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A B S T R A C T

Harvesting fruits and vegetables is a complex task worth to be fully automated with robotic systems. It involves
several precision tasks that have to be performed with accuracy and the appropriate amount of force. Classical
mechanical grippers, due to the complex control and stiffness, cannot always be used to harvest fruits and
vegetables. Instead, the use of soft materials could provide a visible advancement. In this work, we propose
a soft, sensorized gripper for harvesting applications. The sensing is performed by tracking a set of markers
integrated into the soft part of the gripper. Different machine learning-based approaches have been used to
map the markers’ position and dimensions into forces in order to perform a close-loop control of the gripper.
Results show that force can be measured with an error of 2.6% in a range from 0 to 4 N. The gripper was
integrated into a robotic arm having an external vision system used to detect plants and fruits (strawberries in
our case scenario). As a proof of concept, we evaluated the performance of the robotic system in a laboratory
scenario. Plant and fruit identification reached a positive rate of 98.2% and 92.4%, respectively, while the
correct picking of the fruits, by removing it from the stalk without a direct cut, achieved an 82% of successful
rate.
1. Introduction

Nowadays, automation plays a major role in the farming indus-
try, helping in minimizing the waste of products, the time needed
to accomplish complete tasks, and optimizing the crop production
cycle (Lowenberg-DeBoer et al., 2020). Among the main tasks in
agricultural processes, the ones involving the manipulation of fruits
and vegetables continue to be among the most time-consuming and
labor-intensive, resulting in low efficiency and limited competitive-
ness (Navas et al., 2021). The situation was also amplified after the
COVID-19 crisis, as the pandemic increased the labor shortages of
seasonal workers unable to travel between regions and be housed
during the harvesting seasons. For these reasons, researchers, and
companies focused their efforts on finding solutions to automate these
manual operations combining multidisciplinary fields such as biological
science, control engineering, robotics, and artificial intelligence.

Harvesting fruits and vegetables is a complex task to be fully auto-
mated with a robotic system. It involves precision in fruit identification,
real-time decision-making about harvesting and storing, and delicate
handling of both the plant and the harvested product. In manual
harvesting, humans use their hands to move different elements of
plants, and grasp and detach the fruits, either directly or with the
help of a tool. Attempts to emulate human skills during harvesting
have resulted in numerous mechanical end-effectors that vary the
number of integrated fingers (Zhang et al., 2020). Having multiple
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fingers, as proposed in Ozawa and Tahara (2017), King et al. (2018),
Mizushima et al. (2018), Vulliez et al. (2018), provides high dexterity
and compliance during the task, with the downside of being fragile
and difficult to control due to the large number of degrees of free-
dom (DoFs). On the contrary, the simple mechanical structure of the
parallel grippers—which just have two fingers—simplifies the control
but reduces the adaptability during grasping. An alternative solution to
rigid, anthropomorphic grippers can be found in the use of deformable
materials exploited in the field of soft robotics. Soft robotics research
focuses on the development of novel machines able to safely interact
with the environment by providing novel design, control strategies,
and manufacturing techniques to develop robots made of compliant
materials (Ahmed et al., 2022).

Soft robots, not only aim at being safer for humans but may also
solve different open challenges in robotics. Being compliant, they are
flexible, harder to break or damage, and adaptable to unstructured
and dynamic environments. By replacing the intricate rigid body joint
mechanics with simple compliant mechanisms, the number of parts re-
quired is significantly reduced, leading to lower costs for maintenance
and assembly, and a simpler control architecture. They do not require
an in-depth characterization of the object to handle, ensuring good
performance even with minimal, if not any, force feedback—which
is not possible by using traditional robotic approaches. In addition,
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they can meet hygiene and strict manipulation requirements while
operating with delicate or fragile products. These properties make them
a promising solution for the development of grippers for handling fruits
and vegetables (Hughes et al., 2016).

The field of soft robotics already counts several solutions for food
handling and manipulation (Elfferich et al., 2022), however, most
of those are not specifically designed for picking fruits and vegeta-
bles (Navas et al., 2021). Among all the solutions, the ones based on
fluidic elastomer actuators are the most promising for better adapt-
ing to cope with the different sizes of medium to large agricultural
products. The classical approaches to soft, pneumatic grippers are all
based on the PneuNet design, which consists of a series of channels
and chambers inside an elastomer, which expand toward the least stiff
region when pressurized (Ilievski et al., 2021).

In an early work, Wang and Hirai (2018) presented a soft gripper
optimizing such design to perform precise food handling. Visentin et al.
(2021) extended the concept also by providing selective stiffening to
improve the grasping capabilities of the gripper. By increasing the
number of chambers, and by arranging four fingers in a circular con-
figuration, Kuriyama et al. (2019) developed a gripper able to grasp
small fruits. By changing the design from longitudinal to radial, Wang
et al. (2021) obtained a hemispherical griper that can be selectively
inflated to provide better adhesion to the object. It has been proved
that the gripper can withstand payloads up to 0.5 kg. A similar solution
was also proposed by Galley et al. (2019). An alternative solution to
the use of anthropomorphic design is the use of suction and the use of
vacuum pumps. Wang et al. (2020) proposed a dual-mode soft gripper
combining grasping and suction abilities located at each finger: the
design allows handling objects of different shapes and weights by using
either of the grasping mechanisms.

Different from direct casting, the use of 3D printers to develop
soft grippers speeds up the development process and ensures a high
level of repetitiveness in the manufacturing. Blanes et al. (2014), for
example, proposed a set of fully 3D-printed, fruit-specific, monolithic
designs for soft grippers. Liu et al. (2018), instead, only focused
on the development of an underactuated, soft robotic gripper with
compliant fingers for grasping fruits. Tawk et al. (2019), then extended
the concept to the development of an omni-purpose soft gripper. The
advantage of their approaches is the fast manufacturing that is not
always ensured in the previously presented solutions. Recent solutions,
such as the one presented by Anon (2023), not only reduce the amount
of material used but are designed to enable passive adaptation to the
different sizes of the harvested product.

All the presented solutions do not integrate a sensing mechanism to
capture the applied forces. As previously stated, the use of compliant
materials helps in reducing the need for precise force control when
handling delicate products like berries. Solutions for the specific task
of harvesting strawberries (Arima et al., 2004; Feng et al., 2012; Xiong
et al., 2018; Anon, 2019, 2023) are mostly based on the use of a knife
to cuts off the fruit at the stalk level, then the fruit is collected and
stored. This approach does not require holding the fruit still, thus force
feedback is not needed. However, it can increase the possibility to
damage the fruit during further processing. To avoid such an issue, a
different type of approach should be used to grasp and detach the fruit
from the plant.

Starting from this problem, in this work, we propose a soft, sen-
sorized gripper that can be mounted on a robotic manipulator to
perform strawberry picking. We tested its performance in a complete
workflow: from the single plant identification, the selection of the
mature fruit, up to its harvesting. Differently from the previously
presented solutions, our approach does not remove the fruit by cutting
its stalk, instead, it performs a clean removal as human do. The paper
is structured as follows: in Section 2 we will introduce the manufac-
turing and the working principle of the gripper, the method used to
estimate the interaction force, and the external vision system used
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for the plant/fruit detection. In Section 3, we will first present the
characterization of the sensorized gripper, then the evaluation of its use
on a robotic system in a laboratory scenario. Then, we will conclude
with Section 4 highlighting the advancement of the proposed system
and future improvements.

2. Materials and methods

In this work, we focused on the development of a cheap, 3D-
printed, soft gripper capable of sensing forces when in contact with
the external environment. This was done by manufacturing a patterned,
hemispherical, soft dome and tracking the displacement of every single
marker in the pattern under different conditions. Similar solutions have
already been proposed, however, most of the research on this topic has
been focusing on soft but flat tactile sensors. An example is the work
of Zhang et al. (2019) where the contact force and the torque have
been estimated by a commonly used motion analysis technique which
is based on vector field analysis estimating the position of divergence
source, sink, and vertex of rotational motion. The data acquired using a
highly dense pattern are fed into a multi-layer perceptron (three layers)
which provides a correct estimation of the forces with a total error of
2 N (on average) for the normal and torsional forces, and more than
5 N for the torsional one. Other planar sensors and their use for slip
detection are presented and discussed in Chen et al. (2018).

The most promising solutions for soft sensing, such as the ones
proposed by Alspach et al. in Alspach et al. (2019) and then by Kup-
puswamy et al. (2020), are based on thin, patterned membranes and
the use of depth cameras. The sensors can generate a highly compliant
dense geometry of the membrane that can be used to perform object,
shape, and texture classification (using a Deep Neural Network), object
sorting, object pose estimation, and tracking. Even if promising, those
cameras require a minimum sensing distance of 100 mm, which restricts
the scalability of the proposed solution to more compact designs.
Classical RGB cameras have also been used to track the motion of
markers. An early work on the topic is presented by Sakuma et al.
in Sakuma et al. (2018), where a universal gripper (Brown et al., 2010)
was modified to integrate sensing by measuring the deformation of the
external membrane using optical sensing. The prototype could identify
and grasp cylindrical and rectangular objects with lengths in the range
from 10 to 70 mm. Later, Scharff et al. (2022) improved the technique
by increasing the number and color of the patterns. The sensing prin-
ciple is based on the relative displacement between differently colored
markers that lie on two separate layers. This approach helped to encode
the distance between markers using a monocular camera, forcing the
normal deformation to be estimated from the lateral displacement of
the markers. It has a higher sensing resolution than previous solutions,
however, it was only used to perform accurate curvature estimations
when the sensor is pressing against a positively or negatively curved
object. Other solutions based on hemispherical domes abandoned the
markers to exploit optical features induced by reflecting coatings ap-
plied to the domes. In Fernandez et al. (2021), Fernandez et al. used a
rigid, acrylic dome as a waveguide covered by a silicone cap. Eight
LEDs act as fiducial markers and the light injected into the acrylic
dome—which acts as a waveguide—is internally reflected except where
the cap contacts it. This is exploited to easily sense either single or
multi-contact with the external environment. Do and Kennedy (2022),
instead, proposed a compact, high-resolution tactile sensor capable of
reconstructing the shape of the object in contact. This was possible
by the use of a highly-reflective coating on the internal part of the
dome, and a calibration process (using 3D printed objects and inferring
CAD models) based on photometric stereo algorithms and Deep Neural
Network. Both solutions are promising, however, they require special
chemical treatments that might not be compatible with the crops.

While the previous works have been focusing on the characteri-
zation of the sensors only, Sakuma et al. (2019) also integrate the
sensor in a parallel gripper. The tactile unit was developed using direct

casting of the external membrane which was then manually polished
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Fig. 1. (A) The proposed soft gripper is integrated into the robotic system. The gripper of the Franka Emika Panda robot has been modified to host two soft, sensorized fingers
developed to gently grasp delicate objects. Two additional structures have been added to the gripper: a support for the RGB-D camera (Intel Realsense D345i, Intel, USA), and an
additional holder for the electronics (Raspberry Pi 3 Model B) used to acquire the data from the sensorized gripper. (B) The real-time force estimation during a grasping task. (C)
A picture of the experimental setup used in this paper to validate out approach.
to increase its transparency. The markers were manually painted over
the internal side of the membrane which was also filled with acrylic
beads and a mixture of silicon and paraffin oil. No light was used
to increase the contrast of the markers; thus, the system can only be
used in a controlled environment with no change in the light condition
(e.g., open field). The main advantage is the integration of a jamming
transition that can be used to maintain a stable grasp. However, it
is difficult to reset the gripper to its natural state after releasing the
object, making it more complicated to plan and execute successive
picking (Amend et al., 2016). A more advanced configuration was
proposed by Choi et al. in Choi and Tahara (2020) where a similar
vision-based tactile unit was integrated in a multi-fingered robotic
hand. The tactile unit was directly cast using a silicon rubber and
the marker was manually painted. The proposed sensor has a compact
footprint (radius, 30 mm) and can measure normal forces in the range
of 4 to 6 N which are not suitable for handling delicate fruits such as
berries.

Different from the previous research, our approach aims to reduce
the complexity of the manufacturing process while preserving the
capabilities to accurately measure forces in real-time during a task
of grasping. Previous research, on the contrary, mostly focused on
the shape reconstruction of the object in contact, or the detection of
shear forces as feedback for more precise control of the gripper. In
addition, the full integration with a robotic system provides additional
improvements from the current state of the art. Fig. 1 shows the
developed gripper mounted on the robotic system, the test scenario,
and the result of a grasping task.

2.1. Manufacturing of the sensing units

Prioritizing ease of manufacturing and reproducibility, we decided
to avoid the use of multi-material additive manufacturing and molding
and focus on 3D printing. The main body of the gripper is the one
provided by the Franka Emilka Panda robot, from which we substituted
the original fingers with the developed sensing devices.
3

Each of the sensing devices is based on a 3D-printed, soft, hemi-
spherical dome, and a 5MP, RGB camera (OV5647, Tangxi, China) with
a 175◦ fish-eye lens. To ensure the proper illumination, a ring of twelve
RGB LEDs (NeoPixel Ring 12 RGB, Adafruit, USA) was placed beneath
the dome. A case, made of PLA (Polylactic Acid), was printed using
an FDM (Fuse Deposition Modeling) printer (X1-Carbon, Bambulab,
China) and used as a protective shield for the main components. It has
been designed considering a modular approach to decouple as much
as possible the different layers and simplify the assembly. A second
holder is placed on the backside of the gripper to host the electronics
(Raspberry Pi 3 Model B) needed to acquire the data from the cameras
and to control the illumination of the LEDs. Fig. 2 shows the gripper
and its components.

Each of the soft, hemispherical domes was 3D printed using a stereo
lithography 3D printer (Form 2, Formlabs, USA) and a proprietary
polymeric resin (Elastic 50 A, Formlabs, USA). The material supports a
maximum printing resolution of 100 μm and it is designed to achieve
a 50 A shore hardness when cured. After the printing, the domes were
first cleaned in IPA (Isopropyl Alcohol) for 10 minutes, then cured in a
dedicated ultraviolet oven for about 20 min at 60◦. During the process,
when half-cured, the patterns on the internal part of the dome were
filled with the same uncured material (Elastic 50 A, Formlabs, USA),
to which was added a black pigment (Black color kit, Formlabs, USA)
to maximize the contrast. Then, the domes were again placed in the
oven to terminate the curing process.

After the second curing, the domes can be integrated into the
gripper. To avoid alteration of the images captured by the cameras as
a consequence of stains left by strawberry juice or dust, we covered
the domes with a thin layer (0.03 mm) of white latex which has the
following effects on the sensing system: (i) it improves the contrast of
the dots by reducing the light from the external environment (the dome
is semi-transparent, and light can easily pass through it); (ii) it reduces
the effects of cast shadows when the gripper gets in contact with an
object (i.e., the contact point is a blend of the colors, not a black area);
and (iii) it provides an easily, food-grade, replaceable interface that can

be removed in case of need.
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Fig. 2. The sensorized gripper and its components with relative dimensions. (A) A schematic representation of the gripper with the two sensing units connected and the electronic
holder. (B) The exploded view of each unit with the featured main components. On top, a highlight on the soft dome shows the pattern used in this work.
The final dimensions of each sensing unit are 32 × 32 × 35 mm3,
not considering the dome. The dome has a square base of 31 × 31 mm2,
a diameter of 41 mm, and a wall thickness of 1.5 mm. When mounted
to the gripper (weight 0.7 kg), the total mass o the assembly becomes
1.12 kg, which is within the maximum payload of the robotic arm (3 kg)
leaving room for additional weight.

2.2. Working principle of the soft gripper

The main idea behind the approach is the capability to identify
and track the location of a pre-defined pattern and map it into the
estimation of the interaction force. As a pattern, we used a double
cross design with 29 individual markers. Each dot has a diameter of
1 mm, and it is engraved for 0.75 mm inside the hemispherical dome.
We made this decision to maximize the detection rate and tracking
reliability of each marker. The pattern was designed in such a way that
diagonal crosses can be distinguished from orthogonal crosses by the
number of markers (9 on the vertical arms, 7 on the diagonals) and the
different spacing between the markers (1 mm and 2.4 mm, respectively).
To further distinguish the direction, we set the LEDs to different pure
colors (i.e., red, green, and blue) which can be easily segmented with
classical computer vision approaches.

Each camera is connected to a Raspberry Pi 3 Model B which
acquires and then scales down the images before sending them to
the main computer. Then, the images are converted to grayscale and
thresholded to maximize the contrast of the dark markers with respect
to the rest of the image. In each binary image, the connected white
pixels are grouped forming blobs, which are then merged if too close
to each other. To avoid erroneous identification of the markers, we
removed all the blobs having the centroid outside a radius equal to two-
thirds of the frame length. The binary image is then processed to extract
its contours, which are then fitted using the Fitzgibbon et al. (1999)
algorithm. The output of this process is a set of coordinates and radii
relative to the different markers. Fig. 3 shows the results of the marker
identification. The proposed approach is robust (detection rate 98.7%)
even when high deformations are involved (≥4 N). In this specific case,
the shape of the marker in the images changes from circular to elliptic.
To correctly measure the radius of the marker, the diameter of the
circular marker can be computed as twice the semi-major axis of the
ellipse shown in the camera image. The semi-major and semi-minor
axes can then be computed using the ellipse fitting algorithm proposed
in Fitzgibbon et al. (1999). However, for smaller deformations, the
shape transition from a circle to an ellipse is less pronounced.
4

Once the markers are properly detected, their positions are tracked
over time. For every received frame (frame rate, 20 fps), marker de-
tection is applied, and the new coordinates are associated with the
closer marker of the previous frame. Using the Euclidean distance as
a metric to sort markers, we obtained robust and replicable results.
To further improve the reliability, we created a Boolean interpolation
matrix that contains the tracking state (i.e., true or false) of the 29
markers in each frame. Once all the states are collected, it is possible
to retrieve the positions and radii of the lost markers using linear
interpolation. This was particularly useful in the off-line training of the
Neural Networks used to estimate the forces. Fig. 4 shows the effects
of a large deformation (4 N) applied in the center of the dome.

2.3. AI-based force estimation

We exploited several approaches to map the displacement of the
markers into force data (acquired with an external load cell). As in Ya-
maguchi and Atkeson (2017), Yamaguchi (2018), we first approached
the problem with a linear approximation based on the formula of the
elastic force. For each marker, we computed the total displacement,
(𝑑𝑥, 𝑑𝑦), and we estimated the force along the three axes as a linear
combination of that values as follows:

[𝑓𝑥, 𝑓𝑦, 𝑓𝑧] =
[

𝑐𝑥𝑑𝑥, 𝑐𝑦𝑑𝑦, 𝑐𝑧
√

𝑑2𝑥 + 𝑑2𝑦
]

, (1)

where (𝑐𝑥, 𝑐𝑦, 𝑐𝑧) are the constant elastic coefficients to be minimized
using the least squares method. Then, the overall estimated forces,
𝐹𝑥, 𝐹𝑦, 𝐹𝑧, of the sensing device are defined as the average of the single
forces:

[𝐹𝑥, 𝐹𝑦, 𝐹𝑧] =

[

1
𝑁

𝑁
∑

𝑖=1
𝑓𝑥,

1
𝑁

𝑁
∑

𝑖=1
𝑓𝑦,

1
𝑁

𝑁
∑

𝑖=1
𝑓𝑧

]

, (2)

where 𝑁 indicated the total number of markers in the pattern. This
approach assumes that every marker has the same impact on the
estimated force and the linear relation between horizontal/vertical
displacements and forces. The model has the advantage of being easy
to understand, to be implemented, and can be improved by adding
further relationships between the force and the geometrical properties.
However, it only works for flat surfaces and cannot be directly applied
to our case. We overcame this limitation by considering all the markers
as independent elements and creating a stiffness vector (𝑁 × 3). This
can be applied to Eq. (1) and to estimate the stiffness for each marker
region. We then compensated the applied force using stiffness-isolines
having decreasing coefficients from the central to the peripheral area
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Fig. 3. Marker identification. (A) The reference frame when no forces are applied. (B) The results of the applied deformation. It is possible to notice that the markers deform
according to the direction of the applied force. (C) The frame after marker detection. The green circle indicates the region of interest where the markers are supposed to be,
elements outside the region are automatically removed.
Fig. 4. Marker tracking. (A) The reference frame when no forces are applied. (B) The results of the applied deformation: 4 N applied centrally to the dome (C) The superimposed
arrows show the direction of the displacement of each marker. The arrows are scaled up by a factor of 8 to make them more visible.
of the dome. After the training, the force estimation can be done
either using a stiffness scalar computed as the mean value for every
stiffness vector or as the resultant forces of the sum of the single force
components applied to each marker.

Other than the linear approach, we implemented two machine
learning models to estimate the applied forces. In the specific, we
applied first a K-Neighbors Regressor (KNR) model (Yao and Ruzzo,
2006), which can be used when the labels of the dataset are continuous
rather than discrete variables. Then, we considered another binary clas-
sification technique re-adapted to be used for continuous classification
problems: Support Vector Regression (SVR) (Drucker et al., 1996). SVR
does not natively support multi-class classification, thus, we trained
3 different models to estimate each component of the force. For both
techniques, we performed a rigorous tuning of the hyperparameters to
achieve the maximum performance, minimizing the mean square error
(MSE) and not overfitting the model.

The last model used to estimate the applied forces was based
on a Deep Convolutional Neural Network (Deep-CNN, or just CNN)
(Alzubaidi et al., 2021). In particular, several models were tested, and
based on the MSE metric, we chose the best-performing architecture
and the respective hyperparameters: ResNet50. As for their definition,
CNN is built to work with images, thus, this is the only case in which we
did not use the extracted time series, but the images (raw or binarized)
instead. This motivates the choice to set the LEDs of different colors.

2.4. External imaging system for fruit detection

External to the sensorized gripper, we also integrated a stereo
vision system based on an RGB-D Camera (Intel Realsense D345i, Intel,
USA). Such devices are widely used in fruit detection and localization
as they provide depth and infrared information in addition to RGB
data (Fu et al., 2020). To mount the camera a customized support
has been developed and printed (X1-Carbon, BambuLab, China) using
PLA. The position of the camera can be adjusted vertically to avoid
having part of its field of view (FOV) covered by the sensorized units.
The camera is then used to first identify the presence of a plant,
then to identify and classify the status of the fruit. The first task is
performed by exploiting a pre-trained CNN (YOLOV8 Jocher et al.,
5

2023) capable of recognizing different objects and animals. Once the
plant is found, the information from the camera is used to identify its
location in the space by computing the barycenter of the bounding box
containing the plant. A second CNN (based on YOLOV8) was used to
identify the strawberries. To improve the performance, the network
was fine-tuned using pre-trained weights using COCO and a freely
available dataset (StrawDI_Db1) containing more than 3000 images of
fully and partially visible strawberries (Pérez-Borrero et al., 2020). If a
strawberry is found, the system returns its spatial position (estimated
as the barycenter of the bounding box containing the fruit) and the ripe
status of the fruit.

3. Results and discussion

We performed a set of experiments to first characterize the sen-
sorized gripper and then validate its integration into the robotic system.
All the experiments have been carried out in laboratory settings, try-
ing to replicate the configurations in a hydroponic orchard. Field
experiments will be considered in future works.

3.1. Force estimation

To properly use the sensor for precise picking applications, it has
to be first characterized. Calibration has been performed by first ac-
quiring the ground truth forces using an external 6-axis force/torque
sensor (ATI Nano17, ATI, USA). The load cell has been connected to
a motorized, vertical slider and placed above the sensing unit. After
positioning and centering the load cell above the dome, while slowly
moving downwards to generate pressure on the dome, we collected a
set of force measurements and a set of raw frames from the internal
camera. We acquired data from 9 different experiments (each config-
uration was acquired 5 times), changing the vertical displacement in
the range between 3 mm to 12 mm with a fixed increment of 1 m.
The data was then processed to first synchronize the measurements,
then to extract the relevant features (e.g., timestamp, marker trajectory,
marker displacement). After tracking the 29 markers, they are linearly
interpolated and filtered with a Butterworth low-pass filter to reduce

errors in the modeling.
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Fig. 5. Comparison of the estimated force components, considering as features the average displacement of the markers (both directions) and the average change in the radii.
Once all the raw data was cleaned and synchronized, we extracted a
set of features to define the ones to be used. We implemented and tested
8 different methods for feature extraction. These are a combination of
average absolute displacement, average radius increment and decre-
ment, absolute radius value, sorted coordinates of the markers, sorted
markers’ radius, and sorted displacements. The dataset was then split
between train and test sets with an 80–20 ratio, using a randomized
approach to validate the performance of the different models. To give
a quantitative measure, the training set is composed of 897 samples,
following the validation set with 100 samples and the testing set with
250 samples. All the tests have been performed on a computer mounting
an Intel Core i5-10400, 3 GHz, 32 GB of RAM, and without the GPU
acceleration.

Among all the possible combinations, when the number of features
used is limited to just the average changes both in the displacement
and in the radii, the system had the worst performance. The best result
was obtained with K-Neighbors Regressor (KNR) achieving the 14.1%
of correct estimation. Increasing the number of features to 58—i.e., by
using sorted horizontal and vertical coordinates of the markers—, the
best performance was again obtained by KNR, achieving an MSE of
9.6%. Similarly, by increasing the feature to 87—i.e., by also includ-
ing the displacement of the radii—, KNR outperformed all the other
methods, achieving an MSE of 9.8%. By reducing the feature number
to 58 and selecting a different combination—i.e., sorted horizontal and
vertical displacements of the markers—, NKR obtained the best overall
performance over all cases, obtaining an MSE of 2.6%. For comparison,
on average SVR achieved an MSE of 35% and the compensated linear
regression an MSE of 300%, respectively. The reason for the high MSE
in the linear model is due to the high fluctuation of the results. It would
be possible to reduce the noise by filtering the results; however, it will
compromise the real-time performance of the model since it requires
collecting sliding widows of samples over time, thus, increasing the
processing time.

Regarding the CNN, we used the ImageNet pre-trained model with
a learning rate of 0.001, a dropout probability of 0.5, and an Adam
optimizer, that we trained for 50 epochs. Results show that it achieved
comparable results with the other machine learning algorithms in terms
of performance (average MSE 27%), with the main difference that the
required time to retrieve predictions has to be taken into account.
In fact, the estimations of the previous methods were obtained, on
average, in 0.007 s keeping the operation rate to 20 Hz as for the frame
rate. The CNN model, instead, requires 0.5 s to return the estimated
force, making it difficult to be used in a real application. Fig. 5 shows
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the comparison of the results considering as a feature the average
displacement of the markers (both directions) and the average change
in the radii. For the specific case, considering only the force along the
𝑧-axis, SVR achieved an MSE value of 46.33%, CNN a value of 87.09%,
KNR a value of 46.05%, and the compensated linear model a value of
53.39%.

To further prove the performance of the models, we tested them
on a new set of data containing dynamic measurements obtained by
applying variable forces on the domes (Fig. 6). As in the previous cases,
we used as a feature the sorted coordinates and the radii of the markers.
Here, SVR achieved an MSE value of 11.34%, CNN a value of 71.84%,
KNR a value of 13.08%, and the compensated linear model a value of
40.0%. Differently from the training set, due to the nature of the data
and the non-linearity of the model, SVR showed a better performance
than KNR proving that the two models are interchangeable. Table 1
shows the best-achieved results by every force estimation approach
in terms of MSE of the 𝐹𝑧 components of the force. According to the
results, KNR and SVR have similar performances both in the execution
time (they can achieve real-time with the same FPS of the video
streaming) and in the MSE metric. Overall KNR has a slightly better
performance (0.28% lower MSE) when compared to SVR, thus, we
chose it to be used during the integration test. However, the two models
are interchangeable, and using one instead of the other does not change
the results presented in this work.

3.2. Evaluation of the system integration

The sensorized gripper was then connected to a Franka Emika Panda
robotic arm. It is a 7-DOFs robotic arm with 855 mm of reach and a
maximum payload of 3 kg. The whole system is controlled at a high
level by a computer running ROS 2 (Macenski et al., 2022) which
acquires and processes the data from the RGB-D camera, controls the
motion of the robot, and acquires and processes the data from the soft
sensors. Before its use, the system needs to be registered and referenced.
This allows having all the points acquired from the RGB-D camera
in the same reference frame as the robot. This is performed with the
classical hand–eye calibration, which returns the relative position and
orientation of the camera with respect to the end-effector of the robot.
At the current state, the real-time pipeline requires some supervision,
which is only limited to the confirmation to proceed to the next stage
of the implemented state machine.
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Fig. 6. Force estimation results in a dynamic case. A new set of data has been acquired and used to test the performance of the models. The estimations are compared to the
ground truths acquired with the 6-axis force/torque sensor, Nano17. As results show, KNR and SVR have still similar results, but due to the nature of the data and the non-linearity
of the model, SVR performs better than KNR.
Fig. 7. Results of the CNN for fruit ripeness identification. (A) A set of all positive results in which the network correctly identifies the ripen and unripe fruits. In the picture,
two fruits were not correctly identified. However, the fruits are completely unripe, so not to be listed among the possible targets. (B) An error in the identification of a possible
target: a part of the jar is classified as a ripe strawberry. In this case, further controls should be introduced to avoid a wrong picking.
Table 1
Summary of the best performance achieved by every model evaluated on the test set (MSE values refer to the 𝐹𝑧
component only).
Model Number of features Feature scaling Best MSE

Linear regression with compensation 58 ≥200%
K-Neighbors Regressor 58 No 2.86%
Support vector regression 87 Yes 11.36%
Deep Convolutional Neural Network 224 × 224 × 3 14.38%
To demonstrate the integrated system capabilities, we recreated a
scenario where a strawberry plant is positioned in a classical hydro-
ponic orchard (Fig. 1C). The robotic arm, which is fixed to a mobile
platform, was placed at a distance of 500 mm from the plants to ensure
the reachability of the target and to avoid complex configurations that
can bring to singularities. Once activated, the system starts looking
for the plants using the RGB-D camera and the pre-trained network.
The main advantage of using such an approach is the speed in the
recognition of a set of common objects. However, even if the correct
identification rate is higher than 98.2%, the bounding box created
around a target does not always contain a single object (i.e., a single
strawberry) or the expected result (i.e., the network provides a false
positive). This error is frequent when multiple objects of the same
type are placed in proximity, which is a common case for hydroponic
orchards. Nevertheless, the issue can be solved by skipping this initial
phase and assuming to know the location of the plant and just focusing
on the fruits alone. Fig. 7 shows a set of classification results provided
by the CNN.

Once the position of the plant is obtained, by using the geometric
center of the detected bounding box, the robot starts to approach
the target while looking for the presence of strawberries. The fruit-
detection network has a lower success rate of 92.4%. This was mostly
due to the position of the strawberries on the plant (i.e., close to the
center of the pot and not hanging out of it) which were most prone to
be covered with leaves. Fig. 8 depicts a schematic representation of the
sequential process used to detect and collect the strawberries.

According to the different types of targets, the robot applies dif-
ferent approaching strategies. If the target is the plant, it plans and
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executes a linear trajectory to approach a centered target Cartesian
point, so that the camera can have a closer view of the target. Contrary,
if the target is the strawberry, the linear trajectory brings the gripper
to a suitable position centered with respect to the fruit so that picking
can be performed. All the trajectories are controlled in position and
follow a set of waypoints computed with a sampling frequency of 1 kHz.
For safety reasons, we reduced by 25% the maximum speed of the
robot and forced the trajectories to be performed in a fixed amount
of time, 5 s. We evaluated the performance of the robot controller and
the vision system by repeating the approaching tasks for a total amount
of 100 repetitions, varying the starting configurations and the position
of the plants/fruits. The system can correctly position the gripper with
a maximum error of 10 mm computed from the reference frame of the
gripper (Fig. 2). The issue does not compromise the system performance
since it can be repositioned accordingly to the computed contact point.
During the experiments, repositioning occurred 10% of the time, and
the correct picking after the repositioning was 60%.

When the robot reaches the final target (i.e., the strawberry to be
picked), the system activates the gripper, which closes until a first
contact is measured. Then, its closure is controlled in real-time using
a force feedback (i.e., close-loop controller based on the developed
sensor) until reaching the empirical threshold of 1.75 N. Afterward,
the strawberry is harvested from the plant by moving the gripper back,
while slightly rotating it toward the ground imitating the common
picking used in manual harvesting by humans. The whole picking task
is performed in less than 10 seconds (from the start of the grasping to
detach of the fruit). Due to the limited availability of plants with fruits
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Fig. 8. A schematic representation of the workflow performed by the external vision system and the robot. (1) The robot reconstructs a 3D map of the environment while looking
at plants. (2) When identified, each plant is considered independently and the robot, while approaching it, starts to search for strawberries. (3) If strawberries is found, the system
identifies the state of ripe, and, if ready to be picked, commands the robot to move toward them one-by-one.
Fig. 9. Selected frame sequence of a picking task; the frames are time-coded to facilitate the sequencing. To better see the different phases and the motion of the gripper and the
robot, the frames are taken from two angles.
(experiments were carried out in winter), we tested the system in a
period of 6 months on 28 plants, and on a total 50 fruits with a diameter
in the range of 15 to 48 mm. With this method, we successfully harvest,
with a single attempt, the 82% of the correctly identified strawberries
without damaging the fruit. Fig. 9 shows a sequence of selected frames
taken from two angles during the picking of a fruit.

4. Conclusions

In this paper, we present the integration of a soft, sensorized gripper
with a robotic system able to identify and pick small fruits such
as strawberries. Soft grippers can be considered as one of the best
solutions for harvesting, thanks to their adaptability and delicacy when
grasping and manipulating the target products. In fact, by using ma-
terials with a module of elasticity similar to biological materials, soft
grippers ensure safe interaction with humans and the working environ-
ment.

The gripper consists of a patterned, hemispherical dome that is
placed above a camera. By tracking the positions and the radii of the
markers in the pattern upon external deformations, and applying ma-
chine learning to the data, it was possible to estimate the applied force.
Compared to other similar solutions, which focus on the estimation
of slip and normal forces, in this work we integrated the soft tactile
8

sensor into a robotic system that comprises an anthropomorphic arm
(Franka Emika Panda) and a gripper-mounted vision system to detect
the plants and each of the fruits. The system can correctly identify the
targets with an accuracy of 92% and can position the gripper with
a maximum error of 10 mm computed from the reference frame of
the gripper (Fig. 2). Using this method, we could harvest 82% of the
identified targets without damaging any fruit or leaving the stalk still
attached to it. The latter feature is an improvement to the solution
already available which requires subsequent processing to remove the
stalk to avoid to damage strawberries when they are placed in baskets
for commercialization.

The proposed force estimation techniques rely on computer vision,
machine learning algorithms, and the calibration of the device. This
means that software updates could surely improve the estimation per-
formance and add new features without necessarily changing the design
of the gripper. In addition to further analysis in real-world scenarios,
future developments could focus on this subject, by providing a fully
automated calibration process.

In the agri-robotic domain, execution time is a critical aspect,
especially in extensive farms. In this work, we just focused on a static
condition where the robot is already in position in front of a set of
plants and does not need to move between different sections of the
farm. Limiting with this specific case, and considering the constraints
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introduced earlier, the performance of the robot is comparable with
other fully integrated robotic systems (De Preter et al., 2018; Xiong
et al., 2020) that require an average of 5 s to harvest fruit with multiple
attempts (success rate from 40 to 70%). As an additional future work,
the picking rate can be improved by considering different directions
to approach the fruits and not only moving horizontally toward the
targets. All of these should be carried out to increase the harvest
ratio between robotic and manual picking, increase the harvested fruit
quality, and make robotic solutions economically justified to put into
practice the Industry 4.0 transition also for the agricultural sector.
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