1,577 research outputs found

    Development of a Rat-like Robot and Its Applications in Animal Behavior Research

    Get PDF
    制度:新 ; 報告番号:甲3587号 ; 学位の種類:博士(工学) ; 授与年月日:2012/3/15 ; 早大学位記番号:新592

    2018 Abstract Book

    Get PDF

    2023 - The Fourth Annual Fall Symposium of Student Scholars

    Get PDF
    The full program book from the Fall 2023 Symposium of Student Scholars, held in November 2023. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1028/thumbnail.jp

    Developing a Semi-autonomous Robot to Engage Children with Special Needs and Their Peers in Robot-Assisted Play

    Get PDF
    Despite the wide variety of robots used in human-robot interaction (HRI) scenarios, the potential of robots as connectors whilst acting as play mediators has not been fully explored. Robots present an opportunity to redefine traditional game scenarios by being physical embodiments of agents/game elements. Robot assisted play has been used to reduce the barriers that children with physical special needs experience. However, many projects focus on child-robot interaction rather than child-child interaction. In an attempt to address this gap, a semi-autonomous mobile robot, MyJay, was created. This thesis discusses the successful development of MyJay and its potential contribution in future HRI studies. MyJay is an open-source robot that plays a basketball-like game. It features light and color for communicative feedback, omni-directional mobility, robust mechanisms, adjustable levels of autonomy for dynamic interaction, and a child-friendly aesthetically-pleasing outer shell. The design process included target users such as children with special needs and therapists in order to create a robot that ensures repeated use, engagement, and long-term interaction. A hybrid approach was taken to involve stakeholders, combining user-centered design and co-design, exemplifying that children can be included in the creation process even when it is not possible to hold in-person co-design sessions due to COVID-19. Aside from the care taken to meet user requirements, the robot was designed with researchers in mind, featuring extensible software and ROS compatibility. The frame is constructed from aluminum to ensure rigidity, and most functional parts related to gameplay are 3D printed to allow for quick swapping, should a need to change game mechanics arise. The modularity in software and in mechanical aspects should increase the potential of MyJay as a valuable research tool for future HRI studies. Finally, a novel framework to simulate teleoperation difficulties for individuals with upper-limb mobility challenges is proposed, along with a dynamic assistance algorithm to aid in the teleoperation process

    2018 Symposium Brochure

    Get PDF
    This dissertation explores the mean field Heisenberg spin system and its evolution in time. We first study the system in equilibrium, where we explore the tool known as Stein's method, used for determining convergence rates to thermodynamic limits, both in an example proof for a mean field Ising system and in tightening a previous result for the equilibrium mean field Heisenberg system. We then model the evolution of the mean field Heisenberg model using Glauber dynamics and use this method to test the equilibrium results of two previous papers, uncovering a typographical error in one. Agreement in other aspects between theory and our simulations validates our approach in the equilibrium case. Next, we compare the evolution of the Heisenberg system under Glauber dynamics to a number of forms of Brownian motion and determine that Brownian motion is a poor match in most situations. Turning back to Stein's method, we consider what sort of proof regarding the behavior of the mean field Heisenberg model over time is obtainable and look at several possible routes to that path. We finish up by offering a Stein's method approach to understanding the evolution of the mean field Heisenberg model and offer some insight into its convergence in time to a thermodynamic limit. This demonstrates the potential usefulness of Stein's method in understanding the finite time behavior of evolving systems. In our efforts, we encounter several holes in current mathematical and physical knowledge. In particular, we suggest the development of tools for Markov chains currently unavailable and the development of a more physically based algorithm for the evolution of Heisenberg systems. These projects lie beyond the scope of this dissertation but it is our hope that these ideas may be useful to future research

    2018 Symposium Brochure

    Get PDF

    2018 Annual Research Symposium Abstract Book

    Get PDF
    2018 annual volume of abstracts for science research projects conducted by students at Trinity College
    corecore