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Abstract

A Reactive Planning Framework for

Dexterous Robotic Manipulation

by José Andrés Ballester Huesca

This thesis investigates a reactive motion planning and controller framework that enables

robots to manipulate objects dexterously. We develop a robotic platform that can quickly

and reliably replan actions based on sensed information. Robotic manipulation is subject to

noise due to uncertainty in frictional contact information, and reactivity is key for robustness.

The planning framework has been designed with generality in mind and naturally extends to

a variety of robotic tasks, manipulators and sensors. This design is validated experimentally

on an ABB IRB 14000 dual-arm industrial collaborative robot.

In this research, we are interested in dexterous robot manipulation, where the key technology

is to move an object from an initial location to a desired configuration. The robot makes

use of a high resolution tactile sensor to monitor the progress of the task and drive the

reactive behavior of the robot to counter mistakes or unaccounted environment conditions.

The motion planning framework is integrated with a task planner that dictates the high-level

manipulation behavior of the robot, as well as a low-level controller, which adapts robot

motions based on measured tactile signals. We show that the proposed planning framework,

based on the MoveIt! platform and the EGM controller setup from ABB, is able to plan

simultaneous dual-arm trajectories that are continuous and successful at avoiding collisions

as well as replanning and executing local adjustments at a frequency of up to 250 Hz.

Keywords: Collaborative Robotics, Contact Manipulation, Dexterous Robots, Manipula-

tion Primitives, Tactile Sensing, Reactive Control.
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Resum

A Reactive Planning Framework for

Dexterous Robotic Manipulation

per José Andrés Ballester Huesca

Aquesta tesi investiga un marc de planificació de trajectòries (motion planning) i controlador

que permet que robots manipulin objectes de manera destre. Presentem una plataforma

robòtica que és capaç de replanejar de manera ràpida i fiable accions basant-se en informació

detectada de l’entorn. La manipulació robòtica està subjecta a soroll a causa d’incertesa en

la informació de contacte de fricció, i la capacitat de reacció és clau per a un sistema robust.

Aquest marc ha estat dissenyat amb l’objectiu de ser estès naturalment a una varietat de

tasques, manipuladors i sensors robòtics. El seu disseny ha estat validat experimentalment

amb un robot col·laboratiu industrial ABB IRB 14000 de dos braços.

En aquesta recerca, estem interessats en manipulació robòtica destra, on la tecnologia clau és

moure un objecte d’una localització inicial a una configuració desitjada. El robot fa servir un

sensor tàctil d’alta resolució per monitorejar el progrés de la tasca i conduir el comportament

reactiu per a contrarestar errades o condicions ambientals que no s’havien tingut en compte.

Aquest marc s’integra amb un planificador de tasques que dicta el comportament manipulatiu

d’alt nivell del robot, i amb un controlador de baix nivell que adapta els moviments del robot

a partir de senyals tàctils mesurats. Mostrem com el marc planificatiu proposat, basat en la

plataforma MoveIt! i la tecnologia EGM d’ABB, és capaç de planificar trajectòries simultànies

per a dos braços que són cont́ınues i tenen èxit en evitar col·lisions, aix́ı com de replanejar i

executar ajustaments locals a una freqüència de fins a 250 Hz.

Paraules clau: robòtica col·laborativa, manipulació amb contacte, robots destres, primitives

de manipulació, detecció tàctil, control reactiu.
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Resumen

A Reactive Planning Framework for

Dexterous Robotic Manipulation

por José Andrés Ballester Huesca

Esta tesis investiga un marco de planificación de trayectorias (motion planning) y controlador

que permite que robots manipulen objetos de manera diestra. Presentamos una plataforma

robótica que es capaz de replanear de manera rápida y fiable acciones basándose en infor-

mación detectada del entorno. La manipulación robótica está sujeta a ruido a causa de

incertidumbre en la información de contacto de fricción, y la capacidad de reacción es clave

para un sistema robusto. Este marco ha sido diseñado con el objetivo de extenderse natu-

ralmente a múltiples tareas, manipuladores y sensores robóticos. Su diseño ha sido validado

experimentalmente con un robot industrial colaborativo ABB IRB 14000 de dos brazos.

En esta investigación, estamos interesados en manipulación robótica diestra, donde la tec-

noloǵıa clave es mover un objeto de una localización inicial a una configuración deseada.

El robot utiliza un sensor táctil de alta resolución para monitorear el progreso de la tarea

y conducir el comportamiento reactivo para contrarrestar errores o condiciones ambientales

que no se hab́ıan tenido en cuenta. Este marco se integra con un planificador de tareas que

dicta el comportamiento manipulativo de alto nivel del robot, y con un controlador de bajo

nivel que adapta los movimientos del robot a partir de señales táctiles medidas. Mostramos

como el sistema propuesto, basado en la plataforma MoveIt! y la tecnoloǵıa EGM de ABB,

es capaz de planificar trayectorias simultáneas para dos brazos que son continuas y evitan

colisiones, aśı como de replanear y ejecutar ajustes locales a una frecuencia de hasta 250 Hz.

Palabras clave: robótica colaborativa, manipulación con contacto, robots diestros, primi-

tivas de manipulación, detección táctil, control reactivo.
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Chapter 1

Introduction

1.1 Motivation for reactivity

Historically, the field of robotic manipulation has heavily relied on the knowledge of environ-

mental conditions to achieve a desired task. A typical approach is to perceive, reason and

plan actions based on the available model prior to task execution and then operate the robot

in an open-loop fashion, without taking into account any sensed information from external

sources during execution (Fig. 1.1).

Such approaches have shown to be successful in applications within structured scenarios,

where a developer programs open-loop algorithms to be executed by the robot. In such

cases, an important assumption is that reality remains unchanged, and therefore any situation

slightly out of the programmed initial conditions, such as the one from Fig. 1.1, can lead to

complete system failure, for example due to collisions.

Figure 1.1: Open-loop execution of a manipulation task that leads to error in the object

pose (black box) with respect to the planned pose (orange box).
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Due to this, the development of reactive systems that can manage those previous steps of

perceiving, understanding and planning is essential in order to achieve robust robotic skills.

In other words, these systems would accept high level instructions and autonomously adapt

their behavior to achieve a successful execution of those commands.

This challenge has received attention from multiple disciplines such as autonomous driving,

locomotion or manipulation. In many cases, humans are taken as a reference when proposing

solutions to it: not only we can easily understand our own behavior and model it, but also

we are able to quickly approximate long term plans.

However, we are also able to process and react to information from our sensors in real time

in order to compensate that original imprecision. We take this as a source of inspiration

to design robotic manipulation skills that are approximate at a high-level but have reactive

low-level capabilities to correct their behavior during execution time.

For example, collaborative robots, introduced in 1996 [27, 28], are intended to interact and

perform manipulation tasks together with humans in a shared workspace. Therefore, they

need to perceive their environment and react to uncertainty not only from their own execu-

tions, but also from the humans they are working with (Fig. 1.2).

Figure 1.2: Collaborative robots should be able to perceive and react to uncertainty not

only from their own executions, but also from the humans they are working with.

Perception has received an increasing interest from the robotics and computer vision com-

munities, thanks to the latest advances in sensors, storage capacity and computation power.

Nowadays, there exists a wide variety of input types, sensors that receive this information,



1.1. Motivation for reactivity 3

and algorithms that process it to obtain a relevant set of features.

In order to have robust robot interactions with the environment, it is important to have the

ability of replanning motions according to new situations, which at the same time can be

defined by several sensor data and/or processing pipelines. More specifically, robot motion

planning and execution frameworks must include reactivity strategies to replan and execute

motion with low delay and high frequency.

The aim of this thesis is to design, develop and implement a reactive motion planning and high

frequency execution framework to enable dexterous robotic manipulation. This framework

is developed for an ABB IRB 14000 (YuMi, Fig. 1.3) position-controlled dual-arm industrial

collaborative robot with seven Degrees of Freedom (DOF) at each arm, although it can be

easily exported for use in other ABB industrial robots.

Figure 1.3: Image of an ABB IRB 14000 (YuMi) dual-arm industrial collaborative robot.

This motion planning framework receives an original pose plan for the end-effector at each

arm from which computes a full continuous motion plan for the robot’s joints configuration.

Both general and setup-specific limitations are considered, including self-collision and object

collision awareness, joint limits and speed limits.

During execution, reactivity is made possible by the planner’s ability of updating end-effector

pose plans at a high frequency, leading to joint motion replanning using the original plan

as a seed for online Inverse Kinematics (IK) computations. Finally, these reactive plans are

executed in a high frequency loop by relying on an implementation of the External Guided

Motion (EGM) controller setup developed by ABB.
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1.2 Application to tactile dexterity

Our planning framework is designed to be easily generalized and incorporated into a wide

variety of setups for many purposes, as it is independent of the nature of the end-effectors

pose plan or the kind of sensor data used to reactively update those during execution.

From all sensing techniques, contact or tactile information is especially interesting in ma-

nipulation, as it offers a valuable perspective of the interaction between the manipulator

and the object being manipulated. Examples of interesting interactions between robot and

object include slip detection, force reconstruction, and object localization. More recently,

vision-based tactile sensors with increasing resolution and decreasing size, such as GelSlim

[35], have permitted the use of recent computer vision techniques to extract these contact

features when available and take advantage of them for planning and control.

To this extent, extracting contact information from tactile imprints is not always possible

and significantly depends on the contact richness of the robot-object interaction. At the

same time, these interactions also influence how stable or determined some motions can be,

e.g. pushing an object with a point or line pusher (Fig. 1.4).

(a) Point pushing resolves the
object location along one di-
mension.

(b) Line pushing (centered) re-
solves the object location along
two dimensions.

(c) Line pushing (corner) ren-
ders the state of the object
fully observable.

Figure 1.4: Different object location resolution situations based on relative contact

interactions between a pusher and an object. Reprinted from [42] with permission.
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Therefore, aiming for robot motions that can lead to contact rich interactions seems a good

strategy to make state estimation, planning and control easier. We coin this concept as tactile

dexterity, the ability to control contact interactions and use tactile readings for extracting

information and using feedback control.

Figure 1.5: Detail of a GelSlim sensorized robotic palm used for tactile sensing.

Our robotic setup includes sensorized end-effectors at each arm: two robotic palms equipped

with GelSlim tactile sensors (Fig. 1.5), that render high resolution images of the contact

surface geometry (Fig. 1.6). When pressing an object against a GelSlim sensor, the cam-

era located inside the palm captures the deformation of its external membrane. The raw

image-based output can be processed via computer vision methods to obtain relevant con-

tact features such as slip detection, deformation of the contact patch, etc.

This thesis also covers the integration of the developed framework with a high-level planner

aiming at contact rich robot-object interactions. The goal of this project is to enable tactile

dexterity by planning and exploiting contact rich interactions for state estimation and tactile-

based reactive control.

Figure 1.6: Raw outputs from a GelSlim sensor when pulling or grasping an object.
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These big challenges can be decomposed into the following subproblems:

1. Offline planning framework:

(a) Definition and modeling of several basic manipulation primitives to compute a

stable original plan with contact rich interactions. Certain contact states and

object interactions are assumed (and later enforced via the design of a tactile

feedback controller) to output a pose plan for the two palms acting as end effectors.

(b) Design and implementation of a high-level, long-term planner to decompose the

original problem into a set of the previous manipulation primitives, ensuring com-

patibility and continuity during execution.

(c) Implementation and evaluation of motion planning techniques to generate a com-

plete, feasible plan for the robot joints resulting in the previous pose plan. This

step requires continuity enforcement, awareness of YuMi’s seven DOF and object

and self-collision avoidance.

2. Online feedback controller:

(a) Design of an object tracker (state estimation) based on GelSlim sensors output

and feature extraction taking into account the original plan and the manipulation

primitive being executed at every time.

(b) Development of a reactive controller based on the previous information, to replan

maximizing probability of success and updating future pose targets.

(c) Implementation of an online motion planner based on a joint target updater from

a fast IK solver, assuming a small pose deviation.

(d) Development of a high frequency execution controller based on EGM, a recently

launched communication interface offered by ABB, aimed to offer low delay com-

manding and possibilities for replanning.

This thesis covers the design and implementation of a reactive planning and execution frame-

work for the tactile dexterity project. More specifically, solutions for steps 1(c), 2(c) and 2(d)

are discussed to provide a functional operating framework for the project.
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1.3 Approach and contributions

This thesis aims to design and provide a reactive motion planning and execution framework

for an ABB IRB 14000 (YuMi) dual-arm collaborative robot.

Although this framework could later be used in many working scenarios to elaborate quickly

updatable motion plans depending on the application, this thesis covers the application for

enabling dexterity based on contact rich interactions and tactile sensing.

As a consequence, this project presents a theoretical overview and a technical implementation

of the framework based on the following approach:

1. Implementation and evaluation of motion planning techniques to generate a plan for

the robot joints leading to the desired end-effector pose plan output, provided at the

same time by a high-level pose planner.

Although heavily studied by the robotics community during the last few decades, fast

motion planning remains challenging with no available closed-form solutions. Of par-

ticular interest to us are providing robust solutions to the following challenges:

• Additional difficulty of having 7 DOF in every arm of the YuMi robot:

The problem of finding a joint state leading to a desired end effector pose, named as

IK, becomes significantly more difficult in this case due to an extra DOF (Cartesian

space has 6 DOF, three for translation and three for orientation, while the space

of possible robot joint configurations has now 7 DOF).

• Consideration of continuity and non-punctual feasibility:

As a consequence, the extra DOF now leads to a wide set of valid IK solutions

(Fig. 4.1), some of which may be close to joint limits. For a punctual problem (a

single timestep) an IK solution for a given pose may be valid, but it can make the

following poses in the plan unreachable.1 Hence, the motion planner cannot be a

punctual IK solver, but a more complex program with a notion of future.

• Collision awareness with the same robot and proper interaction with the object

and/or the environment:

1In this context, an unreachable pose would be one that would imply a discontinuity or a significant
variation of the current joint configuration. This could lead to a feasible solution not considered by the
motion planner, or to an unfeasible solution due to the violation of other constraints.



1.3. Approach and contributions 8

In order to avoid errors and exceptions derived by collisions, collision avoidance has

to be taken into account as a constraint, and becomes difficult when considering

simultaneous motions for both of the robot arms. Furthermore, the possibility of

having object motions due to robot motions (based on robot-object interactions)

makes it necessary to enable or disable collision checks depending on the situation.

In this thesis, some well-known motion planning approaches are reviewed and adapted

to set up a robust and efficient solution with the previous considerations.

2. Implementation of an online motion planner to dynamically update the joint targets

according to the feedback-based pose targets.

In this case, although the continuity and non-punctual feasibility constraints still hold,

the implementation of a greedy IK solver can be enough. We assume that the pose

deviation between the original pose plan and the feedback-based pose plan is small,

and therefore using the offline joint plan as a seed for the IK solver will lead to similar

solutions that satisfy the constraints as well.

3. Development of a high frequency execution controller based on EGM, a tool introduced

by the robot manufacturer, ABB.

This step covers the actual plan execution, that is the communication of instantaneous

joint targets between a commanding computer and the industrial robot itself. In order

to make this possible, a first introduction to the EGM framework is done, to understand

the communication protocol and setup that is designed and implemented in both ends.

On the computer side, a ROS robot node is developed in C++ to make communica-

tion with the robot possible, not only using the new EGM paradigm but also being

backwards compatible with standard open-loop robot motion functions that have been

used for years. On the robot side, an updated RAPID2 server is implemented to be

compatible with the computer’s robot node and enable all desired features.

4. Integration of the reactive motion planning and execution framework with the high-level

pose planner from the tactile dexterity project.

More specifically, a proper interaction between both blocks is needed to enable or disable

features like online replanning, collision avoidance, environment definition, single or

multiple targets, pose or joint targets, etc.

2RAPID is the proprietary programming language from ABB that is used for programming their robots.
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1.4 Document overview

The following chapters of this thesis are structured as it follows:

• Chapter 2 introduces the previous work related to the challenges faced in this thesis,

as well as similar research contributions to the tactile dexterity project.

• Chapter 3 contains an overview of the tactile dexterity project, including the problem

definition, the high-level planning process and the considered primitives modeling for

planning and determining reactive behavior.

• Chapter 4 covers the definition and implementation of the motion planning issue, in-

cluding the integration with the high-level planner to compute a fully executable plan.

• Chapter 5 includes the presentation of EGM, its advantages and drawbacks, its com-

ponents and its implementations from both the computer and robot sides.

• Chapter 6 presents the full stack integration within the tactile dexterity project, from

input definition to reactive execution, as well as its behavior and results.

• Chapter 7 discusses the developed framework and the concrete integration results for

the presented application from a critical perspective, to finally conclude this thesis.
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Chapter 2

Related work

This chapter presents previous work that could be related to the contributions of this thesis

and could define somehow the current state of the art.

2.1 Motion planning for YuMi

As described in Section 1.3, motion planning is a common and widely studied problem within

the robotics community, studied intensively during decades. This is reflected throughout

many surveys [99, 68] and books [39, 26, 58, 59] covering all types of techniques and examples.

In any case, motion planning is a still pending challenge with no closed solution. More

specifically, this thesis aims to provide a working and robust solution for motion planning

applied to enable a reactive behavior for dexterous object manipulation, that implies a set of

additional constraints like collision avoidance or specific contact modes with moving objects

[95, 90] or 7 DOF and dual-arm robots [103, 77] like YuMi.

Of course, motion planning for YuMi can be implemented using generic algorithms for kine-

matic chains, e.g. sampling-based like the Open Motion Planning Library (OMPL) [109]

or trajectory optimization-based like Covariant Hamiltonian Optimization for Motion Plan-

ning (CHOMP) [87] or Stochastic Trajectory Optimization for Motion Planning (STOMP)

[51], potentially offered in frameworks like MoveIt! (Fig. 2.1) [108].

The YuMi Python interface project from the UC Berkeley AutoLab [11] features a similar

integration as an experimental feature with some limitations, and more specifically without
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considering dual-arm simultaneous planning, that is the main goal of this thesis.

Motion planners heavily rely on IK solvers, that find a valid joint configuration that leads to

a desired pose. Either used for motion planning purposes or independently, they will be ref-

erenced many times throughout this thesis. Well-known solvers and libraries are Kinematics

and Dynamics Library (KDL) [104], IKFast [32] or TRAC-IK [9].

Figure 2.1: Screenshot of MoveIt!’s motion planning functionalities, including visual

Cartesian target definition for individual arm planning.

2.2 High frequency execution for ABB robots

Historically, industrial robots have been used for well-defined applications that mostly re-

quired open-loop but precise motion in closed environments. However, both their precision

and potential for technology transfer have made them attractive for the research community

as well, that makes continuous efforts to interface them for high frequency teleoperation [41].

Within the ABB industrial robot atmosphere, standard motion functions were traditionally

interfaced via a TCP/IP connection that enabled a reliable and robust teleoperation [30, 93,

78], but with a frequency around 5 Hz [14].

More recently, and after unofficial solutions like [70], ABB presented controller options for

high frequency data exchange like Robot Reference Interface (RRI) [2] that was later reimple-



2.3. Application to tactile dexterity 12

mented as EGM [3], enabling frequencies of up to 250 Hz. These protocols rely on Extensible

Markup Language (XML) [17] and the more efficient Google protocol buffers [40] mechanisms

for serializing structured data, respectively.

Despite its relevance for research purposes, EGM is poorly documented and there is not an

unified, community-wide implementation project. The work in this thesis has been inspired

by a previous working version from the MCube Lab, as well as Mæhre’s thesis [73]. During

the development of this work, other projects have progressed as well [111, 92].

2.3 Application to tactile dexterity

This thesis also covers the application of the developed framework for enabling tactile dex-

terity based on manipulation primitives like grasping but also pushing, pulling or levering.

These primitives rely on the concept of nonprehensile manipulation, the relevance of which

was described at first by Mason [76] to manipulate objects without full control over them.

To face this problem, there are two main possible approaches: designing sensorless manipu-

lation tasks that try to maximize possible handled uncertainty with a same motion [74, 37],

or developing sensors and algorithms to monitor and ensure success based on feedback while

performing manipulation tasks like pushing [71, 120, 121], prehensile pushing [22], tumbling

[96], pivoting [54, 46, 47], throwing and catching [47], and dynamic in-hand sliding [101].

The use of robotic palms is an interesting opportunity for both approaches and was explored

in [36] considering the large mobility of dual-arm robotic manipulators. However, most works

for scooping [115, 114], tilting [37], grasping [83], pushing [119], rolling [13] and collaborative

manipulation [12] are performed in isolation to other primitives and are restricted to sticking

contact interactions, difficult to achieve with open-loop control strategies.

However, there have been efforts to design planning algorithms that reason about multi-modal

contact interactions that are natural in manipulation. For example, a nonlinear trajectory

optimization framework that includes frictional forces and makes use of complementary con-

straints to encode different contact interaction modes is developed in [85]. Alternatively,

a sampling-based planning algorithm for in-hand manipulation tasks that leverage contacts

from the environment is presented in [22].

The application of model-based feedback control to contact rich interactions has been studied
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Figure 2.2: Animation of a manipulation task that uses several contact modalities:

hand-book sticking, thumb-finger sliding and grasping. Reprinted from [43] with permission.

in some specific cases [94, 86, 117]. In these contributions, the control strategies are applied

to systems that assume a previous knowledge of the contact mode sequencing.

In [43], a Model Predictive Control (MPC)-based feedback controller design is presented,

where contact states (Fig. 2.2) are encoded using integer variables, leading to non-convex

optimization programs that are challenging to solve in real-time.

In [31, 75, 44], approximate computational methods are explore to yield real-time control

laws, assuming full state feedback of the object pose and knowledge about the physical

properties of both the object and the environment.

Finally, simultaneous planning for high level task sequences and low level motion planning has

been widely studied for robotic manipulation. For example, [112] introduces grasp placement

tables for pick-and-place applications, that has later been followed by many works on regrasp

planning such as [91, 110, 106, 24].

More recently, [116] proposes to use a graph search framework to effectively handle compli-

cated mesh models and large-scale regrasp experiments. This planning framework decouples

the graph search into finding first a sequence of stable object placements necessary to bring

the object from its initial to final pose and then a sequence of regrasps that achieve the

determined stable placement sequence, being flexible enough to extend task planning beyond

regrasping, for example pivoting [47].
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Chapter 3

Tactile dexterity: an overview

This chapter presents an overview of tactile dexterity, a framework that leverages tactile

feedback for dexterous manipulation. We provide a brief formulation of the high-level ma-

nipulation planning that forms the backbone on which our motion framework is built.

3.1 Problem formulation

This thesis aims to contribute to the tactile dexterity project, i.e. the development of a

high level planner that integrates tactile feedback and decomposes a complex tri-dimensional

manipulation task into several basic contact rich manipulation primitives [42]. These simpler

tasks can be modeled from first principles and are designed such that the resulting tactile

readings are useful for feedback control purposes during execution.

More specifically, we consider the task of moving a rectangular prism (or cuboid) lying on a

plane from a given to a target configuration (Fig. 3.1). Formally, the problem is defined by:

• A working plane (for example, a table attached to the robot).

• A mesh of the working object (rectangular prism), as a Stereolithography (STL) file.

• A tuple of initial conditions of the cuboid lying on the working plane, q0 = (x0, y0, θ0, f0),

where (x0, y0) ∈ R2 are the Cartesian coordinates within the working plane, θ0 ∈ [0, 2π)

is the object orientation w.r.t. the positive x semi-axis of the working plane’s reference

frame, and f0 ∈ {0, 1, 2, 3, 4, 5} is the numbering identifying the initial cuboid stable

configuration (face in contact with the plane).
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• A tuple of final conditions of the cuboid lying on the working plane, qf = (xf , yf , θf , ff ),

where the variables are defined analogously as above.

This task is executed using an ABB IRB 14000 (YuMi) position-controlled dual-arm industrial

collaborative robot with seven DOF at each arm.

Figure 3.1: Problem example of moving a cuboid lying on a plane, from an initial

configuration (orange) to a described target configuration (blue).

3.2 Description of primitives

The manipulation task described above is decomposed into one or more basic primitives that

can be kinematically modeled for planning and control purposes. Every primitive is designed

to maximize the object motion stability and minimize the computational planning time, as

well as rendering a useful tactile observation to be used for feedback control.

This decomposition of the problem is performed as to exploit the full dexterity made available

by the dual robotic palms. Among many options, the combination of both palms can act

as a parallel jaw gripper, work individually for pushing or pulling, or take advantage of

the full motion workspace of both arms for more complex primitives like levering. For task

planning purposes, these primitives are grouped into reconfiguration primitives and relocation

primitives, as discussed in the following sections.



3.2. Description of primitives 16

3.2.1 Reconfiguration primitives

Reconfiguration primitives are characterized for manipulating the object from one stable

configuration to another, i.e. altering the face in contact with the plane. Even if both sets of

all possible initial and final configurations are SE(2), the intermediate configurations of the

object while being manipulated will lie in SE(3), making it a tri-dimensional task.

Examples of reconfiguration primitives include grasping (Fig. 3.2a), pivoting (Fig. 3.2b),

levering (Fig. 3.2c), etc. Below, we give an overview of the approach taken to model the

interactions between the object and the end-effector, plan for desired object motions, and

feedback control strategy for the first three discussed primitives.

(a) Grasping (b) Pivoting (c) Levering

Figure 3.2: Examples of reconfiguration primitives for tactile-based dexterous

manipulation. Reprinted from [42] with permission.

Grasping (Fig. 3.2a)

Mechanics: Force / form closure check.

Planning: Kinematic trajectories with grasp stability check.

Control: Enforce sticking relation between objects by reacting to incipient slip.

Pivoting (Fig. 3.2b)

Mechanics: 2D static equilibrium analysis.

Planning: Kinematic trajectories that satisfy static equilibrium.

Control: Enforce pure rotation of object relative to its center of rotation.

Levering (Fig. 3.2c)

Mechanics: 2D static equilibrium analysis.

Planning: Kinematic trajectories that satisfy static equilibrium.

Control: Enforce pure rotation of object relative to an edge.
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3.2.2 Relocation primitives

Relocation primitives are characterized for manipulating (relocating and reorienting) the

object within a given stable configuration, i.e. without altering the face in contact with the

plane. In this case, all object configurations are manipulated within SE(2).

Examples of relocation primitives include pushing (Fig. 3.3a), pulling (Fig. 3.3b), corner

rotation, push pulling, etc. The first two primitives are described below regarding object-

palm interactions, planning and feedback control strategies.

(a) Pushing (b) Pulling

Figure 3.3: Examples of relocation primitives for tactile-based dexterous manipulation.

Reprinted from [42] with permission.

Pushing (Fig. 3.3a)

Mechanics: Modeling of each palm as two point pushers. Quasi-static analysis of object-

pusher interactions using limit surface.

Planning: Use of Dubins kinematic trajectories [19] to plan the trajectory of the object

from initial to final poses.

Control: Enforce sticking relation between objects by reacting to incipient slip.

Pulling (Fig. 3.3b)

Mechanics: Modeling of each palm as a patch contact. Quasi-static analysis of object-

pusher interactions using limit surface.

Planning: Kinematic trajectories checking feasibility (applied frictional forces lying

within the limit surface).

Control: Enforce sticking relation between objects by reacting to incipient slip.
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3.3 High-level task planning

The set of manipulation primitives described above present a wide variety of contact rich

interactions that can be exploited for complex manipulation tasks, as well as facilitate state

estimation, planning and control. However, this simplicity relies on a high level planner that

can determine the optimal sequence of manipulation primitives that best achieves a task.

We formulate the search for sequences of manipulation primitives as a graph search problem,

inspired in flexibility provided by the regrasp graphs proposed by Wan [116] and extended

in [47]. In these cases, the search algorithm decouples the search into:

1. Finding a sequence of stable placements from the object’s initial configuration to the

final configuration.

2. Computing a sequence of manipulation primitives (regrasps in [116], regrasps and pivots

in [47]) that achieve the determined stable placement sequence.

The tactile dexterity framework proposes two main variations to Wan’s regrasp graph to allow

for a more diverse set of primitives. First, only reconfiguration primitives (such as grasping or

levering) are included as graph edges, in order to retain the structure of Wan’s graph, where

only object orientation is considered in the graph. Second, accounting for situations where

reconfiguration actions can lead to IK infeasibility, several object positions are sampled to

maximize the probability of finding feasible IK solutions.

Complementing reconfiguration primitives, relocation primitives (such as pushing or pulling)

are responsible to bring the object to specific safe positions, from where reconfiguration

primitives can be executed. At the same time, they are also used for placing the object from

the resulting positions to the final desired one within a specified stable configuration.

3.3.1 Illustrative example

For example, in Fig. 3.4 we consider moving a cuboid lying on a table when also changing

the face in contact with it to a contiguous one. Such a problem would result in a sequence

of three manipulation tasks:

1. A relocation primitive (e.g. pulling or pushing) to move the object from the initial

configuration to a safe starting point, maintaining the initial stable configuration.
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2. A reconfiguration primitive (e.g. grasping, pivoting or levering) to reconfigure the object

from the initial to the desired stable configuration.

3. A relocation primitive to finally move the object from the resulting position of the

previous step to the desired final configuration.

(a) First relocation primitive (pulling) from initial configuration to grasping initial position.

(b) Reconfiguration primitive (grasping) to change the object’s stable configuration.

(c) Second relocation primitive (pulling) from grasping final position to desired configuration.

Figure 3.4: Example of manipulation task decomposition into basic primitives.

3.4 System architecture

In order to execute the high-level task plan, it needs to be fully integrated with a motion

planning and execution framework. This is precisely the subject and aim of this thesis.
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(a) Open-loop architecture without feedback and reactive control.

(b) Closed-loop architecture with tactile sensing, feedback processing and reactive control.

Figure 3.5: System architecture for open-loop and closed-loop executions.
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The high-level task planner described above performs a graph search resulting in the sequence

of manipulation primitives that best achieves a task. Once this sequence is found, every

planned primitive within the sequence is described as paths for the palms. However, these

paths define the behavior of the end-effectors, but not the entire robotic system.

As a consequence, the high-level planner output needs to be translated to a trajectory of

joint configurations considering time, collisions, joint limits, maximum speeds, etc. that is

finally executed. These processes are described later in Chapters 4 and 5, respectively, that

make up the complete system architecture altogether with the high-level task planner.

3.4.1 Closed-loop integration

A first solution to this integration challenge would be an open-loop one, in such a way that

the high-level planner output is executed without considering any feedback or reactive control

(Fig. 3.5a). This motion planning framework would not require any specific frequency or

delay specifications for execution.

However, as described in Section 1.2, the concept of tactile dexterity for robotic manipulation

aims for robust and reactive manipulation skills, that can replan robot motions in real-time

in response to tactile feedback. As a consequence, there is a need for a more complex system

architecture that integrates the ability to replan quickly and robustly in all layers (Fig. 3.5b).

This can be decomposed into the following pipeline:

1. Considering the problem formulation, the user inputs the object mesh and the initial

and final configurations that define the manipulation task to be performed.

2. The high level task planner finds the sequence of stable placements and primitive exe-

cutions that makes up the original plan. This plan include a sequence of poses for the

robotic palms (end effectors), assuming certain contact modes and aiming for contact

rich interactions that are used for state estimation and control.

3. The motion planning framework takes the end effector pose plan to compute an initial

plan for the dual-arm robot joints that leads to those poses. This process also evaluates

completeness, continuity enforcement, IK feasibility and collision awareness with the

own robot, the environment and the manipulated object.

4. Starting from the original joint plan, two simultaneous threads keep running to perform
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reactive control and execution of the plan:

(a) A replanning thread runs at the maximum possible frequency, only for the part of

the primitive execution that involves interacting with the object. In this process,

tactile feedback coming from the GelSlim sensors at each palm is obtained and

processed for state estimation purposes. More specifically:

i. Contact mode verification is possible by monitoring the contact geometry

made between the object and the end-effector, force distribution estimation

[72] and incipient slip detection [34] using GelSlim.

ii. Specific contact features such as edges and lines enable the system to track the

object pose during execution and account for small deviations of the expected

plan [8], due to mistakes made or unaccounted environment conditions.

As a result of the received tactile feedback and primitive modeling, the high level

planner replans palm poses to correct deviations from the original plan that have

been found during execution.

(b) An execution thread keeps commanding the robot with a sequence of target joint

configurations, initially set to the original joint plan from the motion planning

framework, but potentially modified by using an online IK solver. This solver

outputs the new sequence of target joint configurations, combining the new palm

pose targets from the replanning thread with the original motion plan as a seed

for solving IK. This loop runs at a frequency limited by either the IK solving rate

or the EGM controller technology maximum frequency of 250 Hz.

The result of this system architecture integration is a robotic platform that can quickly and

reliably replan robot actions, and therefore object motions due to robot-object interactions,

based on tactile-based sensed information from GelSlim sensors. This replanning enables

the system to drive the reactive behavior of the robot towards a successful execution of the

manipulation task defined by the user.

Following an overview of the tactile dexterity project, Chapters 4 and 5 present more in

depth the reactive motion planning framework (offline planning and online IK solving within

the replanning thread) and the high-level execution framework (execution thread).
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Chapter 4

Reactive motion planning

This chapter introduces a reactive motion planning framework that enables quick and reliable

replanning based on sensed information. In particular, a short background review of well-

known IK solvers and motion planners is presented, to later describe the application to

robot-object interactions with YuMi. Finally, implementation details are discussed for both

offline motion planning and online replanning systems.

4.1 Background

4.1.1 Forward and inverse kinematics

Kinematics is defined as the science of motion that treats motion without regard to the

forces which cause it [29]. More specifically, kinematics studies position, velocity, acceleration

and all higher order derivatives of the position variables, with respect to time or geometric

variables. Hence, studying kinematics of manipulators allows to have a good understanding

of geometrical and time-based properties of their motion.

Manipulators are formed by links that are assumed to be rigid, which are connected by joints

that allow relative motion of neighboring links. These joints can be fixed, rotatory or revolute

(if displacements are rotations measured in angles), or sliding or prismatic (if displacements

are translations measured in linear distances, sometimes called joint offset).

In general, the number of Degrees of Freedom (DOF) is defined by the number of independent

position variables that define a location of all parts of a mechanism. In the case of typical
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industrial robots, the number of DOF is the number of joints, as manipulators are usually

one or more kinematic chains with joints defined by a single variable. At the end of the link

chain there is the end-effector, that can be a gripper, a palm, a welding torch or any other

device depending on the intended application.

The first basic problem in manipulation is called Forward Kinematics (FK), the static geo-

metrical problem of computing the pose, i.e. position and orientation, of the end-effector of a

manipulator. This can be seen as a mapping from a joint space description of the manipulator

(a set of joint angles) to one in the Cartesian space (a pose of the end-effector).

On the other hand, Inverse Kinematics (IK) refers to the following problem: given a pose of

the end-effector, compute a possible set of joint angles that could be used to attain that pose.

This is a fundamental problem for practical purposes, as usually applications just define the

desired poses for the end-effector but manipulators are controlled by joint positions. In this

case, IK can be seen as a mapping from feasible poses of the Cartesian space to the robot’s

internal joint space, considering joint limits.

Figure 4.1: Example of the Inverse Kinematics problem: several joint configurations that

lead to the same end effector pose.

It must be said that the IK problem is not as simple as the FK one. As kinematic equations

are nonlinear, using them for FK is straight-forward but inverting them is not always easy, or

even possible, in a closed form. Approaches like the Newton’s method or gradient descent can

be used, but issues like joint limits, positions close to singularities, different space dimensions

or multiple solutions (Fig. 4.1) may arise within this process.
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4.1.2 Review on IK solvers

In practical terms, many IK solvers have been developed with different strategies, either

finding closed-form (algebraic or geometric) or numerical solutions. This section presents a

short review of the most common IK solvers.

Orocos-KDL

The Kinematics and Dynamics Library (KDL) from the Orocos project is an application

independent framework for modelling and computing of kinematic chains. It provides libraries

for geometrical objects, kinematic chains (robots, biomechanical human models, computer-

animated figures, machine tools, etc.) and their motion specification and interpolation [104].

It is usually used as the standard IK solver for most ROS or MoveIt! setups.

In particular, KDL features several algorithms to find numerical solutions for IK. By a simple

inspection of its source code [105], several solvers can be found:

1. Based on the Newton-Raphson root-finding algorithm for the position kinematics equa-

tions, with and without considering joint limits;

2. Based on the Levenberg-Marquardt Algorithm (LMA), also known as Damped Least-

Squares (DLS), to solve non-linear least squares problems applied to position equations.

It includes cached computations of Jacobian kinematics, arbitrary weight specification

for rotations and translations separately, and O(n) complexity;

3. Based on velocity transformations from Cartesian to joint spaces obtained from gener-

alized pseudo-inverses, using Singular Value Decomposition (SVD);

4. Based on velocity transformations from Cartesian to joint spaces obtained from weighted

pseudo-inverses with DLS, using SVD as well.

All solvers are numerical and iterative, and therefore lead to approximate solutions and can

be given a maximum amount of iterations to execute.

The main inconvenient of KDL is its incompatibility with kinematic chains of less than 6 DOF,

although this does not affect YuMi. On the other hand, KDL’s convergence algorithms are

based on Newton’s method, which does not work well in the presence of joint limits, making

the solve rate for YuMi around 76.88% [113].
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IKFast

IKFast is a powerful analytical IK solver provided within the OpenRAVE motion planning

software, developed by Rosen Diankov [32]. Unlike most IK solvers, IKFast aims for solving

kinematic equations in an algebraic closed form, for any complex kinematics chain, includ-

ing single-arm and dual-arm robotic manipulators, industrial robots and humanoids. This

provides potentially faster solutions in comparison to numerical IK solvers, and also the

computation of all feasible solutions (entire null space) instead of just a single one.

However, due to its algebraic nature, IKFast can only handle the same number of DOF than

the considered target constraints (typically 6-dimensional pose, but sometimes combinations

of only some position or orientation coordinates). For chains that contain more DOF, the

user must set arbitrary values of a subset of the joints until both quantities match.

In the case of computing IK for 6-dimensional poses with YuMi arms (7 DOF each), this

means that an arbitrary choice of a joint position should be done, that could limit the

operating workspace when executing some tasks. This becomes an important drawback

for manipulation purposes, for example in the tactile dexterity framework, as the motion

planning system aims for being versatile enough to plan properly for several primitives that

can potentially use a wide variety of different joint configurations.

TRAC-IK

TRAC-IK is an IK solver developed by Beeson and Ames from TRACLABS. It emerged as

an attempt to improve KDL’s performance on humanoid platforms, and its false-negative

failures when constraining with joint limits [9].

In this case, TRAC-IK runs two simultaneous IK implementations and returns immediately

when either of these algorithms converge to an answer [113]:

1. An extension of KDL’s algorithm based on Newton’s convergence method, that detects

and mitigates local minima due to joint limits by random jumps.

2. A Sequential Quadratic Programming (SQP) nonlinear optimization approach that uses

quasi-Newton methods to handle joint limits in a better way.

For YuMi, TRAC-IK achieves a success rate of 99.08 % with an average solution time of 0.56

ms [113], which makes it a good solution for computing IK in this project.
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4.1.3 Motion planning

A fundamental problem within robotics is to plan collision-free motions for complex bodies

from a start to a goal position among a collection of static obstacles, referred to as motion

planning [55]. When considering Cartesian pose targets, this challenge can be seen a natural

extension of the IK problem that also considers continuity in time, keeping away from joint

limits and, of course, collision avoidance.

Despite it can be seen as a problem easy to understand, it has been deeply studied by the

robotics community without any closed, unique solution. In fact, motion planning has been

proved to be a PSPACE-hard problem [21], with a complexity that grows according to the

number of the robot’s Degrees of Freedom (DOF).

Configuration space

In order to describe a motion planning problem, it is necessary to have a complete description

of a robot’s geometry A and workspace W , where usually W = Rn, n ∈ {2, 3}, is a static

environment with obstacles.

A configuration q is defined as a complete specification of the location of every point on

the robot geometry, and the configuration space or C-space C is the space of all possible

configurations. Its dimension is the number of DOF of the robot system, or the minimum

number of parameters to specify a configuration. The C-space concept is a useful way to

abstract planning problems in a unified way, regardless of the manipulator’s geometry [69],

including cage or grasp planning [89, 5, 4].

Let O ⊂ W represent the obstacle region, and A(q) ⊂ W the set of points occupied by the

robot when its configuration is q ∈ C. Usually both O and A(q) are defined as closed sets

and decomposed into piecewise-algebraic surfaces or sets enclosed by them.

Then, we define the C-space obstacle region as Cobs = {q ∈ C | A(q) ∩ O 6= ∅}, i.e. the set

of configurations that make the robot collide with the obstacle region. Conversely, the set of

configurations that avoid collision is defined as the free space Cfree = C \ Cobs.

In case that C = W (if the configuration is defined by coordinates within the workspace,

e.g. an end-effector with fixed orientation) and the robot geometry is invariant by configu-

ration changes, i.e. A(q) = A, then Cobs can be easily computed as Cobs = O 	 A, where
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	 denotes a Minkowski difference.1 This is common for cage or grasp planning, where the

C-space is computed for the manipulated object rather than the manipulator, which is con-

sidered as a set of obstacles instead (Fig. 4.2).

In the general case, computing Cobs can be complicated and can result in complex and non-

intuitive results [25, 60].

 
 

 

 
 

 
 

Figure 4.2: Example of C-space obstacle region computation for an object with geometry A
and fixed orientations within W = R2, with a O = {p1,p2} (manipulator with two point

fingers). Then, Cobs = O 	A. Reprinted from [4] with permission and modifications.

Basic problem

Using the definitions above, the basic motion planning problem is known as the piano mover’s

problem and is defined as follows [88]:

Given:

1. A workspace W , usually W = R2 or W = R3,

2. An obstacle region O ⊂ W ,

3. A mapping from robot configurations to robot geometries A : C → W , where A(q) is

the set of points occupied by the robot when its configuration is q,

4. The configuration space C, from which the C-space obstacle region Cobs and the free

space Cfree are then defined,

1A Minkowski difference between two sets A and B is defined as A	B = {a− b | a ∈ A, b ∈ B}.
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5. An initial configuration q0 ∈ Cfree, and

6. A goal configuration qG ∈ Cfree,

compute a continuous path τ : [0, 1]→ Cfree such that τ(0) = q0 and τ1 = qG.

Although exact motion planning algorithms exist, they are difficult to implement, and show

a poor performance with high-dimensional robots. A wide variety of algorithms have been

published instead, based on different approaches that perform better or worse depending on

the situation and requirements. A small selection is reviewed below.

4.1.4 Sampling-based planners

Sampling-based planners are one of the most well-known solutions, as they are able to solve

very general problems. They rely on the latest advances in collision detection algorithms for

single configurations, by sampling many configurations to construct a data structure with

collision-free paths within the configuration space. As a consequence, these planners do not

compute the C-space obstacle region directly, but only via the collision detector. This last

tool is used as a black box that returns information of geometric contacts between objects

according to their geometries and transformations [67, 50].

Sampling-based planners provide weaker completeness: they assume that if a solution path

exists, it will be eventually found by the planner. Hence, they do not guarantee finding an

exact solution in finite time, but are able to find an approximate one for complex systems

where exact methods are not practical.

Typically, sampling-based planners are classified as multi-query planners (if they use a pre-

computed graph before) and single-query planners (if they build it during execution). More

recently, several sampling-based planners have been proposed that build on one of the pre-

vious methods but provide some optimality guarantees, called optimizing planners. Many of

these algorithms are integrated into the Open Motion Planning Library (OMPL) [109].

Multi-query planners

Multi-query planners construct a roadmap, an undirected graph G that is precomputed once

and then used as a map of the connectivity properties of Cfree. This roadmap must be

accessible, so that every configuration in Cfree can be reached from G, and preserve the
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connectivity of the free space.

A well-known example of multi-query planner that aims for approximating a roadmap in a

computationally efficient way is the Probabilistic Roadmap Method (PRM) [56].

PRM-based algorithms work with an undirected graph G = (V,E), where vertices are

collision-free configurations and edges are collision-free paths between those, initially empty.

During preprocessing, every time a sampled configuration from Cfree is added to V , the algo-

rithm tries to connect it to vertices already in V that are at a distance higher than certain

threshold. In those cases, a local planning method will insert the new path as an edge to E

after checking collisions. Vertices that are closer will be considered to be trivially connected.

PRM will finish when a predefined number of collision-free vertices has been added.

The original PRM [56] uses random sampling and straight line paths in C-space for local

planning. However, more specific sampling methods have been designed: at or near the

boundary of Cfree, as in Obstacle-Based PRM [6]; as far as possible from it [45, 66]; using

a Gaussian sampler that focuses on the difficult parts of Cfree [16]; defining a deterministic

sampling technique [62]; or many other approaches [102, 15, 49, 48, 65, 79, 20]. Some of these

variants have been experimentally compared in [38].

Single-query planners

Single-query planners build tree data structures on demand, exploring the relevant part of

the C-space to solve a planning query (q0, qG) as fast as possible.

Generally, single-query planners work with an undirected graph G = (V,E) defined anal-

ogously to PRM search graphs, starting with some initial configurations in V and E = ∅.
Then, the algorithm iterates by choosing a vertex qcur ∈ V and trying to connect it to an-

other vertex in V or a new sampled configuration qnew ∈ Cfree. If successful, a local planning

method will insert the new path as an edge to E after checking collisions, and if qnew was

not already in V , will insert it. The algorithm iterates until G encodes a solution path or

some termination condition is satisfied (a timeout, for example).

Depending on the strategy, G may consist of one or more trees, so single-query planners can

be classified as: unidirectional methods, that involve a single tree and are usually initialized

with V = {q0}; bidirectional methods, with two trees and usually starting with V = {q0, qG};
and multidirectional methods, which have more than two trees [61]. Using more than one

tree is useful in situations with narrow openings, where a single tree can become trapped.



4.1. Background 31

Well-known examples of single-query planners are the Rapidly-exploring Random Tree (RRT)

and the more general Rapidly-exploring Dense Tree (RDT) [61]. Both algorithms choose to

expand the vertex in V that is closer to qnew at every iteration, regardless of how this last

configuration is selected. For example, using random samples, the probability of choosing a

vertex is proportional to the volume of its Voronoi region, what is called Voronoi bias. In order

to eventually reach qG, it is common to bias the choice of qnew such that qG is frequently

selected or, alternatively and more efficiently, growing two trees rooted at q0 and qG. These

algorithms have been extended and adapted for several applications [18, 64, 10, 52, 107, 118].

Optimizing planners

The sampling-based algorithms presented above show a good performance in practice and

have probabilistic completeness, but do not offer any guarantee on the quality of the solutions.

Typically, this quality is a function of the path length, so the optimal solution is assumed to

be the shortest path. New algorithms have been built on top of methods like PRM or RRT,

that are provably asymptotically optimal and without big effects in terms of computational

complexity. Some examples are PRM*, LazyPRM* and RRT* [53], RRTX [82], etc.

4.1.5 Optimization-based planners

In contrast to sampling-based planners, optimization-based planners aim for planning smooth

trajectories for robot arms, avoiding obstacles and optimizing constraints or cost functions.

Trajectory optimization is challenging in robotics, due to the non-convexity of of the collision-

free regions and the high cost of collision checking.

A first optimization-based technique is Covariant Hamiltonian Optimization for Motion Plan-

ning (CHOMP) [87], a trajectory optimization procedure that is invariant to reparametriza-

tion and uses gradient descent for simultaneous numerical optimization and constraint en-

forcement, instead of separating in planning and optimization steps. CHOMP optimizes

the initial trajectory, that can be feasible or not, using a functional that trades off between

smoothness and obstacle avoidance components [122].

Stochastic Trajectory Optimization for Motion Planning (STOMP) [51], a stochastic trajec-

tory optimization technique that explore noisy trajectories around an initial one, is considered

as an alternative to CHOMP that is able to handle general cost functions for which gradients
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are not available. At the same time, the stochastic nature of STOMP allows it to avoid local

minima that gradient-based methods like CHOMP fall into.

Another optimization-based planner is TrajOpt, a sequential convex optimization procedure

that penalizes collisions with a hinge loss and formulates the no-collisions constraint effi-

ciently with continuous-time safety [97]. TrajOpt uses convex-convex collision checking while

CHOMP uses Euclidian distances to the nearest obstacle; and also uses Sequential Quadratic

Programming (SQP) instead of CHOMP’s projected gradient descent, which is cheaper but

is less flexible and cannot handle infeasible initializations [98].

4.1.6 Alternative approaches

Alternative approaches to the sampling-based and optimization-based methods exist, but are

usually applicable only to particular cases. In those cases, efficient and elegant solutions are

provided, but extensions for more complex scenarios have only theoretical interest.

Combinatorial roadmaps

For the case in which C = R2 and Cobs is polygonal, combinatorial roadmaps have been

shown to be efficient algorithms with polynomial complexity, but cannot be extended to

higher dimensions.

A first algorithm is the maximum clearance roadmap or retraction method [81], which

constructs a roadmap maximizing its distance with obstacles. The result is a sequence

of Voronoi roadmap pieces between edge-edge (line), vertex-vertex (line) or vertex-edge

(quadratic curve). Their naive computation has a complexity of O(n4) by generating all

pieces for all possible pairs and their intersections. Better algorithms provide lower asymp-

totic complexity [63, 100], down to O(n log(n)), where n is the number of roadmap pieces.

Variations of the retraction method are: the shortest-path roadmap [80], which allows the

resulting path to touch the obstacles, a potentially necessary step to have an optimal path;

or the vertical cell decomposition approach [23], that decomposes Cfree into convex cells where

planning is trivial, and sets vertices in the centers and boundaries of these cells.

Potential fields

This alternative for motion planning is inherited from real-time obstacle avoidance methods
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[57], that create a differentiable function U : Rm → R called potential function. The key idea

is that the potential function guides the motion of the moving object, due to attractive and

repulsive components given by the goal and the obstacles, respectively.

The most naive algorithm is applying gradient descent, so the robot moves in a direction

given by the gradient of U , but this does not guarantee a solution as the robot can end up

in a local minimum of U that may not be qG. To solve this issue, randomized potential

planners [7] combine this strategy with random walks when local minimum is reached and

backtracking as a fallback when escaping from local minima fails.

4.1.7 Planning frameworks

Although a theoretical overview of motion planning algorithms is important, in practice most

motion planners are seen as black boxes that are integrated by the community into planning

frameworks. Thanks to these contributions, most applications just require the big effort of

implementing a motion planning framework and choosing the IK solver and motion planner

that best fits the considered use case.

The two most well-known robot motion planning frameworks are MoveIt! [108] and Open-

RAVE [33]. Both of them feature a wide variety of plugins interfacing IK solvers, collision

checkers, motion planners and sensors.

While OpenRAVE is primarily used as an environment for testing, developing and deploying

motion planning algorithms in simulation, MoveIt! pretends to be a more general framework.

In fact, MoveIt! is backed by the ROS community, has a stronger development and aims to

provide functionalities for kinematics, motion planning and collision checking, but also 3D

perception, robot interaction or control. In terms of motion planning, it has a longer list of

compatible motion planners, including OMPL, CHOMP and STOMP, among others.

4.2 Problem formulation

In contrast to the basic motion planning problem presented in Section 4.2, this work aims

to develop a versatile framework that can handle different motion planning problems while

complying to the problem specifications stated below.
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The assumed specifications for our framework are the following:

• A tri-dimensional workspace, W = R3.

• An ABB IRB 14000 industrial robot model, that defines:

– A robot configuration q is given by the set of 14 joints that correspond to the

dual-arm setup (7 for each arm), q = (q1, q2, ..., q14) ∈ R14.

– A set of position bounds at every joint: there exist two tuples (qi,min)i=1,...,14 ∈ R14

and (qi,max)i=1,...,14 ∈ R14 such that qi,min ≤ qi ≤ qi,max for every i = 1, ..., 14. As a

consequence, the configuration space is C = [q1,min, q1,max]× ...× [q14,min, q14,max].

– A set of maximum speeds at every joint: there exists (ωi,max)i=1,...,14 ∈ (R+)14 such

that
∣∣dqi
dt

∣∣ ≤ ωi,max for every i = 1, ..., 14.

– A robot geometry A(q) given by the geometries of every link in the two arms and

their end-effectors as well.

• A static obstacle region O ⊂ W , including the workspace table, real or artificial obsta-

cles within the environment, or the manipulated object in some cases. Consequently,

Cobs and Cfree depend on every situation as well.

While the basic motion planning problem aimed to find a continuous path from a current

robot configuration q0 to a target, the motion planning problems of practical interest have

the goal of computing a trajectory. Such a goal allows to include the notion of time in terms

of speed or dynamic load limits, and therefore ensures a successful execution of the trajectory.

From a practical point of view, a trajectory seen as a continuous function is not executable, as

robots cannot be commanded continuously but at some maximum frequency. In the case of

the EGM controller setup, this frequency is set to 250 Hz. Therefore, trajectory discretization

is a common pragmatic approach to express outputs from motion planners.

At the same time, motion planning targets can be expressed in several ways: as an explicit

robot configuration qG (for example, a joint configuration), a Cartesian pose pG for one of

the robot’s links (usually the end-effector) in the workspace, or a sequence of more than

one configuration space or workspace waypoints. Many times these targets are not achieved

exactly, but within a certain tolerance that is defined by the user.

Note that planning for a sequence of several joint configurations is equivalent to plan for

each of them one after the other, but the same does not hold for Cartesian targets. This is
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due to the fact that a Cartesian target can be satisfied with several robot configurations (IK

solutions), but only some of these can reach the next Cartesian target without implying a

sudden motion that could make the trajectory unsmooth. Therefore, planning for a sequence

of Cartesian targets will discard these combinations and result in smooth trajectories that

combine the best IK solutions for every waypoint. This will be the case of most motion plans

for precise manipulation tasks, such as the pushing task shown in Fig. 4.3.

Figure 4.3: Example of pushing task described by a plan of end-effector Cartesian poses.

Another relevant point is collision avoidance. Current motion planners consider a static

environment and therefore individual motion plans have to assume static obstacles. A variable

obstacle region can be splitted into several time periods for which the environment can be

considered static, and then plan individually with that assumption and join plans afterwards,

but this may not be the preferred solution if slicing Cartesian pose plans is required.

With all these considerations in mind, we can formulate our extended motion planning prob-

lem for the ABB IRB 14000 robot as it follows:

Extended motion planning problem

Given a workspace W = R3, joint position bounds (qi,min)i=1,...,14 and (qi,max)i=1,...,14, joint

speed limits (ωi,max)i=1,...,14 and a robot geometry function A : C → W as specified above,

and a static obstacle region O ⊂ W that defines Cobs and Cfree, compute a discretized

trajectory T = {(tk, qk) | k = 1, ..., N, tk < tk+1}, i.e. a set of N pairs of increasing

timesteps and their corresponding robot configurations to command, such that:

1. All trajectory points satisfy joint position limits:

∀ k = 1, ..., N, ∀ i = 1, ..., 14, qi,min ≤ qk,i ≤ qi,max.
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2. The trajectory satisfies joint speed limits:

∀ k = 1, ..., N − 1, ∀ i = 1, ..., 14,

∣∣∣∣qk+1,i − qk,i
tk+1 − tk

∣∣∣∣ < ωi,max.

3. All trajectory points avoid collisions:

∀ k = 1, ..., N, qk ∈ Cfree.

4. The trajectory is continuous:2

(a) in configuration space: ∀ k = 1, ..., N − 1, dC(qk, qk+1) < εC for some arbitrary

maximum step εC and some distance function dC in configuration space, and/or

(b) in workspace: ∀ k = 1, ..., N − 1, dW×W(π(qk), π(qk+1)) < εW×W for the dual

FK function π : C → W ×W ,3 some arbitrary maximum step εW×W and some

distance dW×W in W ×W .

5. The trajectory starts from the current configuration or an arbitrary one, q0: q1 = q0.

6. The trajectory achieves the defined target(s) within a given tolerance:

(a) a single configuration target: given a defined goal configuration qG ∈ C, it must

hold that dC(qN , qG) < δC for some distance function dC in configuration space

and some tolerance δC, or

(b) a single workspace target: given a goal pose pair pG = (pG,1,pG,2) ∈ W ×W , it

must hold that dW×W(π(qN ),pG) < δW×W for the FK function π : C → W ×W ,

some distance function dW×W in W ×W and some tolerance δW×W , or

(c) a sequence of workspace targets: given a sequence of pose waypoints (pj)j=1,...,M ,

it must hold that ∃ a subsequence of indexes (kj)j=1,...,M such that:

• kj are indexes of the discretized trajectory: kj ∈ {1, ..., N} ∀ j = 1, ...,M ;

• Its last element is the last index of the original sequence: kM = N ;

• Its elements are increasingly ordered: kj < kj+1 ∀ j = 1, ...,M − 1;

2In this context, continuity does not refer to the discrete or continuous nature of the trajectory definition,
but the imposition of small steps in robot configurations or Cartesian space between contiguous timesteps.

3The function π returns the poses of both end-effectors p = (p1,p2) given a joint configuration.
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• Its elements represent the indexes for which a desired pose pair waypoint

is achieved (synchronously for both arms) by the computed discretized tra-

jectory: dW×W(π(qkj
),pj) < δW×W ∀ j = 1, ...,M , for the FK function

π : C → W ×W , some distance function dW×W and some tolerance δW×W .

Another important consideration is the reactive control implementation. The main idea is

that external feedback is processed during execution and, altogether with the previous model

of the task being executed, leads to a new target description for the motion planning problem.

This description aims to correct mistakes made or unaccounted conditions.

However, since the previous plan is already being executed, it is not practical to consider the

entire new target description and replan and restart execution from the beginning, as this

could potentially lead to infinite loops. Instead, the previous plan can be used as a seed to

speed up the replanning of the updated targets that have not been achieved yet. This leads

to our reactive replanning problem, that we define as follows:

Reactive replanning problem

Given the conditions of the extended motion planning problem, an original discretized

trajectory T = {(tk, qk) | k = 1, ..., N, tk < tk+1} and a replanning initial condition (tl, q̃l),

quickly compute an updated discretized trajectory T ′ = {(t′k, q′k) | k = l, ..., N, t′k < t′k+1}
such that:

1. Conditions 1, 2, 3 and 4 from the extended motion planning problem are satisfied.

2. The trajectory starts from the defined replanning initial condition, q̃l: q′l = q̃l.

3. The trajectory achieves the updated target(s) within a given tolerance:

(a) a single configuration target: given a defined updated goal configuration q′G ∈ C,
it must hold that dC(q

′
N , q

′
G) < δC for some distance function dC in configuration

space and some tolerance δC, or

(b) a single workspace target: given a defined updated goal pose pair p′G ∈ W ×W ,

it must hold that dW×W(π(q′N ),p′G) < δW for the FK function π : C → W ×W ,

some distance function dW×W in W ×W and some tolerance δW×W , or

(c) a sequence of workspace targets: given a sequence of updated pose waypoints

(p′j)j=1,...,M ′ , it must hold that ∃ a subsequence of indexes (kj)j=1,...,M ′ such that:

• kj are indexes of the discretized trajectory: kj ∈ {l, ..., N} ∀ j = 1, ...,M ′;
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• Its last element is the last index of the original sequence: kM ′ = N ;

• Its elements are increasingly ordered: kj < kj+1 ∀ j = 1, ...,M ′ − 1;

• Its elements represent the indexes for which a desired pose waypoint is achieved

by the computed discretized trajectory: dW×W(π(q′kj
),p′j) < δW×W ∀ j =

1, ...,M ′, for the FK function π : C → W ×W , some distance function dW×W

in W ×W and some tolerance δW×W .

4.3 Proposed solution

For these specifications, this thesis aims for a reactive motion planning framework that

integrates into a system architecture like that of Section 3.4. Reactivity comes into play

through a dual setup that combines offline planning and online replanning (Fig. 4.4):

Figure 4.4: Part of the system architecture dedicated to reactive planning.

1. An offline motion planner accepts the extended motion planning problem defined above

(for example, the original end-effector pose plan coming from the high-level planner

from Section 3.3) and generates a complete, continuous, IK-feasible and collision-aware

plan for all the 14 joints of the dual-arm robot.
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2. An online IK solver, with a fallback motion planner, takes a reactive replanning problem

(for example, the updated end-effector pose plan coming from tactile feedback process-

ing as described in Section 3.4) and computes an updated joint plan for the two arms,

using the original motion plan as a seed for faster computation. If we assume small

deviations, we should expect that the output plans will inherit the desired properties

from the original motion plan, although there are no formal guarantees for this.

Our proposed implementation builds on the MoveIt! [108] planning framework, that admits

several of the IK solvers and motion planners described in Section 4.1. MoveIt! works with

the Robot Operating System (ROS) environment, that is a standard tool in the community.

More specifically, a complete Python interface targeted to the YuMi robot description is

implemented to enable easy handling of the motion planning problems defined in Section 4.2.

This framework is integrated into the tactile dexterity system architecture, source code of

which will be available at the MCube Lab’s GitHub repository.

4.4 Implementation

4.4.1 MoveIt! and robot description setup

The first implementation step consists on setting up the appropriate robot description and

MoveIt! configuration for our ABB IRB 14000 (YuMi) robot.

A robot model description refers to information about its links and joints, how are they

related, their limits, their collision geometry, their visual description, etc. Within ROS, this

information is usually encoded in the XML-based Unified Robot Description Format (URDF),

and Stereolithography (STL) files for the robot link geometries for both visual and collision

avoidance purposes (Fig. 4.5). End-effectors, such as the GelSlim palms for the application

to tactile dexterity, are usually considered as robot links and described in the same way.

Robot descriptions are required for almost any kind of project within robotics, even when

only basic visualization and control is needed. Kinematics and planning have some extra

requirements beyond what is encoded in an URDF. Motion planning frameworks such as

MoveIt! use the Semantic Robot Description Format (SRDF) to describe semantic informa-

tion about the robot structure: joints, links, chains and groups, and also information about

https://github.com/mcubelab
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Figure 4.5: Geometries for some robot links and the end-effectors, defined by STL files.

collision checking (for example, to disable checks between adjacent links).

Once the robot description and semantics are defined in the URDF and SRDF files, re-

spectively, these are included when launching the motion planning server, which is called

move group in the case of MoveIt!. At the same time, settings must be specified in order to

choose a motion planning pipeline (such as OMPL, CHOMP or STOMP) and a kinematics

solver (such as KDL, IK-Fast or TRAC-IK). Relevant parameters for every combination have

to be set as well, such as timeouts, iterations, maximum attempts, weights, etc.

4.4.2 Planning groups

As a result of the SRDF description, a basic MoveIt! implementation (our starting point)

is able to solve the previously defined extended motion planning problem for three possible

groups (Fig. 4.6): every arm individually (left arm and right arm, named left and right

according to the robot’s body point of view) and both arms simultaneously (both arms).

However, planning for Cartesian targets (one or more) is only available for individual arms,

as all IK solvers only work for kinematic chains, while joint targets can be set for all three

planning groups. As a consequence, the planning options are the following:

• For left arm and right arm: single joint configuration target, single Cartesian pose

target or multiple Cartesian pose targets (waypoints).

• For both arms: single joint configuration target.
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(a) right arm (b) both arms (c) left arm

Figure 4.6: Visual representation of considered joint groups for motion planning: (a) and

(c) handle joint and Cartesian targets, while (b) only accepts joint configuration targets.

The most relevant consequence is that planning problems that have Cartesian targets need

to be decomposed into subproblems for every arm, which are solved separately considering

the other arm as a static obstacle. This leads to two main issues:

1. Self-collision avoidance is not guaranteed anymore, as every arm will just avoid collisions

with the other arm at a specific configuration (typically initial, but any other could be

arbitrarily chosen). If the other arm does not significantly change its configuration

throughout the trajectory, this should not represent a big problem in practice, but

there is no guarantee rather than post-checking and recomputing in case of collision.

2. Timing and synchronization issues may appear as well. As motions for every arm

are planned individually, the resulting motion plans may not be synchronized even if

the original pose plans were. In particular, every joint trajectory may have different

time lengths, number of samples and times where targets are achieved (Fig. 4.8). This

can happen when joint displacements are different, even if maximum joint speeds and

dynamic limitations are the same, and is especially important when manipulating an

object with two palms simultaneously.

Note that these two issues will not appear when targeting a joint configuration, as IK does

not need to be solved and therefore the plan can be computed for the both arms planning

group, which will account for self-collision at every timestep and speed limits for all joints.

An important point is that using a greedy IK solver instead of a complete motion planning

system would not work in general, because it would just return a feasible joint configuration

for every Cartesian pose. Therefore, it would not manage any kind of quality criteria for

joint configurations that are far or close to joint limits, and it would eventually return a

joint configuration that would make following targets unreachable or only reachable through
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a discontinuous or sudden motion. This possibility has been experimentally tested, and the

results are an important motivation of the work presented here.

4.4.3 Original motion planning

This section presents the developed strategies to handle and solve extended motion planning

problems for the dual-arm robot, exploiting the possibilities of MoveIt!’s planning groups.

If we consider the extended motion planning problem for two arms, as defined in Section 4.4.2,

the three type of considered targets match with the ones handled by the planning groups: a

single joint configuration, a single Cartesian pose or multiple Cartesian waypoints. However,

only joint targets can be planned by the both arms planning group, which is the only one

that does not imply the self-collision avoidance and timing issues described in Section 4.4.2.

As a consequence, solving the extended motion planning problem for a joint configuration

target consists in planning using the both arms group for that same target:

Solving an extended motion planning problem (for a joint target qG)

1. Consider the original problem and solve it with the both arms planning group.

2. Success: a complete, timed trajectory for all 14 joints with environment collision and

self-collision awareness are generated as a result of the previous step.

On the other hand, planning for Cartesian poses becomes more difficult, as it requires to

plan individually for each arm and solving the self-collision avoidance and synchronization

issues to combine both trajectories, as discussed in Section 4.4.2.

Let (pj)j=1,...,M , with pj = (pj,1,pj,2) ∈ W ×W and M ∈ Z+, the sequence of Cartesian

pose target pairs, where pj,1 represents the end-effector pose target for one arm and pj,2

for the other. Without loss of generality, pj,1 and pj,2 are considered the left and right

end-effector’s poses, respectively. This includes the case of a single target pair, for M = 1.

To exploit MoveIt!’s planning groups, two separate planning problems have to be considered

for the left arm and right arm planning groups, with targets (pj,1)j=1,...,M for one arm and

(pj,2)j=1,...,M for the other (Fig. 4.7). Note that these problems have a lower dimensionality

as they are now defined in W = R3 (instead of W ×W) and C ⊂ R7 (instead of R14). The

starting configuration can be defined relative to all 14 joints, so the active seven are used for

initializing the plan and the others are used to avoid collisions with the inactive arm.
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Figure 4.7: Separated extended motion planning problems are considered for each

individual arm planning group, to then be combined strategically.

As a result from solving these problems, two separate discretized trajectories for each arm

T1 = {(t1,k, q1,k) | k = 1, ..., N1} and T2 = {(t2,l, q2,l) | l = 1, ..., N2}, with different amount of

samples N1 6= N2 and time length t1,N1 6= t2,N2 in general (Fig. 4.8), and collision avoidance

only guaranteed with the environment (considered static) and between one active arm and

the other inactive at its initial configuration.

Figure 4.8: Resulting trajectories from each individual arm planning group have different

length and achieve target waypoints in an unsynchronized fashion.

The implemented procedure to plan and combine T1 and T2 into the desired trajectory T for

the dual-arm robot extended motion planning problem is as follows:

Solving an extended motion planning problem (for a pose sequence (pj)j=1,...,M)

1. Split the original target sequence (pj)j=1,...,M into individual target sequences for every

arm as discussed above, (pj,1)j=1,...,M and (pj,2)j=1,...,M , and solve for those targets with

the left arm and right arm planning groups, respectively.

2. Two trajectories T1 = {(t1,k, q1,k) | k = 1, ..., N1} and T2 = {(t2,l, q2,l) | l = 1, ..., N2},
each for the 7 joints of a single arm q1,k = (q1,k,1, ..., q1,k,7) and q2,l = (q2,l,1, ..., q2,l,7),

and starting at the same time t1,1 = t2,1, are generated as a result of the previous step.
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3. Use a resynchronization strategy to obtain trajectories T ′1 = {(t′n, q′1,n) | n = 1, ..., N}
and T ′2 = {(t′n, q′2,n) | n = 1, ..., N} so they achieve every pair of waypoints at the same

time. This is process is formalized and described more in detail in Section 4.4.4.

4. Finally, unify both retimed trajectories to obtain the desired trajectory T from the

extended motion planning problem. We achieve so by defining

T = {(tn, qn) | n = 1, ..., N}, with

{
tn = t′n,

qn = (q′1,n,1, ..., q
′
1,n,7, q

′
2,n,1, ..., q

′
2,n,7).

5. Using MoveIt!’s state validity check, verify that the sequence of configurations at each

timestep, {qn}n=1,...,N , is collision free. This should not give issues if planned motions

do not vary significantly from the initial configuration, that is assumed to be collision-

free. Otherwise, if the check fails, recompute a new motion plan (step 1).

6. Success: a complete, timed trajectory for all 14 joints with environment collision and

self-collision awareness will be generated as a result of the previous step.

The algorithm presented above has two main assumptions: the existence of a resynchro-

nization strategy to obtain synchronous trajectories and the motion locality of the planned

motion so that it is possible to eventually obtain a plan without self-collision.

While the first condition is discussed in Section 4.4.4, it is important to note that the need

of small or local motions can be handled by trying to plan larger motions as problems with

targets described as joint configurations, which can be solved with self-collision avoidance for

every timestep. These joint targets could be considered as safe points from which to start a

manipulation task, and then reserve pose-targeted plans only for the manipulation itself.

4.4.4 Dual-arm trajectory resynchronization

As described above, solving an extended motion planning problem for a dual-arm robot with

Cartesian pose targets requires a resynchronization strategy to make individual trajectories

for each arm synchronous between them.

The aim of such a strategy is to modify a pair of original trajectories

T1 = {(t1,k, q1,k) | k = 1, ..., N1} and T2 = {(t2,l, q2,l) | l = 1, ..., N2},
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with N1 6= N2 and t1,N1 6= t2,N2 in general, to obtain synchronized trajectories

T ′1 = {(t′n, q′1,n) | n = 1, ..., N} and T ′2 = {(t′n, q′2,n) | n = 1, ..., N},

such that ∃ a subsequence of indexes (nj)j=1,...,M satisfying that:

• kj are indexes of the discretized trajectory: nj ∈ {1, ..., N} ∀ j = 1, ...,M ;

• Its last element is the last index of the original sequence: nM = N ;

• Its elements are increasingly ordered: nj < nj+1 ∀ j = 1, ...,M − 1;

• Its elements represent the indexes for which a desired pair of poses is achieved by

every end-effector: dW(π1(q
′
1,nj

),pj,1) < δW and dW(π2(q
′
2,nj

),pj,2) < δW for all j =

1, ...,M , for the left and right end-effector FK functions π1 : C → W and π2 : C → W ,

respectively; some distance function dW and some tolerance δW .

The implemented algorithm to achieve this goal searches the indexes for which the next

waypoint poses are reached at every sequence (Fig. 4.9a) and scales the duration of both

segments of trajectory to make them reach that waypoint at the same time (Fig. 4.9b). The

time length of the synchronized motion is determined by the arm that takes more time, and

therefore the trajectory for the other arm is slowed down so both finish at the same time.

(a) Computation of Forward Kinematics (FK) to find the joint configurations leading to the defined targets.

(b) Time scaling within every subtrajectory to achieve synchronized target achievement.

Figure 4.9: Example of FK computation and interpolation stages for resynchronization.
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Formally, the algorithm works as follows:

Dual-arm trajectory resynchronization algorithm

First of all, we initialize T ′1 := {(t1,1, q1,1)}, T ′2 := {(t2,1, q2,1)}, N := 1, τ1 := t1,1 = t2,1,

j := 1, k1 := 1 and l1 := 1.

1. If j = M , then take k2 := N1 and l2 := N2.

Otherwise, search the indexes k2 and l2 for which the j-th left pose is reached by the

left arm trajectory and the j-th right pose is reached by the right arm trajectory,

respectively. They are found as:

k2 := min

(
arg min

k1≤k≤N1

‖π1(q1,k)− pj,1‖2
)
, l2 := min

(
arg min

l1≤l≤N2

‖π2(q2,l)− pj,2‖2
)
,

where π1, π2 : C ⊂ R7 → W = R3 are the left and right end-effector FK functions,

respectively. If a pose is reached multiple times, the first index is taken.

2. The motions from q1,k1 to q1,k2 (left arm) and from q2,l1 to q2,l2 (right arm) have

to be synchronized, so they both have to start at time τ1 and end at the same time,

τ2 := max(t1,k2 , t2,l2). Therefore, sampled times during the motion will be scaled by

factors α1 := τ2−τ1
t1,k2−τ1

(left arm) and α2 := τ2−τ1
t2,l2−τ1

(right arm), with α1 = 1 or α2 = 1.

These rescaled times are then defined as:

t′1,k := τ1 + α1(t1,k − τ1), k1 + 1 ≤ k ≤ k2; t′2,l := τ1 + α2(t2,l − τ1), l1 + 1 ≤ l ≤ l2.

Let γ an arbitrary set of times between τ1 (not included) and τ2 (included). A possible

option could be the set of scaled versions of the times in both T1 and T2 that are part

of those motions:

γ =
{
t′1,k

∣∣ k1 + 1 ≤ k ≤ k2
}
∪
{
t′2,l
∣∣ l1 + 1 ≤ l ≤ l2

}
.

Given γ, add to T ′1 and T ′2 all times in γ and their corresponding interpolated joint

configurations for those times. Let t′N+m ∈ (τ1, τ2] be the m-th time of γ when ordered

in increasing order, for m = 1, ..., |γ|, then:

T ′1 := T ′1 ∪ {(t′N+m, q
′
1,N+m)}, T ′2 := T ′2 ∪ {(t′N+m, q

′
2,N+m)},
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with the interpolated joints between the two nearest joint configuration samples in

scaled time, and with weights given by differences in that scaled time:

q′1,N+m =

 (1− ρ1,N+m) · q1,k̃1
+ ρ1,N+m · q1,k̃2

, ρ1,N+m :=
t′N+m−t

′
1,k̃1

t′
1,k̃2
−t′

1,k̃1

, if k̃1 6= k̃2,

q1,k̃1
= q1,k̃2

, otherwise,

k̃1 := max{k1 ≤ k ≤ k2 | t′1,k ≤ t′N+m}, k̃2 := min{k1 ≤ k ≤ k2 | t′1,k ≥ t′N+m};

q′2,N+m =

 (1− ρ2,N+m) · q2,l̃1
+ ρ2,N+m · q2,l̃2

, ρ2,N+m :=
t′N+m−t

′
2,l̃1

t′
2,l̃2
−t′

2,l̃1

, if l̃1 6= l̃2,

q2,l̃1
= q2,l̃2

, otherwise,

l̃1 := max{l1 ≤ l ≤ l2 | t′1,l ≤ t′N+m}, l̃2 := min{l1 ≤ l ≤ l2 | t′1,l ≥ t′N+m}.

3. If j < M , update values for the next iteration: N := N + |γ|, τ1 := τ2, k1 := k2, l1 := l2

and j := j + 1. Otherwise, the algorithm has finished.

It is important to note that the algorithm assumes that there are no consecutive equal

waypoints. As a result, it returns two synchronized trajectories with arbitrary samples for

each subtrajectory between waypoints. This can also be useful for resampling already planned

and synchronized trajectories, for example to execute them at certain frequencies.

4.4.5 Online replanning

Previous sections have presented solutions for the extended motion planning problem defined

in Section 4.2, which also includes the formulation of the reactive replanning problem.

In the last case, given an original trajectory T and a replanning initial condition, the goal

is to recompute an updated discretized trajectory T ′ that satisfies limits, collision avoidance

and continuity, and achieves updated targets starting from the replanning initial condition.

Those updated targets would probably come from a high-level planner that takes into account

sensed feedback and has a reactive control policy, as in the tactile dexterity project.

If the updated target is also a joint configuration, the best option is to recompute the entire

motion plan as an extended motion planning problem, as the updated plan will satisfy all

conditions with guarantees and planning for joint targets is not so computationally expensive

and fast to achieve (generally less than a second).
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However, the computational cost and execution time of planning for a sequence of Cartesian

poses are significantly higher. Therefore, attempting a smarter online replanning is preferable

in these cases, combining a fast IK solver with cost thresholds for continuity and a complete

motion planning fallback. Such an algorithm is presented below and works as follows:

Online replanning and execution algorithm (for pose targets)

This would be the algorithm running in parallel to a high-level pose replanning thread

that listens for feedback, processes it and updates the pose targets. An example would be

the two thread combination presented in the architecture from Section 3.4.1.

Let Texec = {(tn, qn) | n = 1, ..., Nexec} be a solution to the original extended motion

planning problem, finely sampled for execution,4 and Pexec = {(tn,pn) | n = 1, ..., Nexec}
and P ′exec = {(tn,p′n) | n = 1, ..., Nexec} the original and dynamically updated plans

of Cartesian pose pairs for each end-effector, with the same time sampling than Texec.5

Initially, in the absence of feedback, P ′exec is initialized as Pexec.

Note that π(qn) = pn ∀ n, being π : C ⊂ R14 →W×W the dual end-effector FK function.

First of all, we initialize n := 1 and then proceed:

1. Evaluate the updated pose plan P ′exec from the high-level replanning thread.

2. Compute the next executed joint configuration q′n using IK, considering the next Carte-

sian pose target p′n and the original joint configuration to execute qn as a seed:

q′n = π−1(p′n, qn),

where π−1 :W×W×C → C returns an IK solution for the dual end-effector kinematics.

3. If the obtained result is close to the last executed joint configuration, dC(q
′
n, q
′
n−1) < θC,

for some distance function dC and some arbitrary threshold θC, execute it.

Otherwise, go back to step 2. If the distance is higher than the threshold for more than

Na (arbitrarily defined) attempts, stop and recompute the entire motion plan with the

updated following poses starting from the current joint configuration, and update Pexec

to use it as a seed for IK.

4We should expect a sampling frequency (tn+1−tn)−1 similar or equal to the robot commanding frequency.
Resampling at a certain frequency is a particular case of resynchronization, as explained in Section 4.4.4.

5We assume this is possible because (i) original target poses can be interpolated and (ii) we expect updated
targets to be small modifications of the original ones, and therefore not requiring higher joint speeds.
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Chapter 5

High frequency execution using EGM

This chapter presents an implementation of the External Guided Motion (EGM) controller

framework designed by ABB. In particular, the need of a high frequency communication

protocol is introduced, and the proposed design and its development is explained.

5.1 Background

5.1.1 Introduction to EGM

Most commercial robots feature a controller system with an operating system, developed by

the manufacturer, that defines all possible measurement and execution functions. This is the

case of RobotWare, the robot controller system developed by ABB for its robots.

RobotWare offers a variety of functions for calibration, measurement, testing, error diagnos-

tics and control. These functions can be manually executed through a FlexPendant unit, the

Human-Machine Interface (HMI) developed by ABB, or integrated in an automatic workflow

programmed using RAPID, ABB’s high-level programming language.

RAPID allows development with routine parameters such as procedures and modules (sub-

programs), functions (admitting arguments and returning values) and trap routines (called

by interruptions); automatic error handling and definition, and evaluation of arithmetic and

logical expressions. Multiple added-value packages are available to enable multi-tasking,

synchronized motion between different motion groups, sensor integration, etc.
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One of these packages is External Guided Motion (EGM), a high frequency communication

and control technology. Therefore, it enables external high frequency robot control by trans-

ferring most planning and safety checks to an external device, which is used to generate data

that is processed during execution [1]. In particular, EGM offers two modes:

1. EGM Position Guidance, where the robot follows a path generated by an external

device, instead of a programmed path in RAPID, and the robot just executes that

path without additional planning features (e.g. interpolation or speed limits).

In this case, the robot gets to the last received target as fast as possible, with no checks

and following any kind of path (not necessarily linear), that depends on the start and

end configurations. As a consequence, the robot can end up near a singularity and, if

the target is not close, high dynamic load or joint torque limit errors may arise.

2. EGM Path Correction, for which there is a programmed path in RAPID that is modified

or corrected using measurements from an external device. Only position corrections

in the normal directions of the path coordinate system can be applied, but not in the

tangent direction or in orientation.

Before EGM and its predecessor Robot Reference Interface (RRI), the ABB robot control

paradigm was limited to the use of RAPID motion functions with complete planning and

safety features, that can also be seen as overheads in terms of performance. In these cases,

commanding a motion towards a final target blocks the system until the goal is reached.

The best attempts to emulate reactive teleoperation by slicing trajectories with intermediate

updatable targets via TCP/IP made possible to control the robot with a frequency no higher

than 5 Hz [14], making execution the frequency bottleneck in comparison to other sensors.

Conversely, EGM allows to communicate and execute instructions at a maximum frequency

of 250 Hz and a theoretical control lag of 10-20 ms [1] that escalates to 40-60 ms in normal

conditions. Communication is held via UDP, using Google’s Protocol Buffers (Protobuf)

based on XML, or I/O signals, while execution is performed through a simple velocity control

law based on a position gain parameter and the current and target positions (if position

controlled) or directly modifying the nominal velocity (if velocity controlled).

Since our reactive framework aims to accept any kind of updated target (not restricted to

certain axes), the EGM Position Guidance mode is implemented. Therefore, the original and

updated paths are handled by our motion planning framework instead of the EGM setup.
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5.1.2 ROS communication features

Robot Operating System (ROS) is the most well-known set of software libraries and tools for

robot applications among research and industry. This includes some functionalities already

discussed in Section 4.4, such as URDF, SRDF or MoveIt! itself.

Another important feature from ROS is its low-level middleware infrastructure that allows

inter-process communication, and in particular for our purposes:

• An asynchronous message passing system, based on topics to which different nodes

publish and/or subscribe anonymously, to handle common message structures defined

using the Interface Description Language (IDL).

• A synchronous remote procedure calling system, based on services that accept and

return message structures as inputs and outputs, respectively, with a clearly defined

request/response interaction between processes.

This communication framework is exploited in the presented implementation of the EGM

technology. Services are used to enable and disable the EGM operation mode instead of

the standard motion functions, and topics allow a fluent communication between the robot

and the application. To this extent, the ROS robot controller node acts as an intermediary

between the ROS network messages and the robot-computer network via UDP datagrams.

5.2 Implementation

As presented above, EGM represents simultaneously a communication protocol and an exe-

cution technology, that requires a dual implementation on the robot and controller sides, in

order to ensure that commands from the end application are transferred and executed by the

robot. Therefore, our implementation builds on the following blocks:

1. An updated ROS robot node that encapsulates all standard motion functions via

TCP/IP, featuring an EGM mode that can be enabled on demand via a ROS ser-

vice and operated through ROS topics. This implementation is performed on C++.

2. A RobotWare module on the robot side to interact with the ROS robot node in both

standard and EGM operation modes. This implementation is based on RAPID.

This implementation’s source code is available at the MCube Lab’s GitHub repository.

https://github.com/mcubelab/abb_robotnode
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5.2.1 ROS (C++) robot node

The ROS robot node implementation is based on its previous version from the MCube Lab

[78], which offers many ROS services that encapsulate regular RAPID motion and information

functions (Fig. 5.1), such as linear, joint or circular moves to Cartesian targets; joint moves

to joint targets; setting and executing sequences of the previous moves; querying the current

Cartesian pose or joint configuration; querying or setting parameters, etc.

Figure 5.1: Communication flow between robot and controller for standard functions,

through ROS services that map RAPID motion functions.

On the other hand, the updated version of the ROS robot node features compatibility with

the EGM operation mode, as well as a cleaner structure and source code that makes the

program easier to extend and update. In contrast to the previous version, the new ROS node

is compatible with all ABB robots (with either 6 or 7 DOF) without no code modifications.

To integrate EGM, an additional ROS service SetEGMMode is implemented to enable or disable

an EGM operation mode: (i) Cartesian position control, (ii) Cartesian speed control, (iii)

joint position control and (iv) joint speed control. Currently, ABB robots with 6 DOF and

a proper license are compatible with all four modes, while YuMi (IRB 14000, with 7 DOF)

is only compatible with modes (iii) and (iv) with an experimental license from ABB. This

extended compatibility is a particular difference with other EGM implementations.

Once an EGM operation mode is chosen, there is a continuous flow of information between

the robot and the ROS node, which publishes to measured state topics and subscribes to

target topics to send defined goals by the end application (Fig. 5.2). If there is no defined

target by the user, the default behavior is sending the current position (for modes (i) and

(iii)) or zero speed (for modes (ii) and (iv)).

This continuous flow is ensured by a thread running in parallel to the main program. When

EGM is enabled, the thread creates a UDP connection and then periodically flushes data

bidirectionally every 4 ms. On one hand, it reads from the ROS target topic, translates it
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Figure 5.2: Communication flow between robot and controller for the EGM mode, through

ROS topics that interface a continuous flow of information.

to a Protobuf message that can be parsed by the robot and sends it via UDP; on the other

hand, it receives via UDP the measured data as a Protobuf message, translates it to ROS

messages and sends it to the ROS network.

5.2.2 RobotWare (RAPID) module

As both ROS node and RAPID module are implemented to be compatible, the implemented

RAPID code also builds on a previous version, that already integrated all regular motion and

information functions for teleoperation. This is achieved by choosing the function to execute

and its arguments based on received data via TCP/IP, coming from the ROS node services.

The updated version features a new accepted instruction code to enable or disable EGM, for

which the proper functions to set up and run EGM are called. In addition, taking advantage

of RobotWare multi-tasking capabilities, an additional thread is created to accept information

queries from the ROS side while the main thread is blocked during EGM execution.
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Chapter 6

System integration and results

This chapter presents the results of integrating the reactive motion planning and execution

frameworks into the tactile dexterity system architecture described in Section 3.4.

Integrating such a framework has been possible by using common data structures for the

plans throughout all the process of high-level pose planning, motion planning, feedback-based

replanning and, finally, execution. This includes a hierarchical treatment of data based on

the planning stage where it has been generated, and if it is common for several executions of

a same task (offline planning output) or for individual executions only (e.g. replanning data).

Within this process, several systems work together to generate a final plan that is executable

by a dual-arm robot and quickly updatable. However, these systems have different require-

ments or performance in terms of computation time, which can be taken as a measure of the

current development state of our planning framework. Table 6.1 presents time performance

estimates using RRT as motion planner and TRAC-IK as IK solver.

Stage Location Max. frequency Delay

High-level pose planning Offline - 1-5 seconds

Motion planning Offline - 2-20 seconds

Feedback-based replanning Replanning thread 20-30 Hz 20-30 ms

Online joint replanning (IK) Execution thread 20-50 Hz 20-50 ms

EGM robot controller Execution thread 250 Hz 40-60 ms

Table 6.1: Description of estimated computational requirements for the different stages.
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These time performance estimates can be compared to other sensing techniques such as

vision-based Vicon camera trackers (100-1000 Hz), vision-based AprilTags (around 10 Hz)

or punctual force torque sensors (30-300 Hz). The first two approaches are focused at object

localization and can fail in occluded environments, while the third returns quantitative sensed

force, which could be potentially used for local object tracking as studied in [4]. Any of these

three are able to report qualitative interaction features, potentially more useful for reactive

control, such as slip detection or force pattern reconstruction.

It is important to note that the performance of feedback-based pose replanning is given by

the tactile feedback obtention and the different processing or feature extraction techniques

used as criteria for replanning. Once an updated model is generated from feedback, the

actual pose replanning takes around 100 ms due to pose computation and interpolations.

Additionally, online joint replanning (implemented through an IK solver) is performed in

the execution thread instead of the replanning thread. This option represents a compromise

between high execution frequency and low replanning delay, so the replanned pose plan

starts to be executed as soon as it is generated but at a lower frequency, instead of waiting

an additional time to compute all joint configurations and then executing them faster.

The integration with the tactile dexterity framework leads to the following execution types:

(1) Open-loop execution by a dual-arm robot of a complex manipulation task decomposed

into several contact rich primitives, as defined in Section 3.1. To illustrate this result, a similar

example to the one from Section 3.3.1 is considered.

Figure 6.1 shows an example execution in a simulated environment, by using pushing (first)

and pulling (second) as relocation primitives and levering as reconfiguration primitive. In

this case, the simulated environment is assumed to be perfect and there are no errors, and

it shows how the planning system deals with levering, an especially complex primitive that

requires end-effectors to be close one to each other.

(a) First relocation primitive (pulling) from initial configuration to grasping initial position.
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(b) Reconfiguration primitive (levering) to change the object’s stable configuration.

(c) Second relocation primitive (pushing) from grasping final position to desired configuration.

Figure 6.1: Execution of a manipulation task decomposition into pulling, levering and

pushing in a simulated environment with no errors.

A similar simulated example using pulling only as a relocation primitive and grasping as a

reconfiguration primitive, is shown in Figure 3.4 from Section 3.3.1.

In contrast, Figure 6.2 shows a manipulation task in a real environment with two pulling

executions as relocation primitives and an intermediate grasp as a reconfiguration primitive.

In this case, the obtained results demonstrate the need for reactive control in manipulation,

as uncertainty appears in multiple intermediate positions during the execution. Although

this could potentially affect the system behavior and collapse it, this particular execution

leaves the object at the desired configuration with a small error.

(a) First relocation primitive (pulling) from initial configuration to grasping initial position.
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(b) Reconfiguration primitive (grasping) to change the object’s stable configuration.

(c) Second relocation primitive (pulling) from grasping final position to desired configuration.

Figure 6.2: Open-loop execution of a manipulation task decomposition into pulling,

grasping and pulling in a real environment. The black shape is the actual box, while the

orange and blue overlays are the planned and final box poses, respectively.

Conversely, Figure 6.3 shows the result of an open-loop execution that leads to an error of

a similar magnitude at an intermediate pose. However, in this case this small error ends

up generating an unexpected collision between the object and a palm and, therefore, the

failure of the manipulation task. This represents the risks of open-loop execution strategies

without reactive control, which are especially important in manipulation due to object-robot

interactions and dynamic environments, and motivates the development of a reactive planning

framework like the one presented in this work.

(a) First relocation primitive (pulling) that leads to a small error in the final configuration.
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(b) The attempt to start the reconfiguration primitive (grasping) fails due to the object pose error.

Figure 6.3: Open-loop execution of a manipulation task decomposition into pulling and

grasping in a real environment, leading to failure due to collision. The black shape is the

actual box, while the orange and blue overlays are the planned and final poses, respectively.

From the results above, we can conclude that open-loop executions may fail even if there are

no external changes, but only due to mistakes from the own robot.

Of course, open-loop executions perform even worse when facing any kind of external per-

turbations that are not accounted in the original plan, as they cannot be handled properly

due to the lack of sensing from the environment and reactive control.

This includes incorrect placing of the object within its expected initial configuration or a

displacement of the object while being manipulated, which can lead to collisions as previously

seen, dynamic load errors given by an unexpected resistance (Fig. 6.4) or losing the control of

the object (Fig. 6.5). Even if these errors are enforced externally in the shown experiments,

they are comparable to errors coming from unexpected conditions from the environment, such

as unaccounted walls, surfaces with varying coefficients of friction, object weight distributions

that are not uniform or imprecisions in the object shape.

Figure 6.4: Open-loop execution of task that is externally perturbed while pulling the

object, leading to failure due to a dynamic load error when achieving a grasp.
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Figure 6.5: Open-loop execution of a manipulation task decomposition that starts from an

incorrect position, which makes the system lose control of the object.

(2) Closed-loop execution of the task, with a reactive control given by tactile feedback

and its processing through computer vision techniques for feature extraction.

Regardless of its nature, the reactive motion planning framework presented in this thesis is

able to naturally integrate with any pose replanner without additional changes.

To this extent, Fig. 6.6 shows the reactive behavior of the framework in a simulated environ-

ment, without assuming a specific sensing technique, and its ability to react to an external

perturbation in the object pose and correct it successfully.

Figure 6.6: Closed-loop execution of task in a simulated environment. The manipulated

object starts from a correct initial configuration, and is perturbed at a certain point (left).

The end-effector uses its new relative position to bring the object to the final configuration.
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These pose replanning strategies include previously mentioned algorithms using GelSlim sen-

sors to extract features such as object localization, slip detection or force reconstruction and

use them to update the end-effector trajectories according to the detected information.

For experimental validation, we consider the particular use of tactile feedback for object

localization during the execution of the pulling primitive. In this case, we can see how the

system is able to replan in order to drive the object to the final configuration, even if the

initial configuration of the object is not correct (Fig. 6.7a) or in the presence of external

disturbances while the object is being pulled (Fig. 6.8). Following plans are replanned to

ensure continuity with the resulting joint configuration from the reactive execution.

(a) Successful correction in both planar axis thanks to tactile localization.

(b) Failed correction in the tangent axis to the detected line, due to the lack of observability within that axis.

Figure 6.7: Closed-loop executions of a task starting from a wrong initial configuration and

partially corrected using line detection for tactile localization. The black shape is the actual

box, while red, orange and blue are sensed, planned and final poses, respectively.

More specifically, object localization starts working when the GelSlim palms first touches

the object and, through a line detection computer vision technique and an optimization

problem, finds the best estimate of the current object pose, taking the original planned
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Figure 6.8: Closed-loop execution of a task in a real environment, that is externally

perturbed while pulling the object. The end-effector uses its new relative position to bring

the object to a final configuration that is aligned with the original one (due to the lack of

observability of the detected line in one dimension).

pose as a reference in the first iteration. It is important to note that line detection has an

important limitation in terms of observability, as any object pose lying in the axis of the

detected line will lead to the same tactile imprint, but only the closest pose to the previous

estimate will be returned. This can result in wrong final configurations such as in Fig. 6.7b,

and could be improved by using, for example, corner detection techniques.
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Chapter 7

Conclusions and future work

Motivated by the need of reactivity for dexterous manipulation, this thesis presents a motion

planning and controller framework that enable robots to dynamically adapt their behavior

to successfully achieve a task.

This is a particularly important challenge for dual-arm collaborative robotics. For this specific

market, hardware development has significantly improved the available solutions in the last

years, with the appearance of high-precision robots such as the ABB IRB 14000 (Fig. 1.3).

However, planning and control frameworks are still not prepared for such complex setups,

especially regarding simultaneous dual-arm planning and high frequency reactive control.

To this extent, the two main contributions of this work are:

1. A reactive motion planning framework for simultaneous dual-arm manipulation, based

on the MoveIt! planning framework from ROS, that allows to quickly and reliably replan

actions based on sensed information, which is critical for robustness in manipulation.

This contrasts with current solutions that use arms as independent motion groups,

e.g. setting an exclusive workspace for each or moving them in different periods of time,

and therefore do not take advantage of potential synergies of dual-arm manipulation.

2. A high frequency execution controller for ABB robots, based on the EGM technology,

which enables a control frequency of 250 Hz through position or velocity instructions

in either Cartesian or joint space.

This implementation of the EGM technology represents an improvement in compari-

son to the standard control technology that works at a maximum frequency of 5 Hz,
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and is now publicly available at the MCube Lab’s GitHub repository for use in any

ABB industrial robot. As an example, the developed robot controller has already been

integrated into several other projects at the MCube Lab.

In the same line, the presented robotic system has been developed with generality in mind

such as to be extendable to different tasks, manipulators and sensors. This includes the EGM

technology implementation just mentioned for any ABB robot, but also the reactive motion

planning framework for dual-arm robots and any high-level pose planner.

In particular, this work has covered the integration into a general tactile dexterity framework

that aims at performing the complex manipulation task of moving an object from an initial

to a final configuration, by planning and exploiting contact rich interactions.

We experimentally validated our planning system on an ABB IRB 14000 dual-arm industrial

collaborative robot, with high resolution GelSlim tactile sensors that are used to monitor

the progress of the task and drive the reactive behavior of the robot to counter mistakes or

unaccounted environment conditions in a closed-loop fashion.

However, there is still room for improving the presented framework in terms of extended

capabilities, time performance, formal guarantees and robustness.

Regarding the reactive motion planning framework, using MoveIt! as a starting point presents

a good opportunity to take advantage of its modular design. More specifically, MoveIt! and

therefore our proposed implementation are compatible with many motion planners of different

natures. A complete study of these could help to find a good compromise between planning

time and path optimality, which is not critical for most applications.

In this same line, exploiting the static nature of some obstacles (e.g. tables or other environ-

ment features) through pre-cached motion plans or approaches like experience graphs [84]

can significantly speed up offline motion planning, which is currently the slower process.

Another MoveIt! module to consider is the IK solver. To this extent, most well-known IK

solvers only work for kinematic chains, which is the main reason why Cartesian targets can

be accepted only for individual arms. In particular, this requires to apply a state validity

check after resynchronizing joint trajectories, with the only option of planning again in case

it fails. This strategy lacks of convergence guarantees and only relies on the randomness of

numerical IK or motion planning. Therefore, a preferable option could be developing our

own IK solver as a non-linear optimization problem for both arms simultaneously with self-

https://github.com/mcubelab/abb_robotnode
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collision avoidance. This could be integrated as a MoveIt! module and would allow us to

solve the extended motion planning problem for Cartesian targets and both arms directly.

This same lack of guarantees takes place in replanning, as our assumption of local or small

adjustments is useful in practice, but not formally precise. Further analysis considering

numerical stability of the Jacobian matrix could determine when online IK is enough.

Another relevant point are contact modes with the manipulated object. For example, while

approaching the object requires collision avoidance, contact is required when actually manip-

ulating the object. Currently, since only static obstacle regions can be considered, collision

avoidance is disabled if any subplan requires contact. Therefore, developing tools to handle

dynamic obstacle regions and ensuring correct contact modes could be an interesting path.

Finally, we consider that the ultimate purpose of our framework is to offer robustness in

offline and online planning. Hence, further development is required to ensure compatibility

with multiple object configurations, manipulation primitives and end-effector plans.
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