13 research outputs found

    Study on Perception-Action Scheme for Human-Robot Musical Interaction in Wind Instrumental Play

    Get PDF
    制度:新 ; 報告番号:甲3337号 ; 学位の種類:博士(工学) ; 授与年月日:2011/2/25 ; 早大学位記番号:新564

    Robotics in Germany and Japan

    Get PDF
    This book comprehends an intercultural and interdisciplinary framework including current research fields like Roboethics, Hermeneutics of Technologies, Technology Assessment, Robotics in Japanese Popular Culture and Music Robots. Contributions on cultural interrelations, technical visions and essays are rounding out the content of this book

    Embodied Cognitive Science of Music. Modeling Experience and Behavior in Musical Contexts

    Get PDF
    Recently, the role of corporeal interaction has gained wide recognition within cognitive musicology. This thesis reviews evidence from different directions in music research supporting the importance of body-based processes for the understanding of music-related experience and behaviour. Stressing the synthetic focus of cognitive science, cognitive science of music is discussed as a modeling approach that takes these processes into account and may theoretically be embedded within the theory of dynamic systems. In particular, arguments are presented for the use of robotic devices as tools for the investigation of processes underlying human music-related capabilities (musical robotics)

    Enhancing stroke generation and expressivity in robotic drummers - A generative physics model approach

    Get PDF
    The goal of this master's thesis research is to enhance the stroke generation capabilities and musical expressivity in robotic drummers. The approach adopted is to understand the physics of human fingers-drumstick-drumhead interaction and try to replicate the same behavior in a robotic drumming system with the minimum number of degrees of freedom. The model that is developed is agnostic to the exact specifications of the robotic drummer that will attempt to emulate human like drum strokes, and therefore can be used in any robotic drummer that uses actuators with complete control over the motor position angle. Initial approaches based on exploiting the instability of a PID control system to generate multiple bounces and the limitations of this approach are also discussed in depth. In order to assess the success of the model and the implementation in the robotic platform a subjective evaluation was conducted. The evaluation results showed that, the observed data was statistically equivalent to the subjects resorting to a blind guess in order to distinguish between a human playing a multiple bounce stroke and a robot playing a similar kind of stroke.M.S

    Generative rhythmic models

    Get PDF
    A system for generative rhythmic modeling is presented. The work aims to explore computational models of creativity, realizing them in a system designed for realtime generation of semi-improvisational music. This is envisioned as an attempt to develop musical intelligence in the context of structured improvisation, and by doing so to enable and encourage new forms of musical control and performance; the systems described in this work, already capable of realtime creation, have been designed with the explicit intention of embedding them in a variety of performance-based systems. A model of qaida, a solo tabla form, is presented, along with the results of an online survey comparing it to a professional tabla player's recording on dimensions of musicality, creativity, and novelty. The qaida model generates a bank of rhythmic variations by reordering subphrases. Selections from this bank are sequenced using a feature-based approach. An experimental extension into modeling layer- and loop-based forms of electronic music is presented, in which the initial modeling approach is generalized. Starting from a seed track, the layer-based model utilizes audio analysis techniques such as blind source separation and onset-based segmentation to generate layers which are shuffled and recombined to generate novel music in a manner analogous to the qaida model.M.S.Committee Chair: Chordia, Parag; Committee Member: Freeman, Jason; Committee Member: Weinberg, Gi

    Designing Sound for Social Robots: Advancing Professional Practice through Design Principles

    Full text link
    Sound is one of the core modalities social robots can use to communicate with the humans around them in rich, engaging, and effective ways. While a robot's auditory communication happens predominantly through speech, a growing body of work demonstrates the various ways non-verbal robot sound can affect humans, and researchers have begun to formulate design recommendations that encourage using the medium to its full potential. However, formal strategies for successful robot sound design have so far not emerged, current frameworks and principles are largely untested and no effort has been made to survey creative robot sound design practice. In this dissertation, I combine creative practice, expert interviews, and human-robot interaction studies to advance our understanding of how designers can best ideate, create, and implement robot sound. In a first step, I map out a design space that combines established sound design frameworks with insights from interviews with robot sound design experts. I then systematically traverse this space across three robot sound design explorations, investigating (i) the effect of artificial movement sound on how robots are perceived, (ii) the benefits of applying compositional theory to robot sound design, and (iii) the role and potential of spatially distributed robot sound. Finally, I implement the designs from prior chapters into humanoid robot Diamandini, and deploy it as a case study. Based on a synthesis of the data collection and design practice conducted across the thesis, I argue that the creation of robot sound is best guided by four design perspectives: fiction (sound as a means to convey a narrative), composition (sound as its own separate listening experience), plasticity (sound as something that can vary and adapt over time), and space (spatial distribution of sound as a separate communication channel). The conclusion of the thesis presents these four perspectives and proposes eleven design principles across them which are supported by detailed examples. This work contributes an extensive body of design principles, process models, and techniques providing researchers and designers with new tools to enrich the way robots communicate with humans

    Physical modelling meets machine learning: performing music with a virtual string ensemble

    Get PDF
    This dissertation describes a new method of computer performance of bowed string instruments (violin, viola, cello) using physical simulations and intelligent feedback control. Computer synthesis of music performed by bowed string instruments is a challenging problem. Unlike instruments whose notes originate with a single discrete excitation (e.g., piano, guitar, drum), bowed string instruments are controlled with a continuous stream of excitations (i.e. the bow scraping against the string). Most existing synthesis methods utilize recorded audio samples, which perform quite well for single-excitation instruments but not continuous-excitation instruments. This work improves the realism of synthesis of violin, viola, and cello sound by generating audio through modelling the physical behaviour of the instruments. A string's wave equation is decomposed into 40 modes of vibration, which can be acted upon by three forms of external force: A bow scraping against the string, a left-hand finger pressing down, and/or a right-hand finger plucking. The vibration of each string exerts force against the instrument bridge; these forces are summed and convolved with the instrument body impulse response to create the final audio output. In addition, right-hand haptic output is created from the force of the bow against the string. Physical constants from ten real instruments (five violins, two violas, and three cellos) were measured and used in these simulations. The physical modelling was implemented in a high-performance library capable of simulating audio on a desktop computer one hundred times faster than real-time. The program also generates animated video of the instruments being performed. To perform music with the physical models, a virtual musician interprets the musical score and generates actions which are then fed into the physical model. The resulting audio and haptic signals are examined with a support vector machine, which adjusts the bow force in order to establish and maintain a good timbre. This intelligent feedback control is trained with human input, but after the initial training is completed the virtual musician performs autonomously. A PID controller is used to adjust the position of the left-hand finger to correct any flaws in the pitch. Some performance parameters (initial bow force, force correction, and lifting factors) require an initial value for each string and musical dynamic; these are calibrated automatically using the previously-trained support vector machines. The timbre judgements are retained after each performance and are used to pre-emptively adjust bowing parameters to avoid or mitigate problematic timbre for future performances of the same music. The system is capable of playing sheet music with approximately the same ability level as a human music student after two years of training. Due to the number of instruments measured and the generality of the machine learning, music can be performed with ensembles of up to ten stringed instruments, each with a distinct timbre. This provides a baseline for future work in computer control and expressive music performance of virtual bowed string instruments
    corecore