17 research outputs found

    The rolling problem: overview and challenges

    Full text link
    In the present paper we give a historical account -ranging from classical to modern results- of the problem of rolling two Riemannian manifolds one on the other, with the restrictions that they cannot instantaneously slip or spin one with respect to the other. On the way we show how this problem has profited from the development of intrinsic Riemannian geometry, from geometric control theory and sub-Riemannian geometry. We also mention how other areas -such as robotics and interpolation theory- have employed the rolling model.Comment: 20 page

    Prehensile Pushing: In-hand Manipulation with Push-Primitives

    Get PDF
    This paper explores the manipulation of a grasped object by pushing it against its environment. Relying on precise arm motions and detailed models of frictional contact, prehensile pushing enables dexterous manipulation with simple manipulators, such as those currently available in industrial settings, and those likely affordable by service and field robots. This paper is concerned with the mechanics of the forceful interaction between a gripper, a grasped object, and its environment. In particular, we describe the quasi-dynamic motion of an object held by a set of point, line, or planar rigid frictional contacts and forced by an external pusher (the environment). Our model predicts the force required by the external pusher to “break” the equilibrium of the grasp and estimates the instantaneous motion of the object in the grasp. It also captures interesting behaviors such as the constraining effect of line or planar contacts and the guiding effect of the pusher’s motion on the objects’s motion. We evaluate the algorithm with three primitive prehensile pushing actions—straight sliding, pivoting, and rolling—with the potential to combine into a broader in-hand manipulation capability.National Science Foundation (U.S.). National Robotics Initiative (Award NSF-IIS-1427050)Karl Chang Innovation Fund Awar

    Extrinsic Dexterity: In-Hand Manipulation with External Forces

    Get PDF
    Abstract — “In-hand manipulation ” is the ability to reposition an object in the hand, for example when adjusting the grasp of a hammer before hammering a nail. The common approach to in-hand manipulation with robotic hands, known as dexterous manipulation [1], is to hold an object within the fingertips of the hand and wiggle the fingers, or walk them along the object’s surface. Dexterous manipulation, however, is just one of the many techniques available to the robot. The robot can also roll the object in the hand by using gravity, or adjust the object’s pose by pressing it against a surface, or if fast enough, it can even toss the object in the air and catch it in a different pose. All these techniques have one thing in common: they rely on resources extrinsic to the hand, either gravity, external contacts or dynamic arm motions. We refer to them as “extrinsic dexterity”. In this paper we study extrinsic dexterity in the context of regrasp operations, for example when switching from a power to a precision grasp, and we demonstrate that even simple grippers are capable of ample in-hand manipulation. We develop twelve regrasp actions, all open-loop and handscripted, and evaluate their effectiveness with over 1200 trials of regrasps and sequences of regrasps, for three different objects (see video [2]). The long-term goal of this work is to develop a general repertoire of these behaviors, and to understand how such a repertoire might eventually constitute a general-purpose in-hand manipulation capability. I

    On the Experiments about the Nonprehensile Reconfiguration of a Rolling Sphere on a Plate

    Get PDF
    A method to reconfigure in a nonprehensile way the pose (position and orientation) of a sphere rolling on a plate is proposed in this letter. The nonholonomic nature of the task is first solved at a planning level, where a geometric technique is employed to derive a Cartesian path to steer the sphere towards the arbitrarily desired pose. Then, an integral passivity-based control is designed to track the planned trajectory. The port-Hamiltonian formalism is employed to model the whole dynamics. Two approaches to move the plate are addressed in this paper, showing that only one of them allows the full controllability of the system. A humanoid-like robot is employed to bolster the proposed method experimentally

    Planning Motions for Robotic Systems Subject to Differential Constraints

    Full text link

    A Reactive Planning Framework for Dexterous Robotic Manipulation

    Get PDF
    This thesis investigates a reactive motion planning and controller framework that enables robots to manipulate objects dexterously. We develop a robotic platform that can quickly and reliably replan actions based on sensed information. Robotic manipulation is subject to noise due to uncertainty in frictional contact information, and reactivity is key for robustness. The planning framework has been designed with generality in mind and naturally extends to a variety of robotic tasks, manipulators and sensors. This design is validated experimentally on an ABB IRB 14000 dual-arm industrial collaborative robot. In this research, we are interested in dexterous robot manipulation, where the key technology is to move an object from an initial location to a desired configuration. The robot makes use of a high resolution tactile sensor to monitor the progress of the task and drive the reactive behavior of the robot to counter mistakes or unaccounted environment conditions. The motion planning framework is integrated with a task planner that dictates the high-level manipulation behavior of the robot, as well as a low-level controller, that adapts robot motions based on measured tactile signaOutgoin
    corecore