

iBk (k=7) 0 0 11 6 

Multilayer Perceptron 1 4 7 5 

 

 

 Classifier TP FP TN FN 

S
C

C
 v

s 
A

K
 

SMO – Poly 1 0 11 5 

SMO – RBF 12 11 0 0 

iBk (k=1) 6 5 6 6 

iBk (k=6) 3 5 6 9 

iBk (k=7) 6 9 2 6 

Multilayer Perceptron 5 5 6 7 

 

 

 

 Classifier TP FP TN FN 

S
C

C
 v

s 
A

K
 

SMO – Poly 7 1 10 5 

SMO – RBF 12 11 0 0 

iBk (k=1) 8 7 4 4 

iBk (k=6) 3 2 9 3 

iBk (k=7) 10 5 6 2 

Multilayer Perceptron 8 3 8 4 



 

 

 Classifier TP FP TN FN 

B
e
n
 v

s 
M

a
l 

SMO – Poly 61 39 1 1 

SMO – RBF 62 40 0 0 

iBk (k=1) 31 24 16 31 

iBk (k=6) 43 30 10 19 

iBk (k=7) 37 27 13 25 

Multilayer Perceptron 55 35 5 7 

 

 


