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Abstract— This paper explores the manipulation of a grasped
object by pushing it against its environment. Relying on
precise arm motions and detailed models of frictional contact,
prehensile pushing enables dexterous manipulation with simple
manipulators, such as those currently available in industrial
settings, and those likely affordable by service and field robots.

This paper is concerned with the mechanics of the forceful
interaction between a gripper, a grasped object, and its environ-
ment. In particular, we describe the quasi-dynamic motion of
an object held by a set of point, line, or planar rigid frictional
contacts and forced by an external pusher (the environment).
Our model predicts the force required by the external pusher
to “break” the equilibrium of the grasp and estimates the
instantaneous motion of the object in the grasp. It also captures
interesting behaviors such as the constraining effect of line or
planar contacts and the guiding effect of the pusher’s motion
on the objects’s motion.

We evaluate the algorithm with three primitive prehensile
pushing actions—straight sliding, pivoting, and rolling—with
the potential to combine into a broader in-hand manipulation
capability.

I. INTRODUCTION

The ability to adjust a grasp on an object, seemingly
simple for humans but still out of reach for robots, is both
essential and commonplace. For example we adjust the grip
on a hammer before hammering a nail, and change the grip
on the nail in expectation of the stroke of the hammer. The
human hand surely plays an important role; however, it is
through the effective use of hands, arms, and the environment
around us that we become proficient.

This paper exploits contacts with the environment, rather
than gripper dexterity, to manipulate a grasped object. We
refer by prehensile pushing to the act of pushing a grasped
object against the environment to manipulate it. It relies
on precise arm motions to provide the necessary level of
dexterity and fine manipulation, circumventing the need for
complex finger motions. From the hand’s point of view the
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environment is a precise and highly dexterous virtual finger
whose motion is a reflection of the motion of the arm, forcing
the object to move through a series of stable grasps. In [1]
we refer to this kind of dexterity as extrinsic dexterity .

The goal of our work is to demonstrate that prehensile
pushing is an efficient and robust solution to bring dexterity
to robotic manipulation, of special relevance to applications
that demand solutions without complex or expensive hard-
ware, such as automation, service, or field robotics.

A canonical prehensile push is composed of four phases:
i) The object begins in a stable grasp withstanding gravity; ii)
the grasp is augmented with an external contact, which adds
stability and enables the relaxation of the gripping force;
iii) a controlled push reconfigures the object; and iv) the
external contact is released, possibly requiring an increase
in the gripping force. This paper formulates an algorithm to
describe the pushing phase. The key contributions are:

· A formulation that captures the development of
forces and accelerations at all contacts—internal and
external—on a grasped object, and characterizes the
instant when the stability of the grasp breaks leading
to a grasp adjustment;

· a computationally tractable approach to model point,
line, and planar patch contacts, that captures their kine-
matic constraining effect, linear and rotation friction,
and the guiding effect of the pusher’s motion;

· and an experimental validation of the predictions of
our model on three primitive actions: straight sliding,
pivoting, and rolling.

We formulate the interaction between gripper, object and
external pusher as a complementarity problem (Trinkle et al.
[2]) subject to kinematic and kinetic constraints on the
motion of the bodies in contact. We adopt a conventional
linear approximation of friction cones (Goldman and Tucker
[3]) and solve for the complementarity constraints as a
quadratic optimization problem in the space of local forces



Fig. 1. Examples of prehensile pushes: driving a screw, pushing against
the ground, and pivoting about an edge.

and relative accelerations at all contacts. The solution pro-
vides the pushing force required to break the grasp and the
consequent instantaneous twist of the object. The formulation
is general over objects with known inertia and geometry, over
grippers with known kinematics, over variations on contact
configurations such as number or type of contacts, and over
motions of the pusher. Fig. 1 illustrates some examples.

In this paper, we apply the formulation to the study of
three primitive pushing actions—straight sliding, pivoting
and rolling—with a two-finger parallel jaw gripper and
a variety of pushers. For each action, we investigate the
sensitivity of the force required to move the object and the
resultant object twist, to variations in the location of contact,
the type of contact geometry, and the motion of the pusher.
We conclude by arguing that a suit of stable prehensile
pushing primitives can serve as building blocks towards a
broad and versatile approach to in-hand manipulation.

II. RELATED WORK

The robotics community, very aware of the key role of
dexterity in autonomous manipulation, has chased it since the
1980s. The so called “dexterous hands” approach to robotic
manipulation started with Salisbury [4, 5], and has been
thoroughly analyzed since then [6, 7, 8]. It focuses on the
manipulation of an object held and actuated through finely
controlled fingertip contacts. It leads to elegant but complex
solutions [9, 10, 11] and consequently faces limitations such
as hardware and control complexity and limited range of
motions.

Humans, in addition, enhance their dexterity with a wide
and wild set of tricks. Gravity, high accelerations, or the
environment, all have the potential to assist manipulation. In
previous work [1] we demonstrated a series of hand coded
in-hand manipulation actions that exploit resources external
to the hand. We refer to the approach as extrinsic dexterity
and classify them into three main categories: quasi-static or
quasi-dynamic actions powered by external contacts, passive-
dynamic actions that exploit gravity, and active-dynamic
actions powered by fast motions of the arm. The work in this
paper belongs to the first category, where we manipulate a
grasped object by pushing it against a fixed environment.

There is a significant amount of work on modeling the
relationship between forces and motions for sliding and
rolling contact interactions [5, 12, 13, 14, 15], all providing
in some way or another contact models, characterizations of

the geometric and frictional constraints induced by contact,
and their effects on grasp stability and object motion.

In particular, the idea of allowing contact slip to enhance
in-hand manipulation has been explored in the context of
prehensile manipulation [11, 16, 17, 18, 19]. Specially re-
lated to our work, Brock [11] studies reorienting a grasped
object using contacts from the environment. He relies on an
“idealized” external wrench derived from figurative external
point contacts which are assumed to always stick to the
object. In our work, we incorporate the particularities of that
external wrench being generated by a real external pusher,
and solve for local contact forces and relative accelerations at
the external contacts. Moreover, we consider complex contact
interactions beyond simple point contact models.

Hong and Cutkosky [20] study the stability of a fixtured
part against a tool force, and provide estimates for the fixture
gripping force required to prevent slippage of the part. A
quasi-static analysis suffices for their analysis, given that
their goal is to prevent slippage by maintaining force balance.
Our formulation is quasi-dynamic to capture the effect of
the motion of the pusher and the force imbalance it causes
leading to deliberate slippage at one or more contacts. They
assume a known contact force at the tool application point
as Brock does which does not capture the indeterminacy due
to friction between object and tool.

Finally, prehensile pushing is also closely related to its
non-prehensile counterpart, where a planar object is pushed
on a flat frictional surface. The indeterminacy of the pressure
distribution across the surface contact between the object and
the ground limits the set of motions that are controllable and
predictable by the pusher [14, 21]. Lynch and Mason [22, 23]
successfully determine bounds on the set of stable pushes
for a given flat object. Prehensile pushing can be seen as
analogous to non-prehensile pushing, where the pressure
points are known and located at the finger contacts, and
where we resolve the corresponding pressure distribution
through grasp optimization.

III. THE PREHENSILE PUSHING PROBLEM

The main goal of this work is to predict the motion of
a grasped object when pushed against a fixed environment
through a controlled motion of the manipulator.

For simplicity of exposition, we formulate the equivalent
problem of an object grasped by a fixed hand and pushed by a
moving environment. The virtual motion of the environment
is a reflection of the motion of the arm, as seen from a
reference frame on the hand. We make the assumption that
the arm moving the object has full cartesian dexterity—quite
reasonable for a typical robotic manipulator with 6 or more
degrees of freedom—which in our equivalent formulation,
gives the external pusher/environment the freedom to push
in any direction and orientation.

Figures 2 and 3 illustrate a real and a schematic version
of a simple planar prehensile push. In the following sections
we detail further the prehensile pushing problem and outline
our approach to solve it.



Fig. 2. Example of a prehensile push: a two-finger gripper pushing an
object against a line feature in the environment.

A. Problem Formulation

We assume the following information:

· the shape and mass of the object;
· the location, geometries, and frictional properties of all

contacts between the object and the gripper;
· the kinematics of the gripper, in the form of the jacobian

from actuators to contact velocities;
· the magnitude of the gripping forces; and
· the location, geometry, frictional properties, and motion

of the external pusher.
In the simplified planar case illustrated in Fig. 3 a parallel-

jaw gripper with simple open-close kinematics is holding a
prismatic object with two point contacts, each capable of
transmitting normal forces (~f1n and ~

f2n ) and frictional forces
tangent to the object surface (~f1t and ~

f2t ). The external
pusher moving to the left, makes a line frictional contact with
the object, and is capable of transmitting normal force ~

fextn ,
frictional force ~

fextt , and balancing moments ~mext along axes
off from the line.

Note that in the three dimensional case, each contact
will exert additional frictional forces and moments based
on the contact model. Also note that contacts with non-
trivial geometry, such as a line or a planar contact (Fig. 4),
change grasp analysis at least in two key ways: kinematically,
the contact geometry constrains the set of relative motions
between two bodies more than a point contact would do;
and kinetically, the normal and frictional contact forces can
be asymmetrically distributed across the patch, leading to
anisotropy in the “effective” frictional force. The method in
this paper captures both the effects.

For the particular case of Fig. 3, we are interested in
finding the minimum normal force at the pusher ~

fextn that
will move the object in the grasp, and in characterizing the
instantaneous direction of motion of the object.

B. Approach

The following sections formulate the analysis of forces
and motions at contacts as a complementarity problem in
the spirit of Trinkle et al. [2], subject to a series of extra

Fig. 3. Planar schematic of the prehensile push in Fig. 2. In this formulation
the environment moves as a reflection of the motion of the arm.

linear constraints. More precisely, the problem is formulated
in the space of:
· ~

fi,
~

fext: forces at all contact points between the gripper,
the object, and the external pusher.

· ~ai,~aext: relative accelerations at each contact.
· ~aobj: acceleration of the object.

And is subject to the following constraints:
· Newtonian mechanics: The acceleration of the object

results from the total wrench applied on the object
by the internal grasp forces, the forces at the external
pusher, and gravity.

· Rigid body constraints: Accelerations at contacts
should be in accordance with that of the object.

· Unilateral contact constraints: Contacts can only
push, and only if the contact is maintained.

· Frictional force constraints: The normal force, tangen-
tial frictional force, and tangential acceleration at each
contact should follow Coulomb’s friction law and the
principle of maximum energy dissipation.

· Constraints due to complex contacts: We model con-
tacts with non trivial geometry as a discrete set of rigidly
attached frictional points. The individual interactions of
each constituent point with the object must respect the
rigidity of the patch.

· Constraints due to the motion of the pusher: When
the grasp breaks, the object must follow the pusher
motion. In particular, their relative normal accelerations
at contact must comply.

We solve the resulting mixed complementarity problem by
minimizing the quadratic complementarity constraints to zero
subject to extra kinematic and frictional linear constraints.
Section IV and Section V describe in more detail each
individual constraint, and Section VI gives the complete
formulation.

IV. CONTACT MODELING

This section starts with a short review on conventional
point contact models and the standard linearization of
Coulomb friction cone for point contacts, and then describes
our approach to model contacts with complex geometries.



A. Point Contact Models
It is challenging to accurately model frictional interaction.

Contact models, however, are compact and computationally
convenient, and to some degree indicative. At the most basic
level, contact models encode the directions along which a
contact can transmit forces and torques [24]. We list here
the three most common:

• Frictionless point contact: It transmits force only along
the normal to the surface.

• Frictional hard point contact: It transmits forces along
three directions—one normal and two tangential—but
no torques. It approximates interaction with a small
contact area.

• Frictional soft point contact: It transmits forces along
three directions—one normal and two tangential—and
torque about the contact normal. It approximates inter-
action with a larger contact area.

In the presence of friction, the tangential and normal trans-
mitted forces are related by Coulomb’s law, and the coeffi-
cient of friction µ.

Consider a contact between a finger and an object, and
a frame at contact composed by unit vectors n̂ normal to
the surface, and t̂ and ô both orthogonal and spanning the
tangent plane. Let �

n

, �
t

, and �

o

be the magnitudes of the
normal force, and frictional forces along t̂ and ô respectively.
We express the total contact force in the local coordinates
hn̂, t̂, ôi as ⇤ = [�

n

,�

t

,�

o

]>. Coulomb’s friction law is
satisfied if the total contact force is inside the following set:

FC = {�
n

n̂+ �

t

t̂+ �

o
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known as friction cone, where the last inequality becomes a
strict equality only when there is relative motion at contact.

B. Linear Approximation of Friction Cones
Equation 1 says that under Coulomb’s law the dynamics

of a mechanical system are governed, in part, by quadratic
constraints. The convention is to replace the friction cone
FC with a pyramidal approximation [3] where each face of
the approximated cone represents a linear constraint.

To do so, we replace the original basis of the tangent plane
at contact ht̂, ôi by a finer discretization hd̂1, d̂2 . . . d̂g

i.
We chose the discretization so that for each generator d̂

i

,
its antipodal �d̂

i

is also a generator. Consequently, we
can always express the frictional force as a positive linear
combination

P
�

j

d̂

j

. Note that each generator d̂

j

is the
projection of an edge of the pyramidal approximation to the
tangent plane, hence the total contact force can be expressed
in local coordinates as ⇤ = [�

n

,�1,�2 . . .�g

]>.
Collect all generators d̂

j

in a matrix D and the magnitudes
along those components in a vector �, we then approximate
the friction cone as:

FC = {�
n

n̂+D · � | �
n

� 0, � � 0, e

T

�  µ�

n

} (2)

where e

> = [1 . . . 1].
Coulomb’s law also specifies that the friction force should

be on top of the friction cone if and only if there is relative

motion at contact. To impose it, we introduce a slack variable
⇠ that intuitively represents the magnitude of the relative
tangential acceleration at a contact. Then we impose:

[µ�
n

� e

>
�]⇠ = 0, µ�

n

� e

>
� � 0, ⇠ � 0 (3)

which guarantees that only when there is relative motion at
contact (⇠ > 0), the friction force can lie on the edge of the
friction cone (µ�

n

� e

>
� = 0).

C. Linear Approximation of Maximum Dissipation Principle
The maximum dissipation principle relates frictional

forces and motions at each individual contact. It states
that friction is always along the direction that maximizes
energy dissipation, which intuitively means that friction will
oppose—as much as possible—the direction of motion.

We follow Stewart and Trinkle [25] to express the principle
as a linear complementarity condition:

[⇠e+D

>
~a]>� = 0, ⇠e+D

>
~a � 0, � � 0 (4)

where, again, ⇠ approximates the magnitude of the relative
tangential acceleration at contact and ~a its relative accelera-
tion in the positive basis hd̂1, . . . d̂g

i. Jointly, (2), (3), and (4)
impose the friction force to maximally oppose the tangential
acceleration, which will usually end up lying along one of
the generators if the contact slides.

D. Contacts with non-trivial Geometry
Simple point contact models are usually favored because

of computational convenience. However, they often fall short
when reproducing physical contact realistically. A line or
a planar contact kinematically constrains the set of relative
motions between object and finger more than a point contact
does. Also, since the normal force can be distributed un-
evenly across the contact, the effective frictional force might
depend on the direction of motion of the bodies in contact.

On the other hand, more complex contact models for
surface contacts such as the limit surface by Goyal [14] can
produce accurate frictional behavior, but are computationally
very expensive.

In this work, we approximate a complex contact as a
discrete set of rigidly-connected and evenly-distributed hard
point contacts as shown in Fig. 4. Both the relative accel-
erations and the normal forces at the constituent contacts
must be compatible with the fact that the points are rigidly
attached to each other. For example, in the case of a rigid line
contact, the knowledge of the acceleration at two constituent
contact points is sufficient to determine the acceleration at

Fig. 4. Different contact geometries: point, line and planar, modeled as sets
of rigidly connected k point; vertex (k = 1), edge (k � 2), face (k � 3)



any other point on the line. Similarly, in the case of a planar
contact, three points determine the behavior of the entire
patch. In general, for a contact of dimension m (1-line, 2-
planar), discretized into k constituent points, we impose:
· k friction cone constraints and k maximal dissipation

constraints, one at each constituent contact, relating
their respective forces and accelerations.

· 3k�m�4 independent constraints relating the acceler-
ations of the k constituent points, to impose they move
rigidly attached to each other. For example, for the case
of a line contact (m = 1), given the accelerations ~a1,
~a2 at two constituent points p1, p2, the acceleration ~a

j

at any other constituent point p
j

must satisfy:

~a

j

= ~a1 +
~a2 � ~a1

dist(p2, p1)
dist(p

j

, p1) (5)

yielding a total of 3(k � 2) = 3k � 6 constraints.
We further impose that the accelerations at points p1

and p2 have equal projection along the axis between
them, making for a total of 3k � 5 constraints. For a
planar contact, we similarly construct the constraints
by linearly interpolating the accelerations from three
reference points.

· The sum of the normal forces at all constituent contacts
to be equal in magnitude to its desired gripping force:

X

j=1...k

�

nj = Gripping force (6)

V. GRASP MODELING

In this section we review the use of matrix analysis to
study the first order stability of a grasp by a set of point
contacts [24], and detail the process to augment it to consider
the effect of an external pusher. Let p1 . . . pn, pext1 . . . pextm
be the set of all internal and external point contacts in the
grasp, including all constituent points of all contacts.

A. Grasp Matrix
The grasp matrix G defines the span of all possible

wrenches transmitted by all contacts to the object, in the
object reference frame. Following the notation in Section IV-
A, for any given contact point p

i

, the matrix G
i

= [n̂
i

t̂

i

ô

i

]
linearly spans the set of forces that contact i is capable of
transmitting to the object. Then the contact force transmitted
by p

i

to the object is G
i

·⇤
i

. We build grasp matrix G by
concatenating matrices G

i

’s for all the contacts:

G =
h
G1 . . .Gn

Gext1 . . .Gextm

i
(7)

We collect ⇤
i

’s for all the contacts into a big vector ⇤ which
allows us to compute the total wrench on the object as G ·⇤.

We can write equivalent expressions for the polyhe-
dral approximation of friction cone, where now G =
G

i

= [n̂
i

d̂1i . . . d̂gi ] spans the set of forces that contact
i can transmit to the object, and ⇤

i

is the column vec-
tor [�

ni ,�1i . . .�gi ]
> with their corresponding magnitudes.

Analogously, we build G and ⇤ by concatenating them for
all contacts. Then, the contact force transmitted by point i is
G

i

·⇤
i

, and the total wrench applied on the object G ·⇤.

With this notation, we can finally write down the condition
for the stability of the grasp (force balance on the object) as:

G ·⇤+ ~w = M · ~aobj (8)

where ~w is the gravitational wrench applied on the object, M
is the generalized inertia matrix, and ~aobj is the acceleration
of the object in the object frame.

B. Hand Jacobian Matrix
The hand jacobian matrix J encodes the motion of actuator

joints into local motions at contact points. We construct it
as J> = [J>

1 . . .J>
n

], where J
i

has one column for each
hand actuator and expresses the induced local velocity at
point contact p

i

in the local frame hn̂
i

, t̂

i

, ô

i

i. We extend the
hand jacobian to include the effect of the external pusher
discretized into m points pext1 . . . pextm like:

J> =
⇥
J>
1 . . . J>

n

J>
ext1 . . . J>

extm

⇤
(9)

where, under the assumption that the hand is moved by a
robot arm with full 6DOF workspace dexterity, we model the
virtual actuation of the first external contact as the identity
matrix J>

ext1 = I6. The jacobian matrices of all the other
external points are reflections of the kinematic change from
their corresponding local frames to the frame at the first
contact. Note that relying on the arm kinematics gives us full
dexterity over that contact point, which ultimately provides a
level of dexterity and accuracy hard to achieve in traditional
in-hand manipulation limited to gripper dexterity.

C. Contact Accelerations
The local accelerations at contacts are related to the

accelerations of the object, hand, and pusher. We can look
at the motion of a contact point from two perspectives:
· From the object point of view, the grasp matrix relates

the acceleration of the object to the acceleration at all
contacts as G> · ~aobj.· From the hand point of view, the hand jacobian ma-
trix relates the accelerations of the actuators ✓̈ to the
accelerations at all contacts as J · ~✓̈.

Note that ✓̈ includes both the motion of the actuators of the
gripper, which (although not necessary) we will assume to
be zero, and the “virtual” actuators of the pusher, for which
the Jacobian is the identity. The relation formulates then as:

~a = G> · ~aobj � J · ~✓̈ (10)

VI. THE MECHANICS OF PREHENSILE PUSHING

In this section we summarize our model of the mechanics
of prehensile pushing. We assume that the pushing operation
starts from a static grasp, and that the pushing speed is
slow enough that frictional forces dominate over inertia—
the quasi-dynamic assumption. The quasi-dynamic nature of
the formulation allows us to describe all constraints directly
in terms of contact forces and contact accelerations. The
following sections sums up the set of constraints that define
prehensile pushing, and describes an approach to find a
solution.



A. Constraints
Prehensile pushing is subject to these constraints:

Newtonian mechanics. In response to the pusher force, all
contacts develop frictional forces. Following Newton’s law,
the acceleration of the object must be in accordance with the
object wrench resultant of finger forces, pusher forces and
gravity. Equation (8) describes the force imbalance:

G ·⇤+ ~w = M · ~aobj

Rigid body constraints and Motion of the pusher. The
object is rigid, so all contacts must move in synchrony.
Equation (10) relates the local contact accelerations ~a to the
object, and pusher accelerations:

~a = G> · ~aobj � J · ~✓̈

Unilateral contacts. Contacts can only push, not pull, and
they can do so only when there in no separation between the
contacting bodies at the contacts. Further, the acceleration
at contact must not be such that it will produce penetration.
We can express both conditions as a linear complementarity
condition on the normal components of the accelerations and
forces at each contact as:

a

n

· �
n

= 0, a

n

� 0, �

n

� 0

Frictional force. Section IV-B and Section IV-C shows how
Coulomb’s law and the principle of Maximal Dissipation
can be both approximated by the combination of two linear
complementarity constraints for each contact:

[µ�
n

� e

>
�]⇠ = 0, µ�

n

� e

>
� � 0, ⇠ � 0

[⇠e+D

>
~aobj]

>
� = 0, ⇠e+D

>
~aobj � 0, � � 0

Contacts with complex geometries. Section IV-D discusses
how to approximate contacts with non-trivial geometry by
discretizing them into a set of rigidly attached hard point
contacts. This leads to 3k�m� 4 linear constraints relating
the accelerations of the constituents contacts of the patch.
And we also impose the total desired gripping force at
each contact to be equal to the sum of the forces at each
constituent point:

X

j=1...k

�

nj = Gripping force

B. Optimization Problem
The collection of all constraints define a solution space for

contact forces, contact accelerations, and object acceleration.
The problem has the form of a linear complementarity prob-
lem (LCP) [26] with the addition of extra linear constraints.
This is commonly referred to as mixed LCP where some of
the variables are subject to complementarity constraints and
others are not. We solve it by reformulating it as a quadratic
optimization problem. We rewrite all complementarity con-
straints as a quadratic cost function to minimize subject to
the rest of linear equality and inequality constraints, forming

(a) Sliding with point contact.

(b) Sliding with line contact.

Fig. 5. The figure shows the beginning (left) and end (right) of a straight
sliding prehensile push. The dashed arrows in the figures on the right
represent the twist of the object with respect to the gripper. (a) Under
gravity (~w), an external point pusher cannot produce a straight slide. (b)
The stabilizing effect of a line pusher can be explained by a couple of
contact forces whose magnitudes adjust to balance the effect of gravity, and
add up to the total pushing force.
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Fig. 6. Predicted and experimental pushing force required to break the
grasp in the setup in Fig. 5(b) when changing the gripping force.

a convex solution space. As each complementarity term is
constrained to be non-negative, the minimum occurs when
complementarity constraints go to zero.

We use MATLAB’s interior point solver to find a solution.
The solution to the optimization directly gives the minimum
force required at the pusher to move the object and the
instantaneous motion of the object in the hand.

VII. PRIMITIVE PREHENSILE PUSHING ACTIONS

In this section we apply the algorithm to three primitive
prehensile pushing actions: sliding, pivoting and rolling. In
general, these primitives can superimpose, although in this
paper we study them in isolation. For each of the primitive
actions, we describe results from the proposed model and
compare the predictions to observations from real experi-
ments. We instrument the real experiments with a force-
controlled parallel-jaw gripper, and a force/torque sensor
sitting behind the contact in the environment to monitor the
contact forces.



Fig. 7. The figure shows the beginning (left) and end (right) of a pivoting
prehensile push. The gripper rotates about the fingertips. Constrained by the
external line contact, the object stays in the same pose with reference to
the world frame. From a different perspective, the pusher (the external line
contact) can be seen as rotating about the fingertips while the gripper is
fixed, forcing the object to rotate about the fingertips as shown in the figure
on the right.
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Fig. 8. Variation in the pushing force as the pusher location is changed
for the setup in Fig. 7.

A. Straight Sliding
This primitive action pushes an object in a straight line,

with the goal of producing an equally straight motion on the
object. Fig. 5 illustrates the example of pushing a rectangular
object held by a two-finger gripper.

Our formulation predicts that if the pusher makes a point
contact with the object, under the effect of gravity, it is hard
to push the object straight and object will tend to rotate while
sliding. Straight sliding is possible only for a very specific
location below the center of gravity of the object. Instead,
when pushed with a line contact, the resulting motion of the
object is always straight. As illustrated in Fig. 5, our model
shows that, indeed, for the case of a line pusher modeled as
two rigidly connected points at its ends, a pair of coupled
forces both pushing straight but with different magnitudes
are responsible for compensating for gravity.

These predictions from the simulation are quite intuitive
and were comparable with the experimental observations, an
instance of which is shown in Fig. 5. Overall, our model
explains well the differences between a point and a line
pusher, in particular the stabilizing effect of the geometry
and the robustness against the contact location. Although
not shown here, a planar contact shows a similar effect in
simulation as well as in practice.

We also evaluated the effects of changing the grip force.

Fig. 9. The figure shows start (right) and end (left) instances of rolling
primitive. As the gripper moves to the left with loosely holding a cylindrical
object in the fingers (right), high friction between the tabletop surface and
the object forces the object to roll in the fingers (left).

Fig. 6 shows that our model captures well the observed
experimental linear relationship between the gripping force
and the pushing force required to break the grasp.

B. Pivoting

Pivoting refers to the action of forcing an object to rotate
about the axis between finger contacts as in Fig. 7. The action
is similar to sliding, but the selection of the location and
motion of the external contact favors a reorientation rather
than a translation on the object.

To gain controllability over the action, we chose planar
rather than point contacts at the fingertips of the gripper,
which prevents gravity from freely reorienting the object.
Frictional interaction is more complex, but still predictable
by our model. In particular we can explain the variation in
the required force to pivot the object, and its motion, with
changing the contact location of the pusher.

The model correctly predicts that a line pusher rotating
about the finger contacts will produce the desired pivoting.
Intuitively, the further the location of the external pusher
from the pivoting axis, the smaller the required force, and
the more dominant the pivoting motion is over possible
undesired linear slip. Fig. 8 shows the force variation as
predicted by the models, as well as observed in experiments.

C. Rolling

The rolling primitive, starts from a grasp on a prismatic or
cylindrical object and has the goal of rotating the part along
its longitudinal axis.

Consider a case where a cylindrical object is placed on
a sheet of some material and held loosely with two parallel
fingers on the curved surface of the cylinder. If we try to
pull the sheet under the object while keeping the hand still,
the object can either slide or roll or undergo a combination
of sliding and rolling over the sheet. We observed the same
behavior with the rolling primitive.

Our formulation predicts that at low coefficient of friction
between the object and the external contact, the object purely
slides over the external contact with no rolling; however,
as we increase the coefficient of friction, tendency of the
object to roll increases, leading to pure rolling above certain
coefficient of friction. The similar effect is observed if the



gripping force is varied from high to low while keeping the
coefficients of friction constant.

To reliably implement the rolling primitive we had to use
a material of very high coefficient of friction on a tabletop
and loose grip at the finger contacts, followed by a motion
of the gripper parallel to the tabletop, as shown in Fig. 9. As
expected, it was observed that if we grasp the object harder,
the object tends to slide over the friction surface instead of
rolling.

VIII. DISCUSSION AND FUTURE WORK

In this paper we explore in-hand manipulation of a grasped
object by pushing it against its environment. We focus
on a quasi-dynamic analysis of the motion of the pushed
object: given a grasp configuration, gripping forces, and the
location and motion of a pusher, our formulation estimates
the minimum force required from the pusher to move the
object in the grasp and the instantaneous motion of the
object. To do so, we formulate a complementarity problem
by supplementing the contact and grasp modeling techniques
with computational models of the kinematic and frictional
effects of patch contacts, as well as the guiding motion of
the pusher.

We demonstrate the application of the proposed method
with three primitive prehensile pushing actions: sliding, piv-
oting and rolling. We characterize these actions for different
types of pusher contacts. Simulation and experimental results
corroborate that the outcome of a prehensile push is affected
by contact geometry and can be made more predictable and
reliable by engineering the shape and location of the contact.

Future work involves extending the presented instanta-
neous analysis of forces and accelerations, to continuous
motions and to optimize the location and motion of the
pusher for a desired reorientation of the grasped object. The
computational/optimization nature of the formulation for the
mechanics of prehensile pushing presented here is a key
enabler for it.

We are particularly interested in the possible role of the
geometry of contact on funneling down the possible set of
motions of the pushed object, which can play a key role
in stabilizing prehensile pushes. In future work, we hope
to investigate the algorithmic design of contact shapes for
robot fingers and the environment around them to enable
faster, simpler and more reliable in-hand manipulation. The
ability to plan and design for stable prehensile pushes will
contribute to enabling robots to manipulate with precision
and confidence.
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