68 research outputs found

    The Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

    Get PDF
    Holant problem is a general framework to study the computational complexity of counting problems. We prove a complexity dichotomy theorem for Holant problems over the Boolean domain with non-negative weights. It is the first complete Holant dichotomy where constraint functions are not necessarily symmetric. Holant problems are indeed read-twice #CSPs. Intuitively, some #CSPs that are #P-hard become tractable when restricted to read-twice instances. To capture them, we introduce the Block-rank-one condition. It turns out that the condition leads to a clear separation. If a function set F satisfies the condition, then F is of affine type or product type. Otherwise (a) Holant(F) is #P-hard; or (b) every function in F is a tensor product of functions of arity at most 2; or (c) F is transformable to a product type by some real orthogonal matrix. Holographic transformations play an important role in both the hardness proof and the characterization of tractability

    Fine-grained dichotomies for the Tutte plane and Boolean #CSP

    Get PDF
    Jaeger, Vertigan, and Welsh [15] proved a dichotomy for the complexity of evaluating the Tutte polynomial at fixed points: The evaluation is #P-hard almost everywhere, and the remaining points admit polynomial-time algorithms. Dell, Husfeldt, and Wahl\'en [9] and Husfeldt and Taslaman [12], in combination with Curticapean [7], extended the #P-hardness results to tight lower bounds under the counting exponential time hypothesis #ETH, with the exception of the line y=1y=1, which was left open. We complete the dichotomy theorem for the Tutte polynomial under #ETH by proving that the number of all acyclic subgraphs of a given nn-vertex graph cannot be determined in time exp(o(n))exp(o(n)) unless #ETH fails. Another dichotomy theorem we strengthen is the one of Creignou and Hermann [6] for counting the number of satisfying assignments to a constraint satisfaction problem instance over the Boolean domain. We prove that all #P-hard cases are also hard under #ETH. The main ingredient is to prove that the number of independent sets in bipartite graphs with nn vertices cannot be computed in time exp(o(n))exp(o(n)) unless #ETH fails. In order to prove our results, we use the block interpolation idea by Curticapean [7] and transfer it to systems of linear equations that might not directly correspond to interpolation.Comment: 16 pages, 1 figur

    A Dichotomy Theorem for the Approximate Counting of Complex-Weighted Bounded-Degree Boolean CSPs

    Get PDF
    We determine the computational complexity of approximately counting the total weight of variable assignments for every complex-weighted Boolean constraint satisfaction problem (or CSP) with any number of additional unary (i.e., arity 1) constraints, particularly, when degrees of input instances are bounded from above by a fixed constant. All degree-1 counting CSPs are obviously solvable in polynomial time. When the instance's degree is more than two, we present a dichotomy theorem that classifies all counting CSPs admitting free unary constraints into exactly two categories. This classification theorem extends, to complex-weighted problems, an earlier result on the approximation complexity of unweighted counting Boolean CSPs of bounded degree. The framework of the proof of our theorem is based on a theory of signature developed from Valiant's holographic algorithms that can efficiently solve seemingly intractable counting CSPs. Despite the use of arbitrary complex weight, our proof of the classification theorem is rather elementary and intuitive due to an extensive use of a novel notion of limited T-constructibility. For the remaining degree-2 problems, in contrast, they are as hard to approximate as Holant problems, which are a generalization of counting CSPs.Comment: A4, 10pt, 20 pages. This revised version improves its preliminary version published under a slightly different title in the Proceedings of the 4th International Conference on Combinatorial Optimization and Applications (COCOA 2010), Lecture Notes in Computer Science, Springer, Vol.6508 (Part I), pp.285--299, Kailua-Kona, Hawaii, USA, December 18--20, 201

    The complexity of weighted and unweighted #CSP

    Get PDF
    We give some reductions among problems in (nonnegative) weighted #CSP which restrict the class of functions that needs to be considered in computational complexity studies. Our reductions can be applied to both exact and approximate computation. In particular, we show that a recent dichotomy for unweighted #CSP can be extended to rational-weighted #CSP.Comment: 11 page

    A complete dichotomy for complex-valued holant<sup>c</sup>

    Get PDF
    Holant problems are a family of counting problems on graphs, parametrised by sets of complex-valued functions of Boolean inputs. Holant^c denotes a subfamily of those problems, where any function set considered must contain the two unary functions pinning inputs to values 0 or 1. The complexity classification of Holant problems usually takes the form of dichotomy theorems, showing that for any set of functions in the family, the problem is either #P-hard or it can be solved in polynomial time. Previous such results include a dichotomy for real-valued Holant^c and one for Holant^c with complex symmetric functions, i.e. functions which only depend on the Hamming weight of the input. Here, we derive a dichotomy theorem for Holant^c with complex-valued, not necessarily symmetric functions. The tractable cases are the complex-valued generalisations of the tractable cases of the real-valued Holant^c dichotomy. The proof uses results from quantum information theory, particularly about entanglement. This full dichotomy for Holant^c answers a question that has been open for almost a decade.</p
    • …
    corecore