1,323 research outputs found

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 - 3rd Report

    Get PDF
    We are conducting research in the area of teleoperation with feedback delay. Significant delays occur when performing space teleoperation from the earth as well as in subsea teleoperation where the operator is typically on a surface vessel and communication is via acoustic links. These delays make teleoperation extremely difficult and lead to very low operator productivity. We have combined computer graphics with manipulator programming to provide a solution to the delay problem. A teleoperator master arm is interfaced to a graphical simulation of the remote environment. Synthetic fixtures are used to guide the operators motions and to provide kinesthetic feedback. The operator\u27s actions are monitored and used to generate symbolic motion commands for transmission to, and execution by, the remote slave robot. While much of a task proceeds error free, when an error does occur, the slave system transmits data back to the master environment where the operator can then experience the motion of the slave manipulator in actual task execution. We have also provided for the use of tools such as an impact wrench and a winch at the slave site. In all cases the tools are unencumbered by sensors; the slave uses a compliant instrumented wrist to monitor tool operation in terms of resulting motions and reaction forces

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Proceedings of the NASA Conference on Space Telerobotics, volume 4

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center

    Design, implementation, control, and user evaluations of assiston-arm self-aligning upper-extremity exoskeleton

    Get PDF
    Physical rehabilitation therapy is indispensable for treating neurological disabilities. The use of robotic devices for rehabilitation holds high promise, since these devices can bear the physical burden of rehabilitation exercises during intense therapy sessions, while therapists are employed as decision makers. Robot-assisted rehabilitation devices are advantageous as they can be applied to patients with all levels of impairment, allow for easy tuning of the duration and intensity of therapies and enable customized, interactive treatment protocols. Moreover, since robotic devices are particularly good at repetitive tasks, rehabilitation robots can decrease the physical burden on therapists and enable a single therapist to supervise multiple patients simultaneously; hence, help to lower cost of therapies. While the intensity and quality of manually delivered therapies depend on the skill and fatigue level of therapists, high-intensity robotic therapies can always be delivered with high accuracy. Thanks to their integrated sensors, robotic devices can gather measurements throughout therapies, enable quantitative tracking of patient progress and development of evidence-based personalized rehabilitation programs. In this dissertation, we present the design, control, characterization and user evaluations of AssistOn-Arm, a powered, self-aligning exoskeleton for robotassisted upper-extremity rehabilitation. AssistOn-Arm is designed as a passive back-driveable impedance-type robot such that patients/therapists can move the device transparently, without much interference of the device dynamics on natural movements. Thanks to its novel kinematics and mechanically transparent design, AssistOn-Arm can passively self-align its joint axes to provide an ideal match between human joint axes and the exoskeleton axes, guaranteeing ergonomic movements and comfort throughout physical therapies. The self-aligning property of AssistOn-Arm not only increases the usable range of motion for robot-assisted upper-extremity exercises to cover almost the whole human arm workspace, but also enables the delivery of glenohumeral mobilization (scapular elevation/depression and protraction/retraction) and scapular stabilization exercises, extending the type of therapies that can be administered using upper-extremity exoskeletons. Furthermore, the self-alignment property of AssistOn-Arm signi cantly shortens the setup time required to attach a patient to the exoskeleton. As an impedance-type device with high passive back-driveability, AssistOn- Arm can be force controlled without the need of force sensors; hence, high delity interaction control performance can be achieved with open-loop impedance control. This control architecture not only simpli es implementation, but also enhances safety (coupled stability robustness), since open-loop force control does not su er from the fundamental bandwidth and stability limitations of force-feedback. Experimental characterizations and user studies with healthy volunteers con- rm the transparency, range of motion, and control performance of AssistOn- Ar

    Aerial Robotics for Inspection and Maintenance

    Get PDF
    Aerial robots with perception, navigation, and manipulation capabilities are extending the range of applications of drones, allowing the integration of different sensor devices and robotic manipulators to perform inspection and maintenance operations on infrastructures such as power lines, bridges, viaducts, or walls, involving typically physical interactions on flight. New research and technological challenges arise from applications demanding the benefits of aerial robots, particularly in outdoor environments. This book collects eleven papers from different research groups from Spain, Croatia, Italy, Japan, the USA, the Netherlands, and Denmark, focused on the design, development, and experimental validation of methods and technologies for inspection and maintenance using aerial robots

    Dynamic modeling, property investigation, and adaptive controller design of serial robotic manipulators modeled with structural compliance

    Get PDF
    Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied
    corecore