160 research outputs found

    Reconfigurable Fiducial-Integrated Modular Needle Driver For MRI-Guided Percutaneous Interventions

    Get PDF
    Needle-based interventions are pervasive in Minimally Invasive Surgery (MIS), and are often used in a number of diagnostic and therapeutic procedures, including biopsy and brachytherapy seed placement. Magnetic Resonance Imaging (MRI) which can provide high quality, real time and high soft tissue contrast imaging, is an ideal guidance tool for image-guided therapy (IGT). Therefore, a MRI-guided needle-based surgical robot proves to have great potential in the application of percutaneous interventions. Presented here is the design of reconfigurable fiducial-integrated modular needle driver for MRI-guided percutaneous interventions. Further, an MRI-compatible hardware control system has been developed and enhanced to drive piezoelectric ultrasonic motors for a previously developed base robot designed to support the modular needle driver. A further contribution is the development of a fiber optic sensing system to detect robot position and joint limits. A transformer printed circuit board (PCB) and an interface board with integrated fiber optic limit sensing have been developed and tested to integrate the robot with the piezoelectric actuator control system designed by AIM Lab for closed loop control of ultrasonic Shinsei motors. A series of experiments were performed to evaluate the feasibility and accuracy of the modular needle driver. Bench top tests were conducted to validate the transformer board, fiber optic limit sensing and interface board in a lab environment. Finally, the whole robot control system was tested inside the MRI room to evaluate its MRI compatibility and stability

    The feasibility of using virtual prototyping technologies for product evaluation

    Get PDF
    With the continuous development in computer and communications technology the use of computer aided design in design processes is becoming more commonplace. A wide range of virtual prototyping technologies are currently in development, some of which are commercially viable for use within a product design process. These virtual prototyping technologies range from graphics tablets to haptic devices. With the compression of design cycles the feasibility of using these technologies for product evaluation is becoming an ever more important consideration. This thesis begins by presenting the findings of a comprehensive literature review defining product design with a focus on product evaluation and a discussion of current virtual prototyping technologies. From the literature review it was clear that user involvement in the product evaluation process is critical. The literature review was followed by a series of interconnected studies starting with an investigation into design consultancies' access and use of prototyping technologies and their evaluation methods. Although design consultancies are already using photo-realistic renderings, animations and sometimes 3600 view CAD models for their virtual product evaluations, current virtual prototyping hardware and software is often unsatisfactory for their needs. Some emergent technologies such as haptic interfaces are currently not commonly used in industry. This study was followed by an investigation into users' psychological acceptance and physiological discomfort when using a variety of virtual prototyping tools for product evaluation compared with using physical prototypes, ranging from on-screen photo-realistic renderings to 3D 3600 view models developed using a range of design software. The third study then went on to explore the feasibility of using these virtual prototyping tools and the effect on product preference when compared to using physical prototypes. The forth study looked at the designer's requirements for current and future virtual prototyping tools, design tools and evaluation methods. In the final chapters of the thesis the relative strengths and weaknesses of these technologies were re-evaluated and a definitive set of user requirements based on the documentary evidence of the previous studies was produced. This was followed by the development of a speculative series of scenarios for the next generation of virtual prototyping technologies ranging from improvements to existing technologies through to blue sky concepts. These scenarios were then evaluated by designers and consumers to produce documentary evidence and recommendations for preferred and suitable combinations of virtual prototyping technologies. Such hardware and software will require a user interface that is intuitive, simple, easy to use and suitable for both the designers who create the virtual prototypes and the consumers who evaluate them

    Establishing a Framework for the development of Multimodal Virtual Reality Interfaces with Applicability in Education and Clinical Practice

    Get PDF
    The development of Virtual Reality (VR) and Augmented Reality (AR) content with multiple sources of both input and output has led to countless contributions in a great many number of fields, among which medicine and education. Nevertheless, the actual process of integrating the existing VR/AR media and subsequently setting it to purpose is yet a highly scattered and esoteric undertaking. Moreover, seldom do the architectures that derive from such ventures comprise haptic feedback in their implementation, which in turn deprives users from relying on one of the paramount aspects of human interaction, their sense of touch. Determined to circumvent these issues, the present dissertation proposes a centralized albeit modularized framework that thus enables the conception of multimodal VR/AR applications in a novel and straightforward manner. In order to accomplish this, the aforesaid framework makes use of a stereoscopic VR Head Mounted Display (HMD) from Oculus Rift©, a hand tracking controller from Leap Motion©, a custom-made VR mount that allows for the assemblage of the two preceding peripherals and a wearable device of our own design. The latter is a glove that encompasses two core modules in its innings, one that is able to convey haptic feedback to its wearer and another that deals with the non-intrusive acquisition, processing and registering of his/her Electrocardiogram (ECG), Electromyogram (EMG) and Electrodermal Activity (EDA). The software elements of the aforementioned features were all interfaced through Unity3D©, a powerful game engine whose popularity in academic and scientific endeavors is evermore increasing. Upon completion of our system, it was time to substantiate our initial claim with thoroughly developed experiences that would attest to its worth. With this premise in mind, we devised a comprehensive repository of interfaces, amid which three merit special consideration: Brain Connectivity Leap (BCL), Ode to Passive Haptic Learning (PHL) and a Surgical Simulator

    Design and semantics of form and movement (DeSForM 2006)

    Get PDF
    Design and Semantics of Form and Movement (DeSForM) grew from applied research exploring emerging design methods and practices to support new generation product and interface design. The products and interfaces are concerned with: the context of ubiquitous computing and ambient technologies and the need for greater empathy in the pre-programmed behaviour of the ‘machines’ that populate our lives. Such explorative research in the CfDR has been led by Young, supported by Kyffin, Visiting Professor from Philips Design and sponsored by Philips Design over a period of four years (research funding £87k). DeSForM1 was the first of a series of three conferences that enable the presentation and debate of international work within this field: • 1st European conference on Design and Semantics of Form and Movement (DeSForM1), Baltic, Gateshead, 2005, Feijs L., Kyffin S. & Young R.A. eds. • 2nd European conference on Design and Semantics of Form and Movement (DeSForM2), Evoluon, Eindhoven, 2006, Feijs L., Kyffin S. & Young R.A. eds. • 3rd European conference on Design and Semantics of Form and Movement (DeSForM3), New Design School Building, Newcastle, 2007, Feijs L., Kyffin S. & Young R.A. eds. Philips sponsorship of practice-based enquiry led to research by three teams of research students over three years and on-going sponsorship of research through the Northumbria University Design and Innovation Laboratory (nuDIL). Young has been invited on the steering panel of the UK Thinking Digital Conference concerning the latest developments in digital and media technologies. Informed by this research is the work of PhD student Yukie Nakano who examines new technologies in relation to eco-design textiles

    Suspension Near-Field Electrospinning: a Nanofabrication Method of Polymer Nanoarray Architectures for Tissue Engineering

    Get PDF
    Chapter 1. This chapter is divided into six sections. The first will discuss the issue of nerve tissue loss, and the strategies of therapy (1.1). The second describes the role of nanofabrication in tissue engineering (1.2). The third section details the theoretical background of electrospinning in terms of solution and process parameters (1.3). The fourth section introduces near-field electrospinning (NFES), recent advances in this field and the principles of NFES techniques (1.4). The fifth section details objectives for a tissue engineered construct for neural cell therapy, and presents possible viable solutions (1.5). The sixth summarizes the aims and structure of this thesis (1.6)..

    Embedded Machine Learning: Emphasis on Hardware Accelerators and Approximate Computing for Tactile Data Processing

    Get PDF
    Machine Learning (ML) a subset of Artificial Intelligence (AI) is driving the industrial and technological revolution of the present and future. We envision a world with smart devices that are able to mimic human behavior (sense, process, and act) and perform tasks that at one time we thought could only be carried out by humans. The vision is to achieve such a level of intelligence with affordable, power-efficient, and fast hardware platforms. However, embedding machine learning algorithms in many application domains such as the internet of things (IoT), prostheses, robotics, and wearable devices is an ongoing challenge. A challenge that is controlled by the computational complexity of ML algorithms, the performance/availability of hardware platforms, and the application\u2019s budget (power constraint, real-time operation, etc.). In this dissertation, we focus on the design and implementation of efficient ML algorithms to handle the aforementioned challenges. First, we apply Approximate Computing Techniques (ACTs) to reduce the computational complexity of ML algorithms. Then, we design custom Hardware Accelerators to improve the performance of the implementation within a specified budget. Finally, a tactile data processing application is adopted for the validation of the proposed exact and approximate embedded machine learning accelerators. The dissertation starts with the introduction of the various ML algorithms used for tactile data processing. These algorithms are assessed in terms of their computational complexity and the available hardware platforms which could be used for implementation. Afterward, a survey on the existing approximate computing techniques and hardware accelerators design methodologies is presented. Based on the findings of the survey, an approach for applying algorithmic-level ACTs on machine learning algorithms is provided. Then three novel hardware accelerators are proposed: (1) k-Nearest Neighbor (kNN) based on a selection-based sorter, (2) Tensorial Support Vector Machine (TSVM) based on Shallow Neural Networks, and (3) Hybrid Precision Binary Convolution Neural Network (BCNN). The three accelerators offer a real-time classification with monumental reductions in the hardware resources and power consumption compared to existing implementations targeting the same tactile data processing application on FPGA. Moreover, the approximate accelerators maintain a high classification accuracy with a loss of at most 5%

    Direct Nerve Stimulation for Induction of Sensation and Treatment of Phantom Limb Pain

    Get PDF

    NASA Tech Briefs, October 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical' Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Tangible interaction with anthropomorphic smart objects in instrumented environments

    Get PDF
    A major technological trend is to augment everyday objects with sensing, computing and actuation power in order to provide new services beyond the objects' traditional purpose, indicating that such smart objects might become an integral part of our daily lives. To be able to interact with smart object systems, users will obviously need appropriate interfaces that regard their distinctive characteristics. Concepts of tangible and anthropomorphic user interfaces are combined in this dissertation to create a novel paradigm for smart object interaction. This work provides an exploration of the design space, introduces design guidelines, and provides a prototyping framework to support the realisation of the proposed interface paradigm. Furthermore, novel methods for expressing personality and emotion by auditory means are introduced and elaborated, constituting essential building blocks for anthropomorphised smart objects. Two experimental user studies are presented, confirming the endeavours to reflect personality attributes through prosody-modelled synthetic speech and to express emotional states through synthesised affect bursts. The dissertation concludes with three example applications, demonstrating the potentials of the concepts and methodologies elaborated in this thesis.Die Integration von Informationstechnologie in Gebrauchsgegenstände ist ein gegenwärtiger technologischer Trend, welcher es Alltagsgegenständen ermöglicht, durch den Einsatz von Sensorik, Aktorik und drahtloser Kommunikation neue Dienste anzubieten, die über den ursprünglichen Zweck des Objekts hinausgehen. Die Nutzung dieser sogenannten Smart Objects erfordert neuartige Benutzerschnittstellen, welche die speziellen Eigenschaften und Anwendungsbereiche solcher Systeme berücksichtigen. Konzepte aus den Bereichen Tangible Interaction und Anthropomorphe Benutzerschnittstellen werden in dieser Dissertation vereint, um ein neues Interaktionsparadigma für Smart Objects zu entwickeln. Die vorliegende Arbeit untersucht dafür die Gestaltungsmöglichkeiten und zeigt relevante Aspekte aus verwandten Disziplinen auf. Darauf aufbauend werden Richtlinien eingeführt, welche den Entwurf von Benutzerschnittstellen nach dem hier vorgestellten Ansatz begleiten und unterstützen sollen. Für eine prototypische Implementierung solcher Benutzerschnittstellen wird eine Architektur vorgestellt, welche die Anforderungen von Smart Object Systemen in instrumentierten Umgebungen berücksichtigt. Ein wichtiger Bestandteil stellt dabei die Sensorverarbeitung dar, welche unter anderem eine Interaktionserkennung am Objekt und damit auch eine physikalische Eingabe ermöglicht. Des Weiteren werden neuartige Methoden für den auditiven Ausdruck von Emotion und Persönlichkeit entwickelt, welche essentielle Bausteine für anthropomorphisierte Smart Objects darstellen und in Benutzerstudien untersucht wurden. Die Dissertation schliesst mit der Beschreibung von drei Applikationen, welche im Rahmen der Arbeit entwickelt wurden und das Potential der hier erarbeiteten Konzepte und Methoden widerspiegeln

    ICS Materials. Towards a re-Interpretation of material qualities through interactive, connected, and smart materials.

    Get PDF
    The domain of materials for design is changing under the influence of an increased technological advancement, miniaturization and democratization. Materials are becoming connected, augmented, computational, interactive, active, responsive, and dynamic. These are ICS Materials, an acronym that stands for Interactive, Connected and Smart. While labs around the world are experimenting with these new materials, there is the need to reflect on their potentials and impact on design. This paper is a first step in this direction: to interpret and describe the qualities of ICS materials, considering their experiential pattern, their expressive sensorial dimension, and their aesthetic of interaction. Through case studies, we analyse and classify these emerging ICS Materials and identified common characteristics, and challenges, e.g. the ability to change over time or their programmability by the designers and users. On that basis, we argue there is the need to reframe and redesign existing models to describe ICS materials, making their qualities emerge
    corecore