42,165 research outputs found

    Parallel Multi-Hypothesis Algorithm for Criticality Estimation in Traffic and Collision Avoidance

    Full text link
    Due to the current developments towards autonomous driving and vehicle active safety, there is an increasing necessity for algorithms that are able to perform complex criticality predictions in real-time. Being able to process multi-object traffic scenarios aids the implementation of a variety of automotive applications such as driver assistance systems for collision prevention and mitigation as well as fall-back systems for autonomous vehicles. We present a fully model-based algorithm with a parallelizable architecture. The proposed algorithm can evaluate the criticality of complex, multi-modal (vehicles and pedestrians) traffic scenarios by simulating millions of trajectory combinations and detecting collisions between objects. The algorithm is able to estimate upcoming criticality at very early stages, demonstrating its potential for vehicle safety-systems and autonomous driving applications. An implementation on an embedded system in a test vehicle proves in a prototypical manner the compatibility of the algorithm with the hardware possibilities of modern cars. For a complex traffic scenario with 11 dynamic objects, more than 86 million pose combinations are evaluated in 21 ms on the GPU of a Drive PX~2

    Methods for autonomous wristband placement with a search-and-rescue aerial manipulator

    Get PDF
    A new robotic system for Search And Rescue (SAR) operations based on the automatic wristband placement on the victims’ arm, which may provide identification, beaconing and remote sensor readings for continuous health monitoring. This paper focuses on the development of the automatic target localization and the device placement using an unmanned aerial manipulator. The automatic wrist detection and localization system uses an RGB-D camera and a convolutional neural network based on the region faster method (Faster R-CNN). A lightweight parallel delta manipulator with a large workspace has been built, and a new design of a wristband in the form of a passive detachable gripper, is presented, which under contact, automatically attaches to the human, while disengages from the manipulator. A new trajectory planning method has been used to minimize the torques caused by the external forces during contact, which cause attitude perturbations. Experiments have been done to evaluate the machine learning method for detection and location, and for the assessment of the performance of the trajectory planning method. The results show how the VGG-16 neural network provides a detection accuracy of 67.99%. Moreover, simulation experiments have been done to show that the new trajectories minimize the perturbations to the aerial platform.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Brain computer interface based robotic rehabilitation with online modification of task speed

    Get PDF
    We present a systematic approach that enables online modification/adaptation of robot assisted rehabilitation exercises by continuously monitoring intention levels of patients utilizing an electroencephalogram (EEG) based Brain-Computer Interface (BCI). In particular, we use Linear Discriminant Analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with motor imagery; however, instead of providing a binary classification output, we utilize posterior probabilities extracted from LDA classifier as the continuous-valued outputs to control a rehabilitation robot. Passive velocity field control (PVFC) is used as the underlying robot controller to map instantaneous levels of motor imagery during the movement to the speed of contour following tasks. In other words, PVFC changes the speed of contour following tasks with respect to intention levels of motor imagery. PVFC also allows decoupling of the task and the speed of the task from each other, and ensures coupled stability of the overall robot patient system. The proposed framework is implemented on AssistOn-Mobile - a series elastic actuator based on a holonomic mobile platform, and feasibility studies with healthy volunteers have been conducted test effectiveness of the proposed approach. Giving patients online control over the speed of the task, the proposed approach ensures active involvement of patients throughout exercise routines and has the potential to increase the efficacy of robot assisted therapies

    Human-activity-centered measurement system:challenges from laboratory to the real environment in assistive gait wearable robotics

    Get PDF
    Assistive gait wearable robots (AGWR) have shown a great advancement in developing intelligent devices to assist human in their activities of daily living (ADLs). The rapid technological advancement in sensory technology, actuators, materials and computational intelligence has sped up this development process towards more practical and smart AGWR. However, most assistive gait wearable robots are still confined to be controlled, assessed indoor and within laboratory environments, limiting any potential to provide a real assistance and rehabilitation required to humans in the real environments. The gait assessment parameters play an important role not only in evaluating the patient progress and assistive device performance but also in controlling smart self-adaptable AGWR in real-time. The self-adaptable wearable robots must interactively conform to the changing environments and between users to provide optimal functionality and comfort. This paper discusses the performance parameters, such as comfortability, safety, adaptability, and energy consumption, which are required for the development of an intelligent AGWR for outdoor environments. The challenges to measuring the parameters using current systems for data collection and analysis using vision capture and wearable sensors are presented and discussed

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research
    corecore