548 research outputs found

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Design og styring av smarte robotsystemer for applikasjoner innen biovitenskap: biologisk prøvetaking og jordbærhøsting

    Get PDF
    This thesis aims to contribute knowledge to support fully automation in life-science applications, which includes design, development, control and integration of robotic systems for sample preparation and strawberry harvesting, and is divided into two parts. Part I shows the development of robotic systems for the preparation of fungal samples for Fourier transform infrared (FTIR) spectroscopy. The first step in this part developed a fully automated robot for homogenization of fungal samples using ultrasonication. The platform was constructed with a modified inexpensive 3D printer, equipped with a camera to distinguish sample wells and blank wells. Machine vision was also used to quantify the fungi homogenization process using model fitting, suggesting that homogeneity level to ultrasonication time can be well fitted with exponential decay equations. Moreover, a feedback control strategy was proposed that used the standard deviation of local homogeneity values to determine the ultrasonication termination time. The second step extended the first step to develop a fully automated robot for the whole process preparation of fungal samples for FTIR spectroscopy by adding a newly designed centrifuge and liquid-handling module for sample washing, concentration and spotting. The new system used machine vision with deep learning to identify the labware settings, which frees the users from inputting the labware information manually. Part II of the thesis deals with robotic strawberry harvesting. This part can be further divided into three stages. i) The first stage designed a novel cable-driven gripper with sensing capabilities, which has high tolerance to positional errors and can reduce picking time with a storage container. The gripper uses fingers to form a closed space that can open to capture a fruit and close to push the stem to the cutting area. Equipped with internal sensors, the gripper is able to control a robotic arm to correct for positional errors introduced by the vision system, improving the robustness. The gripper and a detection method based on color thresholding were integrated into a complete system for strawberry harvesting. ii) The second stage introduced the improvements and updates to the first stage where the main focus was to address the challenges in unstructured environment by introducing a light-adaptive color thresholding method for vision and a novel obstacle-separation algorithm for manipulation. At this stage, the new fully integrated strawberry-harvesting system with dual-manipulator was capable of picking strawberries continuously in polytunnels. The main scientific contribution of this stage is the novel obstacle-separation path-planning algorithm, which is fundamentally different from traditional path planning where obstacles are typically avoided. The algorithm uses the gripper to push aside surrounding obstacles from an entrance, thus clearing the way for it to swallow the target strawberry. Improvements were also made to the gripper, the arm, and the control. iii) The third stage improved the obstacle-separation method by introducing a zig-zag push for both horizontal and upward directions and a novel dragging operation to separate upper obstacles from the target. The zig-zag push can help the gripper capture a target since the generated shaking motion can break the static contact force between the target and obstacles. The dragging operation is able to address the issue of mis-capturing obstacles located above the target, in which the gripper drags the target to a place with fewer obstacles and then pushes back to move the obstacles aside for further detachment. The separation paths are determined by the number and distribution of obstacles based on the downsampled point cloud in the region of interest.Denne avhandlingen tar sikte på å bidra med kunnskap om automatisering og robotisering av applikasjoner innen livsvitenskap. Avhandlingen er todelt, og tar for seg design, utvikling, styring og integrering av robotsystemer for prøvetaking og jordbærhøsting. Del I omhandler utvikling av robotsystemer til bruk under forberedelse av sopprøver for Fourier-transform infrarød (FTIR) spektroskopi. I første stadium av denne delen ble det utviklet en helautomatisert robot for homogenisering av sopprøver ved bruk av ultralyd-sonikering. Plattformen ble konstruert ved å modifisere en billig 3D-printer og utstyre den med et kamera for å kunne skille prøvebrønner fra kontrollbrønner. Maskinsyn ble også tatt i bruk for å estimere soppens homogeniseringsprosess ved hjelp av matematisk modellering, noe som viste at homogenitetsnivået faller eksponensielt med tiden. Videre ble det foreslått en strategi for regulering i lukker sløyfe som brukte standardavviket for lokale homogenitetsverdier til å bestemme avslutningstidspunkt for sonikeringen. I neste stadium ble den første plattformen videreutviklet til en helautomatisert robot for hele prosessen som forbereder prøver av sopprøver for FTIR-spektroskopi. Dette ble gjort ved å legge til en nyutviklet sentrifuge- og væskehåndteringsmodul for vasking, konsentrering og spotting av prøver. Det nye systemet brukte maskinsyn med dyp læring for å identifisere innstillingene for laboratorieutstyr, noe som gjør at brukerne slipper å registrere innstillingene manuelt.Norwegian University of Life SciencespublishedVersio

    Real-time Strawberry Detection Based on Improved YOLOv5s Architecture for Robotic Harvesting in open-field environment

    Full text link
    This study proposed a YOLOv5-based custom object detection model to detect strawberries in an outdoor environment. The original architecture of the YOLOv5s was modified by replacing the C3 module with the C2f module in the backbone network, which provided a better feature gradient flow. Secondly, the Spatial Pyramid Pooling Fast in the final layer of the backbone network of YOLOv5s was combined with Cross Stage Partial Net to improve the generalization ability over the strawberry dataset in this study. The proposed architecture was named YOLOv5s-Straw. The RGB images dataset of the strawberry canopy with three maturity classes (immature, nearly mature, and mature) was collected in open-field environment and augmented through a series of operations including brightness reduction, brightness increase, and noise adding. To verify the superiority of the proposed method for strawberry detection in open-field environment, four competitive detection models (YOLOv3-tiny, YOLOv5s, YOLOv5s-C2f, and YOLOv8s) were trained, and tested under the same computational environment and compared with YOLOv5s-Straw. The results showed that the highest mean average precision of 80.3% was achieved using the proposed architecture whereas the same was achieved with YOLOv3-tiny, YOLOv5s, YOLOv5s-C2f, and YOLOv8s were 73.4%, 77.8%, 79.8%, 79.3%, respectively. Specifically, the average precision of YOLOv5s-Straw was 82.1% in the immature class, 73.5% in the nearly mature class, and 86.6% in the mature class, which were 2.3% and 3.7%, respectively, higher than that of the latest YOLOv8s. The model included 8.6*10^6 network parameters with an inference speed of 18ms per image while the inference speed of YOLOv8s had a slower inference speed of 21.0ms and heavy parameters of 11.1*10^6, which indicates that the proposed model is fast enough for real time strawberry detection and localization for the robotic picking.Comment: 20 pages; 15 figure

    Fruit Physiology and Postharvest Management of Strawberry

    Get PDF
    Strawberry is famous for its unique flavor and delicacy among the consumers all around the world. Nowadays, the concept of postharvest management is not only confined to preserving the nutritional attributes but also extended up to flavor that includes aroma. Strawberry is a nonclimacteric fruit and its short storage life and strategic sales in the market after harvest had compelled researchers to utilize technologies like cool store, modified atmospheric packaging, controlled atmospheric storage, different packaging systems, fumigation with nitric oxide, and diversified chemical treatments to preserve fruits for longer time. To apply or innovate new technology to extend life of strawberry fruits in the postharvest area, it is necessary to understand the physiology and biochemistry of fruits. This chapter reviews fruit physiology, recent trends, and future prospects in the postharvest management of strawberry

    A soft, sensorized gripper for delicate harvesting of small fruits

    Get PDF
    Harvesting fruits and vegetables is a complex task worth to be fully automated with robotic systems. It involves several precision tasks that have to be performed with accuracy and the appropriate amount of force. Classical mechanical grippers, due to the complex control and stiffness, cannot always be used to harvest fruits and vegetables. Instead, the use of soft materials could provide a visible advancement. In this work, we propose a soft, sensorized gripper for harvesting applications. The sensing is performed by tracking a set of markers integrated into the soft part of the gripper. Different machine learning-based approaches have been used to map the markers’ position and dimensions into forces in order to perform a close-loop control of the gripper. Results show that force can be measured with an error of 2.6% in a range from 0 to 4 N. The gripper was integrated into a robotic arm having an external vision system used to detect plants and fruits (strawberries in our case scenario). As a proof of concept, we evaluated the performance of the robotic system in a laboratory scenario. Plant and fruit identification reached a positive rate of 98.2% and 92.4%, respectively, while the correct picking of the fruits, by removing it from the stalk without a direct cut, achieved an 82% of successful rate

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future
    corecore