37 research outputs found

    A Vietnamese Handwritten Text Recognition Pipeline for Tetanus Medical Records

    Get PDF
    Machine learning techniques are successful for optical character recognition tasks, especially in recognizing handwriting. However, recognizing Vietnamese handwriting is challenging with the presence of extra six distinctive tonal symbols and vowels. Such a challenge is amplified given the handwriting of health workers in an emergency care setting, where staff is under constant pressure to record the well-being of patients. In this study, we aim to digitize the handwriting of Vietnamese health workers. We develop a complete handwritten text recognition pipeline that receives scanned documents, detects, and enhances the handwriting text areas of interest, transcribes the images into computer text, and finally auto-corrects invalid words and terms to achieve high accuracy. From experiments with medical documents written by 30 doctors and nurses from the Tetanus Emergency Care unit at the Hospital for Tropical Diseases, we obtain promising results of 2% and 12% for Character Error Rate and Word Error Rate, respectively

    Template Based Recognition of On-Line Handwriting

    Get PDF
    Software for recognition of handwriting has been available for several decades now and research on the subject have produced several different strategies for producing competitive recognition accuracies, especially in the case of isolated single characters. The problem of recognizing samples of handwriting with arbitrary connections between constituent characters (emph{unconstrained handwriting}) adds considerable complexity in form of the segmentation problem. In other words a recognition system, not constrained to the isolated single character case, needs to be able to recognize where in the sample one letter ends and another begins. In the research community and probably also in commercial systems the most common technique for recognizing unconstrained handwriting compromise Neural Networks for partial character matching along with Hidden Markov Modeling for combining partial results to string hypothesis. Neural Networks are often favored by the research community since the recognition functions are more or less automatically inferred from a training set of handwritten samples. From a commercial perspective a downside to this property is the lack of control, since there is no explicit information on the types of samples that can be correctly recognized by the system. In a template based system, each style of writing a particular character is explicitly modeled, and thus provides some intuition regarding the types of errors (confusions) that the system is prone to make. Most template based recognition methods today only work for the isolated single character recognition problem and extensions to unconstrained recognition is usually not straightforward. This thesis presents a step-by-step recipe for producing a template based recognition system which extends naturally to unconstrained handwriting recognition through simple graph techniques. A system based on this construction has been implemented and tested for the difficult case of unconstrained online Arabic handwriting recognition with good results

    A large vocabulary online handwriting recognition system for Turkish

    Get PDF
    Handwriting recognition in general and online handwriting recognition in particular has been an active research area for several decades. Most of the research have been focused on English and recently on other scripts like Arabic and Chinese. There is a lack of research on recognition in Turkish text and this work primarily fills that gap with a state-of-the-art recognizer for the first time. It contains design and implementation details of a complete recognition system for recognition of Turkish isolated words. Based on the Hidden Markov Models, the system comprises pre-processing, feature extraction, optical modeling and language modeling modules. It considers the recognition of unconstrained handwriting with a limited vocabulary size first and then evolves to a large vocabulary system. Turkish script has many similarities with other Latin scripts, like English, which makes it possible to adapt strategies that work for them. However, there are some other issues which are particular to Turkish that should be taken into consideration separately. Two of the challenging issues in recognition of Turkish text are determined as delayed strokes which introduce an extra source of variation in the sequence order of the handwritten input and high Out-of-Vocabulary (OOV) rate of Turkish when words are used as vocabulary units in the decoding process. This work examines the problems and alternative solutions at depth and proposes suitable solutions for Turkish script particularly. In delayed stroke handling, first a clear definition of the delayed strokes is developed and then using that definition some alternative handling methods are evaluated extensively on the UNIPEN and Turkish datasets. The best results are obtained by removing all delayed strokes, with up to 2.13% and 2.03% points recognition accuracy increases, over the respective baselines of English and Turkish. The overall system performances are assessed as 86.1% with a 1,000-word lexicon and 83.0% with a 3,500-word lexicon on the UNIPEN dataset and 91.7% on the Turkish dataset. Alternative decoding vocabularies are designed with grammatical sub-lexical units in order to solve the problem of high OOV rate. Additionally, statistical bi-gram and tri-gram language models are applied during the decoding process. The best performance, 67.9% is obtained by the large stem-ending vocabulary that is expanded with a bi-gram model on the Turkish dataset. This result is superior to the accuracy of the word-based vocabulary (63.8%) with the same coverage of 95% on the BOUN Web Corpus

    Recognition of handwritten Arabic characters

    Get PDF
    The subject of handwritten character recognition has been receiving considerable attention in recent years due to the increased dependence on computers. Several methods for recognizing Latin, Chinese as well as Kanji characters have been proposed. However, work on recognition of Arabic characters has been relatively sparse. Techniques developed for recognizing characters in other languages can not be used for Arabic since the nature of Arabic characters is different. The shape of a character is a function of its location within a word where each character can have two to four different forms. Most of the techniques proposed to date for recognizing Arabic characters have relied on structural and topographic approaches. This thesis introduces a decision-theoretic approach to solve the problem. The proposed method involves, as a first step, digitization of the segmented character. The secondary part of the character (dots and zigzags) are then isolated and identified separately thereby reducing the recognition issue to a 20 class problem or less for each of the character forms. The moments of the horizontal and vertical projections of the remaining primary characters are calculated and normalized with respect to the zero order moment. Simple measures of shape are obtained from the normalized moments and incorporated into a feature vector. Classification is accomplished using quadratic discriminant functions. The approach was evaluated using isolated, handwritten characters from a data base established for this purpose. The classification rates varied from 97.5% to 100% depending on the form of the characters. These results indicate that the technique offers significantly better classification rates in comparison with existing methods

    Off-line Arabic Handwriting Recognition System Using Fast Wavelet Transform

    Get PDF
    In this research, off-line handwriting recognition system for Arabic alphabet is introduced. The system contains three main stages: preprocessing, segmentation and recognition stage. In the preprocessing stage, Radon transform was used in the design of algorithms for page, line and word skew correction as well as for word slant correction. In the segmentation stage, Hough transform approach was used for line extraction. For line to words and word to characters segmentation, a statistical method using mathematic representation of the lines and words binary image was used. Unlike most of current handwriting recognition system, our system simulates the human mechanism for image recognition, where images are encoded and saved in memory as groups according to their similarity to each other. Characters are decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, that represent a character in different possible shapes, are saved as groups with one representative for each group. The recognition is achieved by comparing a vector of the character to be recognized with group representatives. Experiments showed that the proposed system is able to achieve the recognition task with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a single character in a text of 15 lines where each line has 10 words on average

    ONLINE ARABIC TEXT RECOGNITION USING STATISTICAL TECHNIQUES

    Get PDF

    On-line recognition of connected handwriting

    Get PDF
    Computer technology has rapidly improved over the last few years, with more powerful machines becoming ever smaller and cheaper. The latest growth area is in portable personal computers, providing powerful facilities to the mobile business person. Alongside this development has been the vast improvement to the human computer interface, allowing noncomputer- literate users access to computing facilities. These two aspects are now being combined into a portable computer that can be operated with a stylus, without the need for a keyboard. Handwriting is the obvious method for entering data and cursive script recognition research aims to comprehend unconstrained, natural handwriting. The ORCHiD system described in this thesis recognises connected handwriting collected on-line, in real time, via a digitising pad. After preprocessing, to remove any hardware-related errors, and normalising, the script is segmented and features of each segment measured. A new segmentation method has been developed which appears to be very consistent across a large number of handwriting styles. A statistical template matching algorithm is used to identify the segments. The system allows ambiguous matching, since cursive script is an ambiguous communications medium when taken out of context, and a probability for each match is calculated. These probabilities can be combined across the word to produce a ranked list of possible interpretations of the script word. A fast dictionary lookup routine has been developed enabling the sometimes very large list of possible words to be verified. The ORCHiD system can be trained, if desired, to a particular user. The training routine, however, is automatic since the untrained recognition system is used as the basis for the trained system. There is therefore very little start-up time before the system can be used. A decision-directed training approach is used. Recognition rates for the system vary depending on the consistency of the writing. On average, the untrained system achieved 75% recognition. After some training, average recognition rates of 91% were achieved, with up to 96% observed after further training

    Off-line Cursive Handwritten Tamil Character Recognition

    Full text link
    corecore