2,548 research outputs found

    A Novel Machine Learning Model Based on Exudate Localization to Detect Diabetic Macular Edema

    Get PDF
    Diabetic macular edema is one of the leading causes of legal blindness worldwide. Early, and accessible, detection of ophthalmological diseases is especially important in developing countries, where there are major limitations to access to specialized medical diagnosis and treatment. Deep learning models, such as deep convolutional neural networks have shown great success in different computer vision tasks. In medical images they have been also applied with great success. The present paper presents a novel strategy based on convolutional neural networks to combine exudates localization and eye fundus images for automatic classification of diabetic macular edema as a support for diabetic retinopathy diagnosis

    Lesion detection and Grading of Diabetic Retinopathy via Two-stages Deep Convolutional Neural Networks

    Full text link
    We propose an automatic diabetic retinopathy (DR) analysis algorithm based on two-stages deep convolutional neural networks (DCNN). Compared to existing DCNN-based DR detection methods, the proposed algorithm have the following advantages: (1) Our method can point out the location and type of lesions in the fundus images, as well as giving the severity grades of DR. Moreover, since retina lesions and DR severity appear with different scales in fundus images, the integration of both local and global networks learn more complete and specific features for DR analysis. (2) By introducing imbalanced weighting map, more attentions will be given to lesion patches for DR grading, which significantly improve the performance of the proposed algorithm. In this study, we label 12,206 lesion patches and re-annotate the DR grades of 23,595 fundus images from Kaggle competition dataset. Under the guidance of clinical ophthalmologists, the experimental results show that our local lesion detection net achieve comparable performance with trained human observers, and the proposed imbalanced weighted scheme also be proved to significantly improve the capability of our DCNN-based DR grading algorithm

    Automatic Classification of Bright Retinal Lesions via Deep Network Features

    Full text link
    The diabetic retinopathy is timely diagonalized through color eye fundus images by experienced ophthalmologists, in order to recognize potential retinal features and identify early-blindness cases. In this paper, it is proposed to extract deep features from the last fully-connected layer of, four different, pre-trained convolutional neural networks. These features are then feeded into a non-linear classifier to discriminate three-class diabetic cases, i.e., normal, exudates, and drusen. Averaged across 1113 color retinal images collected from six publicly available annotated datasets, the deep features approach perform better than the classical bag-of-words approach. The proposed approaches have an average accuracy between 91.23% and 92.00% with more than 13% improvement over the traditional state of art methods.Comment: Preprint submitted to Journal of Medical Imaging | SPIE (Tue, Jul 28, 2017

    Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images

    Full text link
    Convolutional neural networks (CNNs) show impressive performance for image classification and detection, extending heavily to the medical image domain. Nevertheless, medical experts are sceptical in these predictions as the nonlinear multilayer structure resulting in a classification outcome is not directly graspable. Recently, approaches have been shown which help the user to understand the discriminative regions within an image which are decisive for the CNN to conclude to a certain class. Although these approaches could help to build trust in the CNNs predictions, they are only slightly shown to work with medical image data which often poses a challenge as the decision for a class relies on different lesion areas scattered around the entire image. Using the DiaretDB1 dataset, we show that on retina images different lesion areas fundamental for diabetic retinopathy are detected on an image level with high accuracy, comparable or exceeding supervised methods. On lesion level, we achieve few false positives with high sensitivity, though, the network is solely trained on image-level labels which do not include information about existing lesions. Classifying between diseased and healthy images, we achieve an AUC of 0.954 on the DiaretDB1.Comment: Accepted in Proc. IEEE International Conference on Image Processing (ICIP), 201
    • …
    corecore