1,142 research outputs found

    Theory of differential inclusions and its application in mechanics

    Full text link
    The following chapter deals with systems of differential equations with discontinuous right-hand sides. The key question is how to define the solutions of such systems. The most adequate approach is to treat discontinuous systems as systems with multivalued right-hand sides (differential inclusions). In this work three well-known definitions of solution of discontinuous system are considered. We will demonstrate the difference between these definitions and their application to different mechanical problems. Mathematical models of drilling systems with discontinuous friction torque characteristics are considered. Here, opposite to classical Coulomb symmetric friction law, the friction torque characteristic is asymmetrical. Problem of sudden load change is studied. Analytical methods of investigation of systems with such asymmetrical friction based on the use of Lyapunov functions are demonstrated. The Watt governor and Chua system are considered to show different aspects of computer modeling of discontinuous systems

    On fractional-order symmetric oscillator with offset-boosting control

    Get PDF
    This article analyzes the dynamical evolution of a three-dimensional symmetric oscillator with a fractional Caputo operator. The dynamical properties of the considered model such as equilibria and its stability are also presented. The existence results and uniqueness of solutions for the suggested model are analyzed using the tools from fixed point theory. The symmetric oscillator is analyzed numerically and graphically with various fractional orders. It is observed that the fractional operator has a significant impact on the evolution of the oscillator dynamics showing that the system has a limit-cycle attractor. Offset-boosting control phenomena in the system are also studied with different orders and parameters

    Chaos at the border of criticality

    Full text link
    The present paper points out to a novel scenario for formation of chaotic attractors in a class of models of excitable cell membranes near an Andronov-Hopf bifurcation (AHB). The mechanism underlying chaotic dynamics admits a simple and visual description in terms of the families of one-dimensional first-return maps, which are constructed using the combination of asymptotic and numerical techniques. The bifurcation structure of the continuous system (specifically, the proximity to a degenerate AHB) endows the Poincare map with distinct qualitative features such as unimodality and the presence of the boundary layer, where the map is strongly expanding. This structure of the map in turn explains the bifurcation scenarios in the continuous system including chaotic mixed-mode oscillations near the border between the regions of sub- and supercritical AHB. The proposed mechanism yields the statistical properties of the mixed-mode oscillations in this regime. The statistics predicted by the analysis of the Poincare map and those observed in the numerical experiments of the continuous system show a very good agreement.Comment: Chaos: An Interdisciplinary Journal of Nonlinear Science (tentatively, Sept 2008

    On Norm-Based Estimations for Domains of Attraction in Nonlinear Time-Delay Systems

    Get PDF
    For nonlinear time-delay systems, domains of attraction are rarely studied despite their importance for technological applications. The present paper provides methodological hints for the determination of an upper bound on the radius of attraction by numerical means. Thereby, the respective Banach space for initial functions has to be selected and primary initial functions have to be chosen. The latter are used in time-forward simulations to determine a first upper bound on the radius of attraction. Thereafter, this upper bound is refined by secondary initial functions, which result a posteriori from the preceding simulations. Additionally, a bifurcation analysis should be undertaken. This analysis results in a possible improvement of the previous estimation. An example of a time-delayed swing equation demonstrates the various aspects.Comment: 33 pages, 8 figures, "This is a pre-print of an article published in 'Nonlinear Dynamics'. The final authenticated version is available online at https://doi.org/10.1007/s11071-020-05620-8

    Is it possible to experimentally verify the fluctuation relation? A review of theoretical motivations and numerical evidence

    Full text link
    The theoretical motivations to perform experimental tests of the stationary state fluctuation relation are reviewed. The difficulties involved in such tests, evidenced by numerical simulations, are also discussed.Comment: 36 pages, 4 figures. Extended version of a presentation to the discussion "Is it possible to experimentally verify the fluctuation theorem?", IHP, Paris, December 1, 2006. Comments are very welcom

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue
    • …
    corecore