19,548 research outputs found

    EUV Emission and Scattered Light Diagnostics of Equatorial Coronal Holes as Seen by Hinode/EIS

    Full text link
    Spectroscopic diagnostics of solar coronal plasmas critically depends on the uncertainty in the measured line intensities. One of the main sources of uncertainty is instrumental scattered light, which is potentially most important in low-brightness areas. In the solar corona, such areas include polar and equatorial coronal holes, which are the source regions of the solar wind; instrument-scattered light must thus pose a significant obstacle to studies of the source regions of the solar wind. In this paper we investigate the importance of instrument-scattered light on observations of equatorial coronal holes made by the Hinode/EIS spectrometer in two different phases of the solar cycle. We find that the instrument-scattered light is significant at all temperatures, and in both regions it amounts to approximately 10% of the average intensity of the neighboring quiet Sun regions. Such contribution dominates the measured intensity for spectral lines formed at temperatures larger than Log T = 6.15 K, and has deep implications for spectroscopic diagnostics of equatorial coronal hole plasmas and studies of the source regions of a large portion of the solar wind which reaches Earth. Our results suggest that the high temperature tail of in the coronal hole plasma distribution with temperature, however small, is an artifact due to the presence of scattered light.Comment: 11 pages, 6 figure

    Spurious symptom reduction in fault monitoring

    Get PDF
    Previous work accomplished on NASA's Faultfinder concept suggested that the concept was jeopardized by spurious symptoms generated in the monitoring phase. The purpose of the present research was to investigate methods of reducing the generation of spurious symptoms during in-flight engine monitoring. Two approaches for reducing spurious symptoms were investigated. A knowledge base of rules was constructed to filter known spurious symptoms and a neural net was developed to improve the expectation values used in the monitoring process. Both approaches were effective in reducing spurious symptoms individually. However, the best results were obtained using a hybrid system combining the neural net capability to improve expectation values with the rule-based logic filter

    Report from solar physics

    Get PDF
    A discussion of the nature of solar physics is followed by a brief review of recent advances in the field. These advances include: the first direct experimental confirmation of the central role played by thermonuclear processes in stars; the discovery that the 5-minute oscillations of the Sun are a global seismic phenomenon that can be used as a probe of the structure and dynamical behavior of the solar interior; the discovery that the solar magnetic field is subdivided into individual flux tubes with field strength exceeding 1000 gauss. Also covered was a science strategy for pure solar physics. Brief discussions are given of solar-terrestrial physics, solar/stellar relationships, and suggested space missions

    Aeronautical Engineering: A special bibliography with indexes, supplement 64, December 1975

    Get PDF
    This bibliography lists 288 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1975

    Conceptual design for the Space Station Freedom fluid physics/dynamics facility

    Get PDF
    A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990

    Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids

    Get PDF
    This work presents the fabrication, characterisation and the performance of a wearable, robust, flexible and disposable chemical barcode device based on a micro-fluidic platform that incorporates ionic liquid polymer gels (ionogels). The device has been applied to the monitoring of the pH of sweat in real time during an exercise period. The device is an ideal wearable sensor for measuring the pH of sweat since it does not contents any electronic part for fluidic handle or pH detection and because it can be directly incorporated into clothing, head- or wristbands, which are in continuous contact with the skin. In addition, due to the micro-fluidic structure, fresh sweat is continuously passing through the sensing area providing the capability to perform continuous real time analysis. The approach presented here ensures immediate feedback regarding sweat composition. Sweat analysis is attractive for monitoring purposes as it can provide physiological information directly relevant to the health and performance of the wearer without the need for an invasive sampling approac
    corecore