10 research outputs found

    Hydrothermal Chimney Distribution on the Endeavour Segment, Juan de Fuca Ridge

    Get PDF
    The Endeavour Segment of the Juan de Fuca Ridge is well known for its abundance of hydrothermal vents and chimneys. One-meter scale multibeam mapping data collected by an autonomous undersea vehicle revealed 572 chimneys along the central 14 km of the segment, although only 47 are named and known to be active. Hydrothermal deposits are restricted to the axial graben and the near-rims of the graben above a seismically mapped axial magma lens. The sparse eruptive activity on the segment during the last 4,300 years has not buried inactive chimneys, as occurs at more magmatically robust mid-ocean ridges

    Hydrothermal Chimney Distribution on the Endeavour Segment, Juan de Fuca Ridge

    Get PDF
    The Endeavour Segment of the Juan de Fuca Ridge is well known for its abundance of hydrothermal vents and chimneys. One‐meter scale multibeam mapping data collected by an autonomous undersea vehicle revealed 572 chimneys along the central 14 km of the segment, although only 47 are named and known to be active. Hydrothermal deposits are restricted to the axial graben and the near‐rims of the graben above a seismically mapped axial magma lens. The sparse eruptive activity on the segment during the last 4,300 years has not buried inactive chimneys, as occurs at more magmatically robust mid‐ocean ridges

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here

    Sistema de Variação de Lastro para Controlo de Movimento Vertical de Veículo Subaquático

    Get PDF
    O principal motivo para a realização deste trabalho consistiu no desenvolvimento de tecnologia robótica, que permitisse o mergulho e ascenção de grandes profundidades de uma forma eficiente. O trabalho realizado contemplou uma fase inicial de análise e estudo dos sistemas robóticos existentes no mercado, bem como métodos utilizados identificando vantagens e desvantagens em relação ao tipo de veículo pretendido. Seguiu-se uma fase de projeto e estudo mecânico, com o intuito de desenvolver um veículo com variação de lastro através do bombeamento de óleo para um reservatório exterior, para variar o volume total do veículo, variando assim a sua flutuabilidade. Para operar a grande profundidade com AUV’s é conveniente poder efetuar o trajeto up/down de forma eficiente e a variação de lastro apresenta vantagens nesse aspeto. No entanto, contrariamente aos gliders o interesse está na possibilidade de subir e descer na vertical. Para controlar a flutuabilidade e ao mesmo tempo analisar a profundidade do veículo em tempo real, foi necessario o uso de um sistema de processamento central que adquirisse a informação do sensor de pressão e comunicasse com o sistema de variação de lastro, de modo a fazer o controlo de posicionamento vertical desejado. Do ponto de vista tecnológico procurou-se desenvolver e avaliar soluções de variação de volume intermédias entre as dos gliders (poucas gramas) e as dos ROV’s workclass (dezenas ou centenas de kilogramas). Posteriormente, foi desenvolvido um simulador em matlab (Simulink) que reflete o comportamento da descida do veículo, permitindo alterar parâmetros do veículo e analisar os seus resultados práticos, de modo a poder ajustar o veículo real. Nos resultados simulados verificamos o cálculo das velocidades limite atingidas pelo veículo com diferentes coeficientes de atrito, bem como o comportamento da variação de lastro do veículo no seu deslocamento vertical. Sistema de Variação de Lastro para Controlo de Movimento Vertical de Veículo Subaquático Por fim, verificou-se ainda a capacidade de controlo do veículo para uma determinada profundiade, e foi feita a comparação entre estas simulações executadas com parâmetros muito próximos do ensaio real e os respetivos ensaios reais.The main objective of this research was to develop robotic technology that allow the dive and ascension from great depths in an efficient way. The project included an initial phase of analysis and study of the existing robotic systems in the market, as well as utilized methods, identifying advantages and disadvantages regarding the type of vehicle desired. This was followed by a phase of mechanical study and design in order to develop a vehicle with ballast variation through the pumping of oil to an outer shell, varying the total volume of the vehicle, resulting in the alternation of its buoyancy. To operate at great depth with AUV's it is convenient to be able to make the up / down path efficiently, and the variation of the ballast represents huge advantages in this aspect. However unlike gliders, the interest of this method is on the possibility of getting up and down vertically. To control the buoyancy and simultaneously analyze the depth of the vehicle in real time, it was necessary to use a central processing system that acquires the information from the pressure sensor and communicates with the ballast system, in order to guarantee the control of the vertical positioning desired. From the technological point of view it was aimed to develop and evaluate solutions of middle volume variations between the gliders (few grams) and the ROV's workclass (tens or hundreds of kilograms). Afterwards it was developed a simulator in Matlab (Simulink) which reflects the behavior of the descent of the vehicle, allowing the change of parameters of the vehicle and the examination of its practical results, giving the possibility of adjusting the real vehicle. In the simulated results the calculation of the vehicle speed limits, with different coefficients of friction, were verified, as well as the behavior of the variation of the vehicle’s ballast in its vertical displacement. Finally, the capacity of control of the vehicle for a given water depth was analyzed and the simulations made with parameters closed to the real tests were compared to the real tests

    Cooperative algorithms for a team of autonomous underwater vehicles

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Decision uncertainty minimization and autonomous information gathering

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 272-283).Over the past several decades, technologies for remote sensing and exploration have become increasingly powerful but continue to face limitations in the areas of information gathering and analysis. These limitations affect technologies that use autonomous agents, which are devices that can make routine decisions independent of operator instructions. Bandwidth and other communications limitation require that autonomous differentiate between relevant and irrelevant information in a computationally efficient manner. This thesis presents a novel approach to this problem by framing it as an adaptive sensing problem. Adaptive sensing allows agents to modify their information collection strategies in response to the information gathered in real time. We developed and tested optimization algorithms that apply information guides to Monte Carlo planners. Information guides provide a mechanism by which the algorithms may blend online (realtime) and offline (previously simulated) planning in order to incorporate uncertainty into the decisionmaking process. This greatly reduces computational operations as well as decisional and communications overhead. We begin by introducing a 3-level hierarchy that visualizes adaptive sensing at synoptic (global), mesocale (intermediate) and microscale (close-up) levels (a spatial hierarchy). We then introduce new algorithms for decision uncertainty minimization (DUM) and representational uncertainty minimization (RUM). Finally, we demonstrate the utility of this approach to real-world sensing problems, including bathymetric mapping and disaster relief. We also examine its potential in space exploration tasks by describing its use in a hypothetical aerial exploration of Mars. Our ultimate goal is to facilitate future large-scale missions to extraterrestrial objects for the purposes of scientific advancement and human exploration.by Lawrence A. M. Bush.Ph. D
    corecore