111 research outputs found

    Diagnosis and Opacity Problems for Infinite State Systems Modeled by Recursive Tile Systems

    Get PDF
    International audienceThe analysis of discrete event systems under partial observation is an important topic, with major applications such as the detection of information flow and the diagnosis of faulty behaviors. These questions have, mostly, not been addressed for classical models of recursive systems, such as pushdown systems and recursive state machines. In this paper, we consider recursive tile systems, which are recursive infinite systems generated by a finite collection of finite tiles, a simplified variant of deterministic graph grammars (slightly more general than pushdown systems). Since these systems are infinite-state in general powerset constructions for monitoring do not always apply. We exhibit computable conditions on recursive tile systems and present non-trivial constructions that yield effective computation of the monitors.We apply these results to the classic problems of state-based opacity and diagnosability (off-line verification of opacity and diagnosability, and also run-time monitoring of these properties). For a decidable subclass of recursive tile systems, we also establish the decidability of the problems of state-based opacity and diagnosability

    State-Based Opacity of Real-Time Automata

    Get PDF

    Compositional and Abstraction-Based Approach for Synthesis of Edit Functions for Opacity Enforcement

    Full text link
    This paper develops a novel compositional and abstraction-based approach to synthesize edit functions for opacity enforcement in modular discrete event systems. Edit functions alter the output of the system by erasing or inserting events in order to obfuscate the outside intruder, whose goal is to infer the secrets of the system from its observation. We synthesize edit functions to solve the opacity enforcement problem in a modular setting, which significantly reduces the computational complexity compared with the monolithic approach. Two abstraction methods called opaque observation equivalence and opaque bisimulation are first employed to abstract the individual components of the modular system and their observers. Subsequently, we propose a method to transform the synthesis of edit functions to the calculation of modular supremal nonblocking supervisors. We show that the edit functions synthesized in this manner correctly solve the opacity enforcement problem

    Verification and Enforcement of Opacity Security Properties in Discrete Event Systems.

    Full text link
    The need for stringent cybersecurity is becoming significant as computers and networks are integrated into every aspect of our lives. A recent trend in cybersecurity research is to formalize security notions and develop theoretical foundations for designing secure systems. In this dissertation, we address a security notion called opacity based on the control theory for Discrete Event Systems (DES). Opacity is an information-flow property that captures whether a given secret of the system can be inferred by intruders who passively observe the behavior of the system. Finite-state automata are used to capture the dynamics of computer systems that need to be rendered opaque with respect to a given secret. Under the observation of the intruder, the secret of the system is opaque if “whenever the secret has occurred, there exists another non-secret behavior that is observationally equivalent.” This research focuses on the analysis and the enforcement of four notions of opacity. First, we develop algorithms for verifying opacity notions under the attack model of a single intruder and that of multiple colluding intruders. We then consider the enforcement of opacity when the secret is not opaque. Specifically, we propose a novel enforcement mechanism based on event insertion to address opacity enforcement for a class of systems whose dynamics cannot be modified. An insertion function, placed at the output of the system, inserts fictitious observable events to the system’s output without interacting with the system. We develop a finite structure called the All-Insertion Structure (AIS) that enumerates all valid insertion functions. The AIS establishes a necessary and sufficient condition for the existence of a valid insertion function, and provides a structure to synthesize one insertion function. Furthermore, we introduce the maximum total cost and the maximum mean cost to quantify insertion functions. A condition for determining which cost objective to use is established. For each cost, we develop an algorithmic procedure for synthesizing an optimal insertion function from the AIS. Finally, our analysis and enforcement procedure is applied to ensuring location privacy in location-based services.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108905/1/ycwu_1.pd

    Diagnostic, opacité et test de conformité pour des systèmes récursifs

    Get PDF
    L'une des façons les plus efficace de s'assurer du bon fonctionnement d'un système informatique est de les représenter par des modèles mathématiques. De nombreux travaux ont été réalisés en utilisant des automates finis comme modèles, nous essayons ici d'étendre ces travaux à des modèles infinis. Dans cette thèse, nous nous intéressons à quelques problèmes dans lesquels un système est observé de façon incomplète. Dans ce cas, il est impossible d'accéder à certaines informations internes. La diagnosticabilité d'une propriété donnée consiste à vérifier qu'à l'exécution du système, un observateur sera en mesure de déterminer avec certitude que la propriété est vérifiée par le système. L'opacité consiste, réciproquement, à déterminer qu'un doute existera toujours. Une autre application concerne la génération de cas de test. Une fois encore, on considère qu'un observateur n'accède qu'à une partie des événements se produisant dans le système (en général les entrées et les sorties). À partir d'une spécification, on produit automatiquement des cas de test, qui ont pour but de détecter des non-conformités (elles même formalisées de façon précise). Ces trois problèmes ont été étudiés pour des modèles finis. Dans cette thèse, nous étendons leur étude aux modèles récursifs, pour cela nous avons introduit notre propre modèle, les RTS, qui sont une généralisation des automates à pile, et d'autres modèles de la récursivité. Nous adaptons ensuite les techniques utilisées sur des modèles finis, qui servent à résoudre les problèmes qui nous intéressent.An effective way to ensure the proper functioning of a computer system is to represent it by using mathematical models . Many studies have been conducted using finite automata as models, in this thesis we try to extend these works to infinite models. We focus on three problems in which a system is partially observed. In this case, it is impossible to access certain internal informations. Diagnosability of a given property consist in checking, that, during the execution of the system, an observer will be able to determine with certainty that the property is verified by the system. Conversely, the opacity consists in determining if a doubt will always exist. Another application is the generation of test cases. Once again, we consider that an observer accesses only some events of the system (typically the inputs and outputs): from a specification, we automatically generate test cases, which are designed to detect non-conformance. These three problems have been studied for finite models. In this thesis, we extend their study to recursive models. For this purpose, we have introduced a new model, the RTS, which are a generalization of pushdown automata and other models of recursion. In order to solve problems of interest, we adapt the techniques used in finite models.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    From Security Enforcement to Supervisory Control in Discrete Event Systems: Qualitative and Quantitative Analyses

    Full text link
    Cyber-physical systems are technological systems that involve physical components that are monitored and controlled by multiple computational units that exchange information through a communication network. Examples of cyber-physical systems arise in transportation, power, smart manufacturing, and other classes of systems that have a large degree of automation. Analysis and control of cyber-physical systems is an active area of research. The increasing demands for safety, security and performance improvement of cyber-physical systems put stringent constraints on their design and necessitate the use of formal model-based methods to synthesize control strategies that provably enforce required properties. This dissertation focuses on the higher level control logic in cyber-physical systems using the framework of discrete event systems. It tackles two classes of problems for discrete event systems. The first class of problems is related to system security. This problem is formulated in terms of the information flow property of opacity. In this part of the dissertation, an interface-based approach called insertion/edit function is developed to enforce opacity under the potential inference of malicious intruders that may or may not know the implementation of the insertion/edit function. The focus is the synthesis of insertion/edit functions that solve the opacity enforcement problem in the framework of qualitative and quantitative games on finite graphs. The second problem treated in the dissertation is that of performance optimization in the context of supervisory control under partial observation. This problem is transformed to a two-player quantitative game and an information structure where the game is played is constructed. A novel approach to synthesize supervisors by solving the game is developed. The main contributions of this dissertation are grouped into the following five categories. (i) The transformation of the formulated opacity enforcement and supervisory control problems to games on finite graphs provides a systematic way of performing worst case analysis in design of discrete event systems. (ii) These games have state spaces that are as compact as possible using the notion of information states in each corresponding problem. (iii) A formal model-based approach is employed in the entire dissertation, which results in provably correct solutions. (iv) The approaches developed in this dissertation reveal the interconnection between control theory and formal methods. (v) The results in this dissertation are applicable to many types of cyber-physical systems with security-critical and performance-aware requirements.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/150002/1/jiyiding_1.pd

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition
    • …
    corecore