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SUMMARY

A system for generative rhythmic modeling is presented. The work aims to

explore computational models of creativity, realizing them in a system designed for

realtime generation of semi-improvisational music. This is envisioned as an attempt

to develop musical intelligence in the context of structured improvisation, and by

doing so to enable and encourage new forms of musical control and performance;

the systems described in this work, already capable of realtime creation, have been

designed with the explicit intention of embedding them in a variety of performance-

based systems. A model of qaida, a solo tabla form, is presented, along with the

results of an online survey comparing it to a professional tabla player’s recording

on dimensions of musicality, creativity, and novelty. The qaida model generates a

bank of rhythmic variations by reordering subphrases. Selections from this bank are

sequenced using a feature-based approach. An experimental extension into modeling

layer- and loop-based forms of electronic music is presented, in which the initial

modeling approach is generalized. Starting from a seed track, the layer-based model

utilizes audio analysis techniques such as blind source separation and onset-based

segmentation to generate layers which are shuffled and recombined to generate novel

music in a manner analogous to the qaida model.
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CHAPTER I

INTRODUCTION

This thesis describes an attempt to create a generative rhythmic modeling system

capable of generating musical output in realtime. Our emphasis is on rhythmic and

timbral components of music, and two quite different applications are discussed in

Chapters 2 and 3. We describe a system which creates novel musical material based

upon some initial musical seed; this is accomplished by modeling musical structure

in terms of abstractions such as functional groupings of events, and the conditional

dependencies between them. In Chapter 2, a generative model of qaida, a traditional

north Indian solo tabla form, is presented, along with results of a survey comparing its

output to that of a real tabla player. The work in this chapter constitutes the primary

result of this thesis — the model is developed to the point of reliably producing

aesthetically satisfactory output, as judged by both the author of the work and the

survey respondents, and a user interface for realtime operation has been developed.

Chapter 3 describes an experimental extension of this work, a generative model of

a simplified compositional form found in much rhythm-based electronic music. This

additional work is primarily concerned with applying the ideas detailed in Chapter 2

to a style of music built largely on the addition, subtraction, and recombination

of vertical layers. Extending our modeling approach to this musical context raises

a number of technical challenges, and clarifies some underlying assumptions about

musical structures upon which the original model relies.

This work is fundamentally motivated by an interest in exploring computational

models of creativity. This topic, which can be generally defined as the design of

generative models whose output would be deemed creative when judged by the same

1



standards as human creativity, holds great interest in its own right. A further appeal

is the potential for work in this area to engender new modes of performance, and

inspire human creativity. The work presented in this thesis, primarily concerned

with developing generative models, has been conducted with an aim of ultimately

embedding these models in performance systems. As envisioned, these performance

systems will include a range of paradigms: interactivity, in which machine listening is

used to influence the output of the computer; manual control, in which a performer

is able to manipulate higher-level parameters of the model, perhaps being surprised

by the particulars of the results; and fully autonomous, in which the computer acts

on its own.

A defining characteristic of any sort of modeling is that the design must always

define, whether implicitly or explicitly, a level of detail below which the structure

need not have any relationship to system being modeled. This is in fact the essence of

what a model is: a structural simplification which approximates something observed

in the real world, without emulating its every detail. If a model can convincingly

mimic observed reality without mimicking all of the underlying processes, then it

is considered successful. The models presented here are not based on the physical

structure of the human brain, nor on the network of cognitive processes thought to be

involved in human creativity. Rather, they are based on analysis of musical structure

and on observations about the process of music-making. They can be seen as models

of the processes of musical creativity (or rather, a subset of those processes). One

important point which follows from this is that ultimately the only way of making

valid judgements of whether or not a model is in fact modeling creativity, or how well

it is doing at that task, is by assessing the quality of its musical output. In essence, by

presenting a system as modeling realtime creativity, we are suggesting that it should

be able to succeed in a performative capacity.

Of course, many systems have been designed for performance and composition
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which would not truly be considered models of creativity. A complex and unpre-

dictable interactive music system such as George Lewis’s Voyager [40] may be un-

deniably creative, but many such systems are specifically designed for a particular

musical context, and function more as living musical pieces than true models of cre-

ativity. We can identify a number of factors for a system to be considered to embody

a model of creativity: a quality of output which at least some listeners judge to be

of a high quality, a substantial degree of autonomy, and enough generalizability that

it can be applied outside of a singular musical context. The types of performance

systems described above as goals towards which this thesis is working should satisfy

these constraints, and as stated, the work described in Chapter 3 is intended to test

our system’s capacity to generalize. From this perspective, computational models

of creativity and musical performance systems, while not necessarily equivalent, are

deeply related.

A consistent emphasis in the current work is on designing the systems to be capable

of realtime operation. This deserves explanation, as it is not in itself a requirement

for a generative model. The first reason for this focus is that in general, the types of

musical creativity addressed here are more closely related to improvisational forms

than “offline” composition in which a composer is able to view the whole product

before it is considered finished, and to make edits to the material. This is not an

exclusive focus — the work presented in Chapter 3, for example, is just as readily

applicable to offline generation — but is a consideration which has shaped some of the

design of the models. In some respects this is necessary in order to properly model

the chosen subject matter. The work presented in Chapter 2 models an improvised

musical form, and the author’s own previous experience creating music similar to

that discussed in Chapter 3 usually involved some improvisation, particularly in the

construction of larger musical trajectories. The second reason to emphasize realtime

generation is the planned future work mentioned above, namely embedding the models
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in performance systems. Clearly, any interactive system must be able to generate

material in response to realtime input; more generally, it is the author’s view that a

performing computer system will be best called creative when that creativity happens

in realtime. This is not a hard requirement, of course, but helps us to draw the very

real distinction between a computer which “performs” by playing back a soundfile

and one whose output remains undetermined until the moment before it is played.

This is hardly the first work concerned with generative music modeling, but it

distinguishes itself in a number of ways. The assemblage of elements and the ar-

chitecture of their arrangement is unusual, including the design of components such

as the two-stage generation/selection process described in Sections 2.4.2 and 2.4.3,

which serves both as an effective generative technique and an ad-hoc model of cogni-

tive processes. Audio analysis techniques are used largely for the purpose of off-line

learning, but then brought into a realtime context in which the techniques are ap-

plied to material that has not yet been played, which can be thought of as a simple

model of a computer listening in its “mind’s ear”. The work described in Chapter 2

applies computational modeling to an area which, to our knowledge, has yet to be

approached in this way. The work described in Chapter 3 represents a novel applica-

tion of the sorts of syntactical variations developed in Chapter 2 to a very different

genre, generalizing some of the components to allow underlying algorithms to remain

largely the same. Lastly, a great deal of other work in this general area, reflecting the

biases of the Western classical tradition, has focused primarily on pitch-based music,

in particular on modeling melodic forms; here we focus on rhythm, and its reliance

on timbre.

The core of our efforts focuses on designing the models, but audio generation is

obviously a central concern. There are various approaches to the challenge of how

to take some musical material represented internally in a computer and output it

as sound. These range from printing scores of musical notation to be interpreted
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by instrumentalists [31], employing robots to manipulate physical objects such as

traditional instruments [70, 69, 59], and of course directly generating audio through

synthesis or sampling techniques. The system presented here adopts the approach

of sample-based audio generation; in the case of the qaida model, samples occupy

known categories of drum sounds, while in the layer-based model, the samples are

derived from the audio source upon which the model is built.

While we are attempting to build generative models with a high degree of auton-

omy, the design of the current project deliberately exposes a certain level of realtime

control to a human operator. The motivations for retaining handles of control stem in

part from my own history as a performer and composer of electronic music. Firstly, as

a stated goal for this work is to lay the groundwork for performative systems, an ap-

pealing prospect is to allow the system to be playable even while still in development.

In a related vein, control of a generative model should be a qualitatively different ex-

perience from that afforded by other forms of musical control. Composers and instru-

ment designers have often experimented with alternate interfaces, including brainwave

sensing [41], gestural controllers [67], and extended instruments [42], among others.

While many of these innovations are obviously distinguished by their unique solutions

to various challenges of physical engineering, a common thread among them is that

new modes of control open new avenues of expression, and create a different quality

of experience for both performer and listener. This is of course not limited to physical

controllers; it applies equally to novel approaches to parameter mapping [6, 33, 71].

An ancillary hope for the current work is that it may eventually contribute something

to this tradition. A final point to make regarding these handles of control is that a

generative model should ultimately incorporate some awareness of its context, for

example the pitch content of a human co-performer’s melodic solo, into its generation

process; this is in fact necessary for some of the interactive performance applications

discussed above, and is a recurrent theme in theories of human creativity discussed in
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Section 1.1.2. Many parameters of the models could be retroactively made subject to

manipulation based on such data, but building in a number of methods for influencing

the model’s operation in realtime anticipates this usage.

Essentially, the intent of this thesis work is to create a system which lies in an

optimal midpoint between two poles: on the one hand, a fully general system of gener-

ative models based in abstract statistical modeling and analysis of music and musical

creativity, agnostic to style and aesthetic and capable of autonomous operation, and

on the other, an idiosyncratic algorithmic composition or performance tool, tuned to

the peculiarities of the creator’s taste and needs. Thus, a wide array of tasks are

addressed, and an emphasis is placed on finding solutions which are sufficient to the

extent that they allow the system to create music. Ultimately, the success of a project

pushing towards these goals depends largely on the quality of its musical output.

1.1 Background

The work in this thesis touches on a range of fields. Some relevant background is

presented below, but a complete treatment of all related works and issues is somewhat

beyond the scope of this chapter; the reader is directed towards the cited works for

more detailed information. As is to be expected in interdisciplinary fields, there is

often a significant degree of overlap between the areas discussed here.

1.1.1 Improvising Machines

Many systems have been developed which can claim to involve machine improvisa-

tion. Three key elements can be identified which distinguish improvisatory systems

from other generative or performance-based systems such as non-realtime algorith-

mic composition or interactive systems built on a set of discrete cues: precise output

should not be easily predictable based on previous events, decisions must be made

within the time constraints of the musical context, and there is no concept of edit-

ing or retracting a previous decision. The current work fits these basic principles,
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and for the most part is conceived as an improvisational system. Any improvising

system must solve various challenges arising from these constraints; the work of two

researchers/composers is presented here briefly.

François Pachet has developed a well-known system called the Continuator [46].

Pachet’s program is designed to interact with one human musician, and tries to come

up with improvisatory responses to that musician’s playing. Briefly, the Continuator

segments the stream of input notes into phrases, builds a database from these phrases,

and then uses this information to generate a continuation of the latest gesture. The

continuation algorithm is based on a prefix tree [54] built from the input phrases, and

maintains a variable-order memory, allowing the output to better emulate long-term

structure than would be possible using a simple first-order Markov model. While

the prefix tree is based directly on the received input, the choice of the output is

determined by random draws from the set of possible continuations determined by

the tree, weighted by their respective probabilities. These probabilities are determined

from the structure of the prefix tree, and thus also representing characteristics of the

input. This aspect of Pachet’s approach is notable; a recurring technique in creative

systems is to determine output by choosing probabilistically from some larger set of

possibilities. The current work employs similar techniques, although the processes for

defining the larger set of possibilities and assigning probabilities in the choice step

are not both based on the same information, and neither one is based on realtime

audio input.

Arne Eigenfeldt has done some intriguing work in the vein of machine improvi-

sation. His multi-agent “Kinetic Engine” [24], a semi-autonomous Max/MSP patch,

models the interactions between networked improvising agents in terms of musical

features such as timbre and rhythmic complexity, and social dynamics such as co-

operativeness, allowing shared parameters such as tempo and overall contour to be
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controlled globally by a “conductor” agent. This model is implemented as a perfor-

mance system titled “Drum Circle” [25]. Of note is the way in which modeling the

social interaction of rhythmic agents fundamentally precludes the notion of redaction

or editing of the results: one agent can make a request to another for cooperative

interaction, that is, syncing of various parameters, and the second agent may (or may

not) respond affirmatively within a certain period of time. It is worth mentioning

that he views his work primarily from the composer’s perspective, stating that he

regards the musical knowledge and intelligence in his systems as an extension of his

own compositional tendencies, rather than as a general model of creativity [26]. In

addition, Eigenfeldt has experimented with automated generation of electronica, and

even published several recordings under the pseudonym “raemus” [27]. Unfortunately,

considering the obvious potential relationship to the work described in Chapter 3, he

has published little on this particular direction.

1.1.2 Theories of Creativity

Within the field of psychology, there have been many attempts to characterize the

basic nature of creativity, incorporating perspectives and data from a wide variety of

sources. This is relevant for the current work as a general framework within which to

understand what may be meant by modeling creativity, and should help to elucidate a

number of issues involved with meaningful approaches to this task and the evaluations

of its outcomes.

The first issue is to define more precisely what is meant by creativity. Many defi-

nitions have been proposed, representing different philosophical and research perspec-

tives, often in contradiction with one another. Mihaly Csikszentmihalyi [19] outlined

a theory formulating creativity as a concept arising from the interaction of certain

elements: a domain, such as music or a particular musical genre, the individual who

produces some possibly creative work, and the field within which the work is judged.
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One significance of this is that it moves creativity from being a purely individual

characteristic, to one largely the product of external interactions; notably, the final

determination of whether the individual has been creative rests on the judgement of

peers. Sternberg [61] describes a number of theories based in the idea that there are

multiple creativities. Geneplore [30], for example, models creativity as comprised of a

generative phase in which a large set of potential materials, e.g. observations on some

topic, or melodic fragments, is amassed, and an exploratory phase in which this set is

explored and interpreted. There is notable similarity between this and elements of our

system described in Sections 2.4.2 and 2.4.3. One of Sternberg’s own theories [62] rep-

resents creativity in terms of three processes for finding insights in large quantities of

information: selective encoding, combination, comparison. The interaction between

these elements acts as a kind of introspection: insights found by filtering information,

the first process, are combined to generate new insights, which in turn are compared

to previous or distant insights to create yet another insight. This set of processes,

he posits, defines a form of creativity. Many of these theories share some relation to

Gardner’s theory of “Multiple Intelligences,” [32], concerned primarily with making

the case that intelligence is best viewed not as a singular quality, but as a collec-

tion of somewhat independent mental properties; Gardner also addresses creativity,

characterizing it as fundamentally concerned with the production of novelty within a

domain, similarly to Csikszentmihalyi’s approach.

More practical but equally valid definitions have focused on the concept of novelty.

From this approach, a common formulation defines creativity as an action or process

which produces novel output that satisfies the constraints of context [18]. Address-

ing the basis for judging whether an artificial system could be considered creative,

Pereira [49] identifies the requirements that when given a problem, answers produced

by the system should not replicate previous solutions of which it has knowledge, and

should apply acceptably to the problem. These are notably similar conceptualizations
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of creativity, and share the idea that the existence of creativity can, and should, be

evaluated on the basis of the product.

1.1.3 Creativity and Style Modeling

David Cope’s long-running project Experiments in Musical Intelligence (EMI) focuses

on faithful emulations of styles in the Western classical canon [15, 14]. His approach

focuses on extracting typical patterns from a large corpus of works, analyzing those

patterns to retain those which encode the main elements of the style, and recombining

them to create derivative works [17]. The musical creativity modeled in EMI is

generally that of the traditional Western classical composer, that is, composition

which does not necessarily happen in realtime, and whose output is a written score.

Cope has written and worked extensively in this field, considering his work to

be fundamentally concerned with computational models of creativity. He identifies a

number of basic elements which he determines to be central to this task, specifically

calling out pattern-matching and recombinance [18]. Much of the work presented

in this thesis similarly relies on recombinance as a key process for generating novel

material; the technique is particularly central to elements presented as generalizable.

1.1.4 Graphical Models

We borrow some visualization and analysis techniques from graphical modeling, a

statistical modeling technique which has in recent years become one of the more

commonly used methods in machine learning [45, 1]. Graphical models represent in-

terdependent random variables in a way which is relatively easy to grasp intuitively,

potentially reduces computation, and may reveal structure in the model more clearly

than other approaches. Jordan[37] describes graphical modeling as a “marriage be-

tween probability theory and graph theory.... Probability theory provides the glue

whereby the parts are combined, ... the graph theoretic side ... provides both an intu-

itively appealing interface...as well as a data structure that lends itself naturally to the
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design of efficient general-purpose algorithms.” The core of this technique, and the

most relevant aspect for the current work, is a graphical representation of networks

of variables as nodes, with connections between them representing conditional depen-

dencies, or causal relationships. Frequently, complex systems can be easily reduced

and visualized in this way. Mathematically, an immediate utility of representation in

terms of graphical models is that one need not calculate all possible conditional prob-

abilities when evaluating the network; rather it is possible to represent dependencies

in terms of variables “upstream” [45].

Graphical modeling has been applied with some success to a variety of musical

modeling and analysis problems. Taylan Cemgil has demonstrated applications rang-

ing from analytical tasks such as tempo and pitch tracking [5] to generative tasks

such as automatic harmonization of Bach Chorales[4]. Christopher Raphael has im-

plemented score following[52] using graphical models. The primary appearance of

graphical modeling in the current work is as a tool for the initial steps of inspection

and model design; however due to their broad applicability and intuitive nature, it

is intended that future work incorporate more robust statistical models using this

technique.

1.1.5 Music Information Retrieval

Music Information Retrieval (MIR) is the field concerned with extracting information

from musical audio. The areas of MIR which are most relevant to this thesis have to do

with the extraction of timbral features and the identification of perceptually relevant

timing information. There is a large set of timbral features commonly known and

used for a variety of applications within MIR. A raft of these features are described

in detail in [48], and some are used briefly in Chapter 2. The task of identifying higher-

level percepts, however, suffers from the fact that the goals of analysis are defined by

human perception. In this situation, objective ground-truths are hard to come by, or
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may exist only as approximations of an under-determined concept. Research in music

perception and cognition is making inroads into some of the aforementioned problems,

identifying unexpected commonalities and regularities in human musical perception,

and providing bases for quantitative models [34, 22]. However in many situations,

extensive manual adjustment of parameters is required to achieve the desired results.

This is noted a number of times in Chapter 3.

The MIR work in Chapter 2 is limited to some simple timbral analysis to pro-

vide the model with a richer characterization of some of its constituent material.

Chapter 3 presents a more extensive use of MIR; this step results from extending the

system to an area not conducive to symbolic representation, necessitating that parsed

audio material be made available to the underlying model. A good overview of onset

detection, including the algorithms which form the basis of the technique described

in Section 3.2.3, can be found in [23]. Beat detection was implemented and tested

in the system; ultimately it was rejected due to an inadequate level of accuracy, but

for completeness, we include a brief reference to the source of the algorithm used.

The “context-dependent” beat tracker developed by Matthew Davies [20] attempts

to model the dual human characteristic of “locking in” to a beat while at the same

time keeping an open ear by listening for changes in tempo and maintaining two beat

period and phase hypotheses simultaneously. He presents his work in the context of

developing for real-time musical accompaniment, in part by designing the algorithm

for the high computational efficiency required in real-time analysis.

Nick Collins [12] has developed an algorithmic beat tracker and “slicer”, essentially

an amalgamation of many different musical analysis techniques, some well-known

and some innovative; our work borrows some technique and inspiration from his, in

particular in the approach to segmentation described in Section 3.2.2, and its validity

in the context of the genres of electronic music considered in Chapter 3. Collins has

released this software as a plugin for the algorithmic music programming language
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SuperCollider [43], named “BBCut2” [11, 13], and has used it extensively in his

own performance, something which distinguishes his work from that of many others

in the field. Tristan Jehan [35] built an integrated suite of analysis tools for the

purpose of “creating music by listening.” Situating his analysis within the history of

algorithmic composition and technologically aided music-making in general, he states

that his work, “inspired by some empirical research on human listening and learning,

may be considered the first practical attempt at implementing a ‘music cognition

machine.’ ” [35] His approach attempts to combine different modes of analysis, from

psychoacoustically inspired signal processing to machine learning of stylistic aspects,

creating a more comprehensive representation of musical structure. Again, we draw

some inspiration from his approach, and make use of some of his techniques for audio

segmentation.

Lastly, MIR is closely related to what is known as “machine listening.” This is

distinguished from MIR in its general emphasis on incorporating musical intelligence,

typically for use within interactive musical systems. It is mentioned here because

frequent references have been made to the intended future directions of this thesis

work, both as an attempt to properly situate it contextually, and as motivation for

a number of design features. Many of the more exciting possibilities afforded by

the generative modeling we describe will certainly involve machine listening — for

example, our qaida model could be combined with prior work on realtime tabla stroke

recognition [8] to create a system which could perform as one half of a percussion duet,

trading variations and basing its output on the playing of the human musician.
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CHAPTER II

QAIDA MODELING

In this chapter we present a generative model of qaida, a traditional North Indian

solo tabla form. This was the first attempt within the current work to develop a func-

tioning generative rhythmic model. Work proceeded from well-known and accepted

theoretical descriptions of qaida, and operated mostly on a symbolic level. The mo-

tivations for modeling qaida are described further in Section 2.3, but broadly it can

be said that this form was a promising starting point due to having a well-described

structure, and also due to the relative ease with which a compact representation can

capture essential characteristics, further described in Section2.1. Since qaida is a

theme-and-variations form, there are also fairly clear limitations on the domain in

which the machine creativity is expected to operate.

Further, prior work by the author on automatic classification of tabla strokes in a

realtime context [8] had built a foundation of knowledge concerning some of the more

low-level aspects of tabla. More closely related to the current work, a highly simplified

model of simple rhythmic tabla accompaniment was previously implemented in Java

and Max/MSP, and was used in a collaboratively composed piece “Slow Theka” [9], a

piece for automated tabla, computer audio processing, and sarod, a plucked stringed

Indian instrument, which was performed publicly [60]. It seems a natural development

to develop a more robust model, and let the machine take center stage.

The qaida model is implemented as a system which is capable of generating new

output in realtime, operating largely independently, but allowing for manual control

of certain global parameters, which may be manipulated to sculpt a compositional

arc. It would be interesting, and quite straightforward given the current architecture,
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to connect other sources of control to these parameters, such as physical sensors or

audio analysis of another performer, but this is left for later work.

Results indicate that the system produces thematically appropriate and novel

material. Informal listening suggest that over moderate time-scales, the machine

improvisations continue to maintain a sense of novelty. Upwards of three to four

minutes or so, the lack of global changes dampens the effect. This can be overcome

by judicious manipulation of the accessible parameters, but longer-term form remains

an area for improvement. A formal survey was conducted, discussed further in Section

2.5, and encouragingly, results indicate that computer generated recordings were well

received.

2.1 Introduction to Tabla

In order to properly present the qaida model, it is necessary to first give an introduc-

tion to the instrument upon which it is played. Tabla’s particular timbral and musical

characteristics are reflected in many key aspects of qaida and other solo tabla forms.

More than a distinctive tone color, the physical properties and playing techniques of

tabla lead to an idiomatic style which will be difficult to properly characterize without

some understanding of its modes of production.

Tabla is the predominant percussion instrument of North India. Despite relatively

recent historical origins [63], it is nearly omnipresent in North Indian classical, folk,

film, and devotional music. Unlike Western classical music, Indian classical music

makes extensive use of percussion, and while there is no shortage of performances

and recordings featuring an unaccompanied melodic soloist, a tabla is present in the

majority of cases. Indeed, tabla has come to represent the percussive side of North

Indian classical music, and is thus central to the genre as a whole.

Physically, tabla is actually a pair of drums, as seen in Figure 1. It is played
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Figure 1: A tabla. The drum on the left is the bayan; the drum on the right is the
dayan.

with the hands and fingers, and each drum is associated with one hand. The right-

hand drum, called the tabla or dayan, is higher in pitch than the left-hand drum, or

bayan. Both drums are capable of producing a variety of timbrally distinct sounds,

ranging from ringing sounds with a clear pitch to short sharp sounds characterized by

a high noise content. There are specific striking techniques for producing each of the

different timbres, known generally as strokes. A summary of tabla strokes, limited to

those used in the model described in this chapter, is shown in Table 2.1. The compact

arrangement of the drum heads and the hand positions for the various strokes allows a

skilled player to switch rapidly between radically different timbres [7]. The dramatic

effects attainable by juxtaposing various stroke types is heavily exploited by most

tabla music.

The basic aesthetic which arises from this is not best seen as one of jarring juxta-

position. Instead, tabla music is built on a discrete recombinant musical vocabulary

in which flowing sequences can be built through syntactical development. Individual

tabla strokes are conceived of as categorically distinct entities; this is reflected in

the predominant naming scheme for tabla, in which the various strokes are named

using semi-onomatopoeic syllables. However the real level of categorization is a little
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higher, based on the concept of bols. Many bols simply refer to a particular strik-

ing technique, but some refer to short atomic sequences, such as te te, two sharper

non-resonant sounds played in quick succession, or te re ki te, another sequence of

non-resonant stroke. Importantly, a bol may also be a simultaneous combination of

two strokes, one on each drum. Dha, for example, is produced by playing the ring-

ing stroke known in isolation as na on the dayan, and ge, another deeper resonant

stroke, on the bayan. The combination is seen to have qualities coming from its com-

ponents, but nonetheless to possess a distinct identity. This is significant because

within this conceptualization, tabla can be thought of as a monophonic instrument.

In fact it is often described as having melodic aspects, occupying a space between

melody and rhythm. Note that the notion of melody here has nothing to do with a

sequence of pitches, but rather a foregrounded rhythmic sequence with an evolving

linear character.

Tabla strokes can be grouped according to their timbral characteristics. The most

basic grouping divides ringing resonant strokes from sharp and unpitched strokes,

referred to as “open” and “closed”, respectively. Both drums can produce strokes

of each type. The second division separates low, bass strokes from higher-pitched

ones, essentially distinguishing the resonant bayan stroke ge from the ringing strokes

produced on the dayan. The right-hand drum is tuned to a very clear pitch, made

possible by the application of a thin disk of damping material to the center of the drum

head – inharmonic partials are damped and the overall pitch is lowered, the net result

being a class of strokes with a harmonic partial structure. The resonant stroke na is

one of the more common examples. A second clear pitch, approximately one whole

tone higher, can be produced on the same drum, and has overall less high frequency

content. Resonant strokes played on the bayan may also have a clear pitch, but the

bayan is in general not tuned so precisely, may have a slightly enharmonic spectrum,

and most importantly, is manipulated with the palm of the heel to modulate the
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Table 1: Tabla strokes used in the qaida model. The drum used is indicated,
along with basic timbral information. “Ringing” strokes are resonant and pitched;
“modulated pitch” means that the pitch of the stroke is altered by palm pressure on
the drum; “closed” strokes are short, sharp, and unpitched.

Stroke name drum used timbre
dha compound ringing bayan
dhe compound ringing bayan
dhec dayan closed
dhen dayan ringing bayan
dhin compound ringing bayan and dayan
dun compound ringing bayan and dayan
ge bayan ringing bayan
geM bayan ringing bayan, modulated pitch
ke bayan closed
na dayan ringing dayan
nec dayan closed
nen dayan ringing dayan
rec dayan closed
te dayan closed
tin dayan ringing dayan
tun dayan ringin dayan
tunke compound closed bayan, ringing dayan
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ringing pitch. This is a very expressive technique, and gives tabla a sizable portion

of its distinctive sound. The subtleties of bayan modulation would be an interesting

and productive area to model, but are beyond the scope of the current work.

2.1.1 Theka

When the tabla is in its most common role as a time-keeping accompanist to a melodic

soloist, it plays what is known as theka. This is basically an improvisation fleshing out

an underlying rhythmic cycle, adding interest and variation to an underlying repeat-

ing pattern. The basic structure is defined by a sequence of stroke types associated

with metrical potision within the cycle, however they are essentially abstract strokes,

in that one rarely plays theka simply as a literal reproduction of this sequence. In-

stead, these abstract stroke types can be seen as defining the character of the short

improvised phrase to be played within each beat location. For example, a common

theka using the stroke dha, dhin, na, and tin. At metrical position associated with

dha, one would generally avoid playing dhin, as that is the abstract stroke type of a

different metrical position.

Leaving aside discussion of the variety of commonly used cycles, or taals, and their

respective theka forms — an extensive topic — we currently limit ourselves to teental,

the most commonly used cycle. Teental is sixteen beats long, with an auxiliary sub-

division of four groups, roughly corresponding to 4/4 in Western meter. This is the

meter used in the qaidas modeled in the current work. An important characteristic

of teental is a pattern of closing and opening the bayan. The first half of the cycle is

played using resonant bayan strokes, through the first beat of the second half; from

beats ten through thirteen, the player damps the bayan with the palm of the left

hand, effectively removing all lower frequency content; in the last three beats, from

fourteen through sixteen, the player re-opens the bayan, signaling the approach to

the downbeat.
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Theka’s relatively simple form can be described using a similar approach to our

description of qaida, and certain characteristics such as this pattern of opening and

closing the bayan are shared with qaida. A basic understanding of theka should thus

help in understanding qaida form.

2.2 Introduction to Qaida

While tabla appears most frequently in the role of accompaniment, there is a rich

tradition of solo tabla performance, in which the tabla takes center stage. In this

case, the tabla is usually accompanied by a melodic instrument that plays a repeated

figure known as nagma which occupies the role of a timekeeper. A solo tabla perfor-

mance typically involves stringing together a series of different compositional forms,

interspersing them with theka, and can last anywhere between forty-five minutes and

a couple of hours. One of the most prominent compositional forms presented in a

solo tabla performance is qaida (sometimes written as kaida or kayda), essentially

a structured semi-improvised theme-and-variations form [68]. The term itself means

“rule” or “custom”, suggesting a formal underpinning; indeed, it is qaida’s tendency

to adhere to a set of compositional rules that made it an ideal application of the

modeling approach described in this thesis.

The theme upon which a given qaida performance is built is taken as a fixed

composition. There are a large number of traditional qaida themes, some quite short,

occupying e.g. taals of eight or sixteen metrical beats, some much longer. Qaida is

basically a cyclic form in that performance takes place in the context of a repeating

rhythmic cycle, so the duration of the cycle and the qaida theme must generally

match. The passage of time through the cycle is accentuated by a similar pattern

of closing or damping the bayan as is used in theka. This serves both to introduce

variation into the material and, as with its use in theka, to help the listener follow

a longer periodicity and glue the whole pattern together into one identifiable unit.
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This pattern may be exhibited within a qaida theme, as well as over the course of a

set of variations (described below).

The macroscopic form of qaida follows a fairly simple structure: introduction of the

theme, usually at a slower tempo, development of variations at an increased tempo,

conclusion. Within the main body, variations are presented in a structured manner:

a variation is introduced, the theme is reiterated, the same variation is repeated

with closed bayan, and finally the theme is played again with closed bayan, often

re-opening it shortly before the end of the cycle. This alternation of repetition and

variation helps to give the qaida a sense of coherence. New material is emphasized by

its presentation at the start, and the listener’s awareness of the theme is frequently

reinforced. Repetition of each variation invites one to hear it as possessing some

compositional weight, that is, to hear it as a structural whole, rather than an arbitrary

string of strokes. Finally, as mentioned, superimposing the timbral pattern of bayan

damping groups the whole set together.

2.2.1 Variations

While qaida themes are part of the shared repertoire of solo tabla, and thus learned

by the tabla player prior to performance, variations are improvised according to some

basic principles. There are a number of known approaches to variation generation.

Perhaps the most important guiding principle of qaida variations, however, is a re-

striction on the material. Only bols which appear in the qaida theme may be used

in the variations. This is intended to preserved the essential character of the given

qaida. Limiting the vast space of possible improvisations in this way immediately

imposes some structure; it introduces a simple conditional dependency.

Given this limitation, one common and effective variation technique is to rearrange

subsections of the theme. Qaida themes have internal structure, and are often heard as

a series of “natural” subdivisions. The partitions correspond to short characteristic
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sequences of strokes. This procedure provides a clean, though partial, solution to

a central problem in structured creativity, whether by machine or human: how to

generate musical material which is novel, yet retains a clear relationship with the

source material or context. As all of the qaida partitions can be moved about, and

may be repeated, there are a tremendous number of theoretically possible variants on

the theme, using just this technique.

Another class of variations is derived from doubling the tempo of a set of subsec-

tions. Typically, partitions played at double-time will be repeated consecutively in

order to fill the same metrical duration as their original form.

2.2.2 Tihai

To end a qaida, the performer plays what is known as a tihai. Briefly, this is par-

ticular type of rhythmic figure which stands out from the preceding material, and

dramatically emphasizes the end of the cycle (and the qaida). There are many possi-

ble tihai ’s, but the most basic form is comprised of a rhythmic figure, known as the

pala, which is repeated three times with a short pause between each iteration, and

timed such that the last stroke falls on the downbeat of the next cycle. The tihai

can start at any metrical location within the cycle, so the pala is unlikely to line up

neatly with regular divisions of the main cycle. The effect is a tension between the

internal repetition of the tihai (accentuated by the pause), and the progress of the

main cycle, resolved by the two coming into phase on the downbeat.

2.3 Why Qaida?

Qaida was chosen as a form to model due to a number of characteristics which lend

themselves to formal modeling. Structurally, some aspects of qaida are quite simple.

This is not to say that qaida is in any respect a simplistic or even simple form of music;

on the contrary, tremendous musical and perceptual complexity is built up through

systematic applications of basic principles. Ideally, of course, the deep knowledge
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and musicality of the performer is expressed through the music with a subtlety that

is hard to imitate on a computer, but many essential characteristics of qaida can be

captured through the modeling approach described here.

Specifically, qaida is attractive as a subject for the following reasons. Perhaps most

importantly, as qaida is a prominent form in a classical tradition, there is a known and

well-developed theory. While traditional approaches to pedagogy in Indian classical

music tend to emphasize immersion and a guided process of discovery, there is an

equally strong emphasis on gaining knowledge of and respect for fundamentals of the

style.

Further, there are canonical forms. It is for example possible to refer to masterful

examples of qaida performance that are almost without exception acknowledged as

such by the broader community of tabla players. Similarly, it is possible to make

judgements of quality, when comparing different performances or recordings, that have

some semblance of objectivity. Conversely, different styles of qaida can be understood

as being systematically distinguished from each other, belonging to one or another

gharana (stylistic school) or era. Without these elements of this musical culture, it

would be substantially more difficult to parse the complexity of the actual music.

Qaida is essentially a monophonic music. Acoustically, this is a debatable claim,

as evidenced by the fact that tabla consists of two separate drums, often played si-

multaneously. The important point, as described in Section 2.1, is that within the

Indian Classical tradition, tabla is predominantly conceptualized as a single stream

of timbral syllables. Tabla recitations, in which a fixed composition is recited using

the stroke names prior to playing, make full use of this notion; internalizing these vo-

calizations is often thought to be central to the process of learning tabla. Considering

qaida to be monophonic, then, is both consistent with a likely mental representation

in musicians, and allows analysis to operate on a manageable entity, a sequence.

Lastly, qaida is easily transcribable, allowing us to begin from symbolic material.
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Figure 2: Structure of Theka in graphical form. Nodes labeled B represent beat
positions within the cycle, nodes labeled S represent the abstract stroke type associ-
ated with that position, and the bottom row of nodes labeled p represent the output
pattern. Note that the p nodes are shaded circles, to represent that they are observed.

This obviates any requirement for extracting structure from an audio signal, and fa-

cilitates “jumping in” to the process of abstract modeling. Of course this does not

imply that signal analysis is therefore irrelevant; there are many ways in which ma-

chine listening can be combined with a model based on symbolic data, and integrating

a variety of those would make interesting developments.

2.4 Methods

The generative model described in this chapter is designed to produce music which

follows qaida form as outlined in Section 2.2. The initial step was to revisit the

defining characteristics of qaida, undertaking an analysis geared towards designing a

model. The abstract representation which we develop here forms the guiding princi-

ple of the implementation described later in this section. In this step we employ a

visualization and reduction technique borrowed from graphical modeling.

Before addressing qaida, however, we present a similar analysis of theka. Describ-

ing this simpler form should clarify the subsequent presentation of our qaida model,
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but is relevant here also because it was the initial inspiration for qaida modeling.

Figure 2 shows a simple graphical representation of theka. This diagram may not

initially seem to add much, but the key point is that it emphasizes that the final

observed output, in the bottom row, is conditionally dependant on an abstract stroke

type which is itself dependant on position within the cycle (or equivalently, on the

previous abstract stroke type). This led to the development of a simple model of

theka which was used in the piece “Slow Theka” mentioned in the beginning of the

chapter. That model utilized a small bank of possible sequences associated with each

abstract stroke type, each with a duration of one beat. One was selected at each beat,

producing a reasonable version of theka.

An overview of our model of qaida is depicted graphically in Figure 3. One

iteration of the main repeating section, between the initial exposition of the theme

and the concluding tihai is shown. It can be seen that it is similar in style to Figure 2,

but the the structure it represents is more complex. The audible output of the four

basic stages of presenting a qaida variation are shown, represented by p1 through p4

in the bottom row; they are also clearly shown to be dependent on the more abstract

“form states” F1 through F4. Particularly useful, though, is that this analysis clarifies

conditional dependencies of the final output on the time position t and the qaida

theme T . The bayan opening/closing pattern is represented as a switching state,

dependent only on t, while the alternating theme and variation depends both upon

t and T . The theme is chosen once, at the beginning of the qaida, while the time

progresses both cyclically and linearly. Having clearly identified these relationships,

the definition of the precise dependencies occupies rest of the work of building the

model.

The most important relationships, of course, are the dependencies of the variation

on the theme and the time — defining these, and implementing a system to realize

them as audio, forms the bulk of the work presented here. The dual dependencies
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Figure 3: Structure of Qaida in graphical form. The nodes labeled t and T represent
beat position within the cycle and the qaida theme, respectively. Nodes labeled F
represent “form states” (variation vs. theme, open vs. closed). As in Figure 2, the
bottom row of nodes labeled p represent the output pattern.
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are modeled separately, as a method for generating style-appropriate variations, de-

scribed in Section 2.4.2, and a method for choosing a particular phrase to output at

a particular time, described in Section 2.4.3.

The method used to generate variations echoes that used by human players. This

element of the model can be seen as modeling a process of creativity; constrained by

its relation to the other elements

The resulting generative model of qaida encodes these structures, and is imple-

mented as a system which generates qaida in realtime, responding to user input. The

core of the system was coded in Python [65], relying on the NumPy and SciPy [36]

packages for performance intensive computation, and to facilitate manipulation of

data structures. Audio output was generated using the Pd-extended 0.40.3 version

of Pure Data (Pd) [50, 51, 47]. Communication was handled in realtime between

Python classes and Pd using the OSC networking protocol [73].

The Python code handled the process of generating new material based upon

the chosen theme. A Pd patch was responsible for controlling the larger-scale form

and content of the generated qaida, implementing a simple model of the alternating

sequence of theme and variation groups, and sending messages to the Python code

requesting variations and specifying a profile of the desired characteristics of the

variation.

The basic approach is to build a large database of potential variations through a

stochastic process, and to select from that set based on certain criteria. This bears

some semblance to technique known in algorithmic composition as “generate-and-

test” [53], in which the output of some generative procedure is tested against a set of

criteria. However, our method in this work is somewhat different from the standard

“generate-and-test” paradigms, in which the criteria are often either constraints, such

as fitting the rules of counterpoint, or judgement of the composer. In our case, the

criteria are treated more probabilistically, as a basis for the system to make a choice
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Figure 4: Structure of the Qaida modeling system architecture. The two basic
components, written in Python and Pd, are depicted; communication between them
is handled via OSC.

with a some indeterminacy but weighted heavily towards a desired outcome.

Many of the procedures adopted employ weighted randomness and probabilistic

choices as central components. This approach is used frequently for a number of

reasons. Firstly, the fundamental nature of creativity and improvisation demands

that output not be easily predictable, but have the potential to surprise. This is not

to equate randomness with creativity [18], but to emphasize that a certain degree of

indeterminacy is central to these domains. Secondly, weighted randomness has a long

tradition of use in algorithmic compositional techniques and other creative modeling

work, some cited in Section 1.1. Lastly, and importantly, the structure of the model

is in the definition of its elements and their mutual dependencies. A property of a

generative model of this form, well-known within the generative music community

through experience with Markov models, and characteristic of graphical models in

general, is that random sampling from the model creates output with the structures

which that model describes.

28



2.4.1 Symbolic Representation

Sequences of tabla stroke were represented symbolically, as pairs of stroke-name and

metrical duration. This roughly corresponds to the more common forms of tradi-

tional tabla notation, encoding the same basic information. Typically, the primary

purposes of tabla transcriptions used by tabla players are pedagogical, mnemonic, or

archival, so short and compact representations are the norm. Notation serves as a tool

to facilitate detailed study, and most examples consist of excerpted sequences; com-

plete written reproductions of long performances are rare. In our system, the tabla

sequence data format has two primary uses: as a format for the long term storage

of qaida themes and their subsequent manipulation “behind the scenes”, and as the

primary information driving the playback mechanism. This minimal representation is

appropriate for representing qaida themes, as it includes only the information present

in traditional transcriptions – the system cannot “cheat” by reproducing verbatim

the expressive timing or sound production found in some carefully selected recording

of a qaida theme. On the other hand, exclusion of all manner of subtleties in our sym-

bolic representation creates some ambiguity when it comes to generating satisfactory

musical output, giving no indication of how the strokes are to be played. Because of

this, some effort is made to develop a one-to-many mapping at the last stage, adding

some nuances of timbre and amplitude before producing the final audio output.

Consistent with the fact that qaida themes are not themselves improvised, and

rarely even composed by the performer, no attempt was made to generate new the-

matic material. Instead a number of themes were transcribed manually, and anno-

tated with partition bounds. Metrical durations were expressed in fractions of a beat.

A bank of of these traditional themes is stored in XML format. The file is loaded

from disk at program start-up, and one theme is chosen which remains the only source

material for the duration of the qaida improvisation. An example of a qaida theme

in this format is shown here, truncated to one half of its full length:
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<phrase>

<sequence>

dhin 0.5

te 0.5

na 0.5

ge 0.25

tun 0.25

te 0.25

ke 0.25

na 0.166666666667

ge 0.166666666667

na 0.166666666667

dha 0.25

dha 0.25

ge 0.25

tun 0.25

</sequence>

<partitions>

0 5

5 11

11 14

</partitions>

</phrase>

No attempt was made to apply any sophistication to the initial choice of theme: it can

be specified manually or chosen randomly. This would, however, be worth addressing in

future work, as full tabla solo performances are typically comprised of a sequence of many

different tabla forms over the course of an entire concert, including several qaidas, with the

only break between being a section of theka.
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2.4.2 Variation Generation

The procedure for generating possible variations on the qaida, together with the process

of phrase selection outlined in Section 2.4.3, arguably forms the core of this system. An

overview of these components is shown in Figure 5. A mutable bank of phrases is gener-

ated from the theme by applying fairly general transformations which are consistent with

qaida theory, and then stochastically applying another set of operations to the results of

these transformations in order to bias the population towards more stylistically appropriate

content.

The size of this phrase database is set by parameter. Clearly, a larger database is

preferable as it will contain a greater diversity of material, up until the point at which its

contents become redundant. However, the feature extraction and phrase selection processes

described in Section 2.4.3 scale with the size of the database, and within the current archi-

tecture, they are required to operate in perceptually “zero” time – a delay in processing will

result in a delay in audio output. Fortunately they run quickly enough that with a bank of

several thousand phrases, there is rarely any perceptually noticeable delay; a bank of two

thousand was used during much of the development process, and it was qualitatively found

that this size contained sufficient phrase diversity to support varied and novel output.

There are two main transforms used, and a value is stored which represents the relative

probability that one method will be chosen over the other. Running in a loop until a

bank of the specified size has been constructed, a random value is compared against this

probability, and the corresponding method is applied. The most commonly applied method,

i.e. the one with the higher probability, is a shuffling of the partitions of the theme, allowing

elements to repeat, that is, sampling with replacement from the set of theme-partitions.

Phrase partitions are not generally of equal length, so there is no guarantee that a sequence

generated by this procedure will have the same total length as the theme (an obvious

requirement since it will be played over a rhythmic cycle). A summation is taken over the

metrical lengths of the chosen partitions and mismatching phrases are discarded – this can

be seen as a crude initial fittingness test. To avoid unnecessary calculation, the number of
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Figure 5: Overview of the Qaida variation generating architecture. The theme
bank is greyed-out because the choice of theme is made only once, initially. Domain
knowledge, specific knowledge about qaida and tabla, is shown being incorporated at
specific points in the process.

draws, or partitions in the new phrase, k, is limited to the range within which generated

phrases of the required length are possible. Nonetheless, the number of possible sequences

which can be assembled from a set of n partitions chosen k times is nk. The qaida themes in

our database are eight beats long, and typically contain between twenty and thirty strokes

grouped into six to eight partitions, which range between .5 and 1.5 beats in duration.

These numbers make an exhaustive search through this space of variations computationally

intractable – a worst case scenario could see us trying to enumerate 816 = 2.81475e + 14

possible sequences. This was one motivation for separating out the complementary processes

of generation and selection. Rather than adopting a brute force search for a phrase of a

desired type, the generation process “pushes” material to the selection process.

The less common basic transformation is simply to double the tempo of a randomly

selected partition, biased toward the beginning of the phrase. The double time partition

is repeated twice in order to occupy the same total length. This procedure is somewhat

less probable that the first; best results were obtained setting the parameter close to .1, or

adjusting it based on that specific qaida theme. Like the primary shuffling transform, the

doubling transform is easily represented in a form that does not require detailed knowledge of

the material it is operating on. Both procedures require only that the material be a discrete
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Figure 6: Detail of the Qaida variation generating architecture. The reordering
routine is depicted here, constrained by metrical length and incorporating domain
knowledge in the form of added transformations.

temporal sequence. At the same time, these generative methods are implementations of

the two primary qaida variation techniques described in Section 2.2.1, adhering to the basic

requirement that the bols in the variations be found in the theme,

Another perspective on the re-ordering transform is to see it as a context-switching

operation. Each chosen sub-phrase is placed into a different timbral and rhythmic context,

altering its basic musical character. It will have new neighbors, timbrally (stroke type) and

rhythmically (stroke timings), it may occur at a different overall position in the cycle (e.g.

first half vs. second half), and its placement relative to the underlying pulse will likely

have changed. New perceptual groupings may occur, as, for example, if several phrases

with similar patterns and timbres are placed adjacent to each other, fusing into a single

perceptual rhythmic unit. A relatively straightforward, unsyncopated chunk make take on

a very different character if placed a half or quarter beat away from the nearest tactus

location.

An additional set of four transformations were implemented, with the intention of in-

troducing a bias in the resulting phrase bank, making it more likely to include style-specific

elements. They are intended to favor:
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• Multiple occurrences of the same partition (non-consecutive repetition)

• Consecutive repetitions of a partition

• Preservation of the final partition (cadence)

• Introduction of short rests, or the omission of strokes

Following the application of one or another of the primary transforms, a set of random

numbers is tested as before against a set of parameters corresponding to the probability

that each of the first three will occur. The cadence preservation is by far the most likely,

with a value of .8 — the others were found to be most effective when set around .1 and

.2. These tests are conditionally independent, and somewhat naive, the probability values

arrived at by adjusting over repeated listening tests, and are simply intended to represent

specific stylistic tendencies. The fourth operation is generally applied at a later stage in

the qaida; the introduction of space is essential to breaking the homogeneity which tends

to emerge over time, but can also disturb the coherence of a phrase, and so is reserved for

use in the more “complicated” sections of qaida development. These operations are shown

in context in Figure 6

The phrase bank is described as mutable in the beginning of this section because it is

possible to continue to selectively regenerate some fraction, or to reapply the other transfor-

mations iteratively. In the current work, this has been implemented in a fairly simple way,

and it is easy to deviate too far from musical coherence in favor of novelty. However, this

capability suggests interesting avenues for future work, for example in incorporating more

intelligence into the probabilistic application of these transformations. One can imagine a

system based on the current one in which the phrase bank is continually evolving, repre-

senting a distribution of phrases conditioned not just on the stylistic form and the choice

of theme, but also on the relative position within the compositional arc of development,

on the previous output, and even involving a model of expectation in order to move the

contour of density and syncopation towards a climax.
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2.4.3 Variation Selection

Selection of a phrase from the bank of variations is the complement to the construction of

that bank. This step is performed using input in the form of a feature request. This request

triggers a chain of events: phrases in memory are compared against the request, a close

match is selected, and finally a single phrase is returned for playback.

Immediately after the phrase bank is first built, features are calculated over each phrase

in the set. It was found that a relatively small set of features could provide a surprisingly

flexible handle into the character of the returned phrases, though a larger set would no

doubt improve the range of performance. The currently calculated features are

• Distribution over each stroke type, by frequency of occurrence

• Distribution over each stroke type, by time (scaled by duration)

• Rhythmic density

• Ratio of open to closed strokes, by frequency of occurrence

• Ratio of open to closed strokes, by time (scaled by duration)

• Spectral centroid

• Spectral spread

Note that these are not all of equivalent dimensionality — rhythmic density, open/closed

ratios, and spectral centroid are scalar values, while the distributions over stroke types are

vectors. Even at this level, it can begin to be difficult to intuit the relationship between vari-

ous combinations of values for these features, and the types of corresponding phrases. Futur

work should include developing aggregate features which are more intuitive and mutually

independent.

For the most part, these are in effect timbral features; they are meaningful because of the

fundamental relationship between different stroke types and their timbral characteristics.

The spectral centroid and spread, however, require more explanation. The feature itself is
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uncomplicated. Spectral centroid is simply the weighted average of the magnitude spectrum,

defined as [48]

µ =

N−1∑
k=0

kX[k]

N−1∑
k=0

X[k]

(1)

where X is the magnitude spectrum, k is the frequency bin number, and N is the length of

the spectrum, and spectral spread is the variance of the spectrum:

σ2 =

N−1∑
k=0

(k − µ)2X[k]

N−1∑
k=0

X[k]

. (2)

Spectral centroid is computed on audio, however, and up to this point we have been dealing

with symbolic data only. However, the sequences are intended for playback on a known

set of sounds, so in this step we calculate average values over a large audio database of

segmented tabla strokes which is also used in playback, and calculate the values we would.

The net result is that by “looking ahead” to a destination form of the given phrase, we can

obtain a quantitative estimate of the hypothetical timbre of the phrase. Timbral features

are relevant here not only because of their obvious effect on the character of the resulting

sound, but also because basis of tabla’s rhythmic vocabulary is the temporal sequencing of

contrasting timbres.

The Python object responsible for calculating this feature set also maintains a con-

nection to an OSC server object which is listening for control messages coming from Pd.

Aside from handling various commands for initialization such as choosing a starting theme

(randomly, or specified by an integer argument) and constructing the phrase bank (no argu-

ment passed), the OSC server’s most important function is to handle messages requesting

playable data, that is, sequences of stroke names and metrical durations. The three types of

playable data, requested as needed at the appropriate moment in the qaida, are the qaida

theme, a variation, and a tihai. Serving up the theme is simply a matter of packing the

theme into an OSC message and sending it; tihai construction is detailed in Section 2.4.5.

Request for a variation is a little more complicated. When Pd sends a request for a variation
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phrase, the data in the OSC message consists of a set of feature preferences that describe

the desired type of variation, which are passed as arguments to a method in the Python

object. Specifically, this can describe any subset of features, specifying three values for

each, representing the target value, a relative weighting for this feature, and a “flexibility”

measure.

The range of feature values for a given bank of potential variations is largely dependent

on the initial choice of qaida theme, as well as on the particulars of how the randomly

chosen alterations happen to have occurred on that run. Therefore, the target parameters

of the feature request, expressed in the range 0 to 1, are normalized to the range of the

current variation bank. For example, one run of the variation generator module produced a

bank with a “density” value ranging from a minimum of 4.0 to a maximum of 7.25, leading

to a mapping function of

xnormk = (max(f̄k)−min(f̄k))xk + min(f̄k)⇒ xnormk = (4.0− 7.25)xk + 4.0 (3)

where xk is the un-normalized preference for feature k, xnormk is the normalized feature

preferences, and f̄k is the vector of values for feature k over the whole bank.

The flexibility parameter functions as a sort of distance metric, defining the width of a

Gaussian curve onto which a linear distance is mapped. The Gaussian is centered on the

target value, and is used as a look-up table to get the unweighted score for that phrase

and feature. This provides a simple way to specify how strict a given feature preference is,

independent of the relative weighting for that feature.

After each phrase in the bank of variations is compared to the feature request and a

match score calculated, a final choice is made based on this score. Rather than always

choose the best match, which would lead to a deterministic output, and require either

constant change in the feature requests or frequent regeneration of the phrase bank, the

choice is made probabilistically. The two most successful algorithms were to rescale the

probabilities to emphasize the higher-scoring phrases, or to take the set of top scorers and

make a choice among those based on their normalized probabilities equivalent to setting

the probabilities of low-scoring phrases to zero. Again, this procedure serves as a way to
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balance the creativity and novelty of the system’s output with its responsiveness to the

demands of context.

2.4.4 Macroscopic Structure

The macroscopic structure is simpler, and largely deterministic, following the basic qaida

form outlined above. Playback is implemented in Pd, and is described further in Sec-

tion 2.4.6. The patch controls the alternation between theme and variation, requests vari-

ations from the Python generator, controls the periodic opening and closing of the bayan

strokes, and generates the audio. Each stroke type has a set of associated audio samples,

and output is generated by selecting randomly from this set, scaling amplitude according to

stroke type and duration. An accompanying nagma marks the cycle. Feature preferences

for the variation requests are specified manually with a set of sliders. Modeling of longer-

term structure is minimal, chiefly limited to initial exposition of the qaida theme, allowing

tempo transformations, and requesting a tihai ; the manual controls provided allow a user

to take the place of a fuller model. It should be noted, however, that the user need not be

highly skilled, or even particularly knowledgeable with respect to tabla or qaida.

2.4.5 Tihai

Qaida form concludes with a tihai, described in Section 2.2.2. A minimum pala length is

defined, with a default of four beats. The pala is constructed by selecting and concatenating

theme partitions until this minimum length is reached. A simple way of building a more

complex tihai is simply to increase the minimum length. An optional parameter to scale the

durations of the strokes is provided, allowing the tihai to achieve a dramatic and virtuosic

quality typical of real tabla performance. The pala is repeated three times, with a pause

inserted between iteration. The start point is determined by the length of the constructed

tihai, and a short rest is inserted just before. The tihai is unmistakable, but this is due

primarily to the rests separating the pala repetitions; a short pause or other device is

necessary to set it off from the preceding material.
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Figure 7: Overview of respondent demographics. The figure on the left shows a
histogram of “familiarity with tabla music,” and the one on the right a histogram
of years of tabla training. It can be seen that both measures indicate that the re-
spondent base is knowledgeable in this genre. In particular, 16 out of 70 were highly
accomplished tabla players with more than 10 years of experience.

2.4.6 Audio Output

Synthesis of the generated qaida was accomplished using high-quality isolated samples of

tabla strokes, played by a professional tabla player and recorded specifically for this project.

Care was taken to obtain several timbrally similar samples for each stroke represented in

the qaida theme database. Each playback command caused one of the samples for the

given stroke to be selected, helping to achieve a slightly more natural quality. Amplitudes

were scaled by durations, to mimic the lighter touch that is generally used when playing

fast sequences. For the most part, this scaling was important only in sections involving the

fastest sequences, which otherwise sounded notably unnatural; moderate durations (e.g. one

beat vs. one-half beat) proved less sensitive to this nuance. The quality and consistency of

the recordings was reflected in the audio output; the only significant shortcoming remains

a lack of bayan modulation.
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2.5 Evaluation

An online survey was conducted, in which three recordings of generated output were pre-

sented along with two recordings by a world-class tabla player, without indication of the

origin of the recordings; participants were simply asked to make a series of judgements, un-

aware that the survey involved comparison of human playing and computer modeling. The

survey can be found at http://paragchordia.com/survey/tablasurvey/, and the audio

clips of both computer-generated output and professional tabla performance can be heard

separately at http://www.alexrae.net/thesis/sound/, numbered 1–5, the first three be-

ing the qaida model’s output, as in the results presented here. The recordings of model

output were “played” via the user interface implemented in Pd, and were recorded without

subsequent editing.

A total of 70 participants responded to the survey. A majority claimed moderate to

high familiarity with tabla music, and many reported themselves to be practicing tabla

players; distributions of familiarity and training are shown in Figure 7. The mean age was

35.2, with a standard deviation of 12.2. The gender of the respondents was highly skewed:

only two (3%) were female. The order of presentation of audio segments was randomized,

and participants were asked to rate the examples along several dimensions, with the goal

of comparing relative judgements of the computer- and human-generated examples. The

judgements were on a scale of 1 to 7, reflecting answers ranging from “very little” to “a

lot”, except in case of the last two questions, phrased as ranging from “poor” to “excellent”.

A higher value corresponded to a more favorable judgement. Additionally, respondents

were invited to supplement their quantitative judgements with further comments. Results

show that the qaida model’s output fared quite well in comparison with the professional

recordings.

Participants were asked the following questions:

1. To what extent would you say that this recording demonstrates a feeling of musicality?

2. To what extent would you say that this recording demonstrates musical creativity?

3. To what extent would you say that this recording adheres to qaida form?
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4. To what extent would you say that this recording is novel or surprising, given the

qaida theme?

5. To what extent would you say that the improvisations in this recording are appropri-

ate to the style and the theme?

6. If told that this recording were of a tabla student, how would you rate his/her overall

TECHNICAL abilities?

7. If told that this recording were of a tabla student, how would you rate his/her overall

MUSICAL abilities?

Analysis of the quantitative data was undertaken using a test for statistical significance

corrected for multiple means. Figures 8–14 show results of this analysis, comparing the five

audio excerpts for each question. Each figure shows mean values and confidence intervals

(using p < 0.05) of the judgement scores for each audio segment. A trend is visible in the

average values of the data across the examples, showing the computer generated output to

be rated slightly lower than the human generated excerpts. However, the differences do not

reach statistical significance given the sample size, except in the case of the third generated

qaida, which in many cases is rated somewhat lower than the other model outputs.

These results are encouraging: the computer-generated qaida performed quite well in

comparison to very high-quality human-played examples. Further, it is worth highlighting

two visually apparent trends, even though the differences are slight. Judgements of musical

creativity, question 2, are notable, as two of the qaida model’s outputs were ranked on par

with the human performer. The model fared similarly well on judgements of novelty.

It is also interesting to note from the comments that many respondents remained un-

aware that three of the examples were computer-generated. One, for example, wrote in

response to example 3: “Again this recording demonstrates that the Tabla player has ex-

cellent abilities in playing the right drum with crisp tonal quality. Left drum (Baya) needs

some improvement as I stated in the first two Qaidas.” As with many, this respondent

was clearly influenced by the timbral qualities of the playback samples, positively for those

which are well-represented by isolated samples, such as na and other strokes played on the
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Figure 8: Plot showing mean values and confidence intervals for responses to Ques-
tion 1: “To what extent would you say that this recording demonstrates a feeling of
musicality?” Audio excerpts 1-3 are computer-generated.
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Figure 9: Plot showing mean values and confidence intervals for responses to Ques-
tion 2: “To what extent would you say that this recording demonstrates musical
creativity?” Audio excerpts 1-3 are computer-generated.
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Figure 10: Plot showing mean values and confidence intervals for responses to
Question 3: “To what extent would you say that this recording adheres to qaida
form?” Audio excerpts 1-3 are computer-generated.
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Figure 11: Plot showing mean values and confidence intervals for responses to
Question 4: “To what extent would you say that this recording is novel or surprising,
given the qaida theme?” Audio excerpts 1-3 are computer-generated.
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Figure 12: Plot showing mean values and confidence intervals for responses to
Question 5: “To what extent would you say that the improvisations in this recording
are appropriate to the style and the theme?” Audio excerpts 1-3 are computer-
generated.
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Figure 13: Plot showing mean values and confidence intervals for responses to
Question 6: “If told that this recording were of a tabla student, how would you rate
his/her overall TECHNICAL abilities?” Audio excerpts 1-3 are computer-generated.
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Figure 14: Plot showing mean values and confidence intervals for responses to
Question 7: “If told that this recording were of a tabla student, how would you rate
his/her overall MUSICAL abilities?” Audio excerpts 1-3 are computer-generated.

right-hand drum, and negatively for the bayan, whose pitch would be modulated in truly

expressive playing. The same respondent wrote similarly of excerpt 2: “Right drum sounds

very musical (has good tonal quality and sounds very crisp). Baya (left drum) playing can

be improved a bit in terms of modulation and melodic content.” Some comments focused

more directly on the style or quality, for example “Good presentation of Purab / Benaras

style kayda. Great speed. Nice overall sound” (excerpt 2), and “Very nicely done” (excerpt

3). Only one respondent clearly deduced the origin of the model’s output, writing simply

“The synthesized nature of this piece limits its ability to be musical.”

Criticism was not reserved for the generated recordings. One respondent commented

that excerpt 4 “sounded too mechanical and devoid of emotion,” and another that “The

Tirakitas at the start [of example 5] sound very odd and clumsy!” Most comments for

examples 4 and 5, however, were clearly positive.

The results of this survey indicate that the qaida modeling undertaken in this work has

been successful in producing improvisatory music which is heard as creative. There is, of

course, much work to be done, ranging from addressing deficiencies in playback cited by
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a number of respondents, such as the lack of bayan modulation, to incorporating a more

robust model of sculpting a larger contour. However it is encouraging and quite interesting

to see how effective the methods employed in this model have been.
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CHAPTER III

LAYER BASED MODELING

In this chapter we describe an experimental attempt to apply the general approach used

in modeling qaida to a substantially different musical form. A wide array of subgenres

of electronic music variously and imprecisely referred to as “electronica,” “glitch,” and

“IDM”, among other names, employ a compositional paradigm which privileges the use

of “vertical” layering of patterns over “horizontal” transformation of those patterns as a

technique of development. It has been mentioned several times that tabla music is ostensibly

monophonic, and the patterns of variation in qaida development described in 2.2.1 are

sequential in nature. Cyclic repetition is essential to qaida form, but variations proceed

linearly in time, in the continued rearrangement of theme partitions. The form addressed

in this chapter, which we will simply refer to as “layer-based,” contrasts sharply with this.

The difference we are concerned with here is less one of polyphony vs. monophony, as many

other genres contain polyphony, than of a manner of development over time. Specifically,

the layer-based form is fundamentally based around the use of multiple layers which mesh

and interlock but do not themselves change substantially over time; development is built

around addition, subtraction, and recombination of elements.

The motivation for the work presented in this chapter is two-fold. On the one hand, the

purpose is to make good on previous claims of the potential generality of certain aspects

of our approach. On the other hand, taking on a very different musical form allows us to

explore limits and assumptions that may have been present in the first case, but not readily

apparent. In particular, the model’s approach to variation generation was initially seen as

closely tied to qaida’s sequential development, in which different variations are presented in

succession. This chapter is intended to explore the extent to which a similar procedure can

be used to in a form lacking that structure. The notion of partitioning the seed material to

obtain the working material for musically creative output was initially conceptualized within
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the context of qaida, whose traditional theory includes this concept; however applying that

technique in a different musical context illustrates that this component of the model is not

specific to qaida.

This project presents a number of non-trivial challenges which make it in many ways

more difficult than qaida modeling. Unlike qaida, this style does not belong to a long-lasting

classical tradition, and is not the subject of a branch of formal music theory. Such theories

as do exist are typically not formulated or even known by practitioners — the roots of this

branch of electronic music are well outside academia, notwithstanding a recent increase in

communication and cross-fertilization between the two worlds. Structural consistencies can

certainly be found, but they are better described as conventions than known forms, and

the notion of a canonical form is not applicable. Many pieces are essentially impossible to

transcribe, since the sounds themselves play a central role in defining the character of a

particular piece — a spectrogram may in some sense be considered a reasonable “transcrip-

tion”, but is hardly readable in the manner of a score.

As before, the system presented here requires a seed, a sonic nucleus from which a

set of variants is built. Lacking symbolic data, we must start with audio. An important

point to emphasize here is that one function of this system is to create new works based

upon existing material, or stated differently to allow the model to draw “inspiration” from

some musical work. Ultimately, the domain in which that music is represented should

not raise an insurpassable barrier to the model’s applicability. For this reason, we see

introducing a substantial MIR sub-project as fully consistent with the core motivations

of the project as a whole. Bringing in audio analysis in this way is challenging, but also

attractive. While almost guaranteeing the introduction of errors and noise, it helps to situate

the modeling techniques within a broader field, binding computer generation of music to

machine listening; additionally, we find many of the constituent problems to interesting in

their own right.

It should be made clear at this point that the notion of generality is fairly specific,

and refers to the capability of our modeling technique to be applied to different musical

contexts and materials. The actual implementation, of course, may require varying amounts
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of customization to the stylistic characteristics of the new genre. With the introduction of

the capability to act directly on audio, it is tempting to expect, or hope, that the system

could thenceforth operate on any soundfile supplied; while interesting results may certainly

be possible, this is in general unlikely to be the case, and we make no claims in that direction.

Fortunately, some of the difficulties of this project conversely make other aspects easier.

One daunting difficulty in tabla modeling is that the standard of comparison is not only

high, but very human. The nuances of timbre and timing which set apart the great players

or performances from the good are, frankly, extremely elusive. Music which is made to be

played from a recording, or even if “live”, from a computer, may be no less profound, but is

not built around a human performer, making an automated system less prone to unflattering

comparison. Similarly, stylistic flexibility implies a certain degree of permissiveness in terms

of what may be considered musically appropriate.

It should be emphasized that the work described in this chapter is experimental. While

similarly designed for realtime operation, this system as of yet has no functional user in-

terface, and is operated from the command line. Less effort has been put in to the fine

points of audio generation. Finally, there is no formal evaluation as in Chapter 2, for the

dual reasons that comparisons of the type used in the qaida survey are much more difficult

to arrange, and that the output does not yet have a “polished” feel that one would expect

from a human-composed work. This last point is essential to address in machine-human

comparison studies, lest respondents deduce a machine origin and be immediately biased

by their pre-conceptions on the subject [16].

Finally, the particular choice of this style as a subject for modeling stems largely from

personal interest, and from experience making music that falls broadly within this category.

It is exciting to bring a radically different approach to this area.

3.1 Introduction to Layer-based Electronica

Before proceeding, it is critical to emphasize the diversity of musical approach contained in

this catch-all name. What this chapter focuses on is a particular form found repeatedly in

various related subgenres, and not a monolithic characteristic of all music which has been
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labeled as “electronica”. This form can be more generally seen as a strategic simplification

of a more common form or conceptual basis underlying much of this music. This work,

however is not an ethnographic study or a work of music theory, so questions of just how

prevalent the precise form we address actually is are left without further discussion.

Here we describe some of the stylistic characteristics of electronica which are most

relevant to the form modeled here. Readers familiar with the Minimalist movement may

note some qualities shared between the two, notably the use of repetition combined with

slow changes over time [44]. The music is fundamentally loop-based, a facet which has led

other to draw a comparison with the Minimalists [29] As stated, this music is often based

around the addition and subtraction of distinct layers [26]. Roughly speaking, a layer is a

set of sound events which are grouped in some perceptually relevant manner. Adding or

subtracting a group of otherwise unrelated sounds as a unit may be enough to group them

in this sense, but typically, a layer is comprised of a timbrally similar set of sounds [3]. If

containing more than one distinct timbre, it is likely that the events will be grouped in

some other way, such as by forming a gestural unit or phrase, or through reference to a well

known combination (notably the “kick-snare” combination of paired low and high frequency

percussive events).

Composition over longer time-scales involves drawing slow contours through the additive

introduction of layers, and perhaps through gradual changes in timbral parameters [26].

Perhaps the simplest compositional form is a progression from a single layer to a slow

“climax” consisting of a sustained dense texture, a mixture of all layers, followed by a

deconstruction through subtraction in which layers are removed to return the piece to its

starting state. A simple variation on this form would be to subtract layers in a different

order, leading to a substantially different end point.

A key feature underlying the layer-based form is a kind of stasis in the material. Once

established, a pattern in a given layer is unlikely to change. If it does so, then there are

none of the “melodic” characteristics found in the changing patterns of solo tabla; such

changes function primarily as shifts in texture. In reality, many works that roughly follow

this pattern employ subtle changes in a number of ways, for example by gradual alteration
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of timbres, or by introducing a single alteration to an otherwise precisely repetitive layer,

thereby creating a peculiar effect by focusing the listener’s attention on a detail that in

other contexts might seem unremarkable.

In the current work, we address the simplest case, in which layers are considered to be

timbrally related sets of events and are not varied once established, and in which longer time-

scale form is developed through addition and subtraction of these layers. One additional

and interesting complication which is included, however, will be termed “meta-layers”.

Admittedly an imprecisely defined concept, meta-layers are layers which are formed by

subtracting elements from a full layer. The motivation for making this distinction comes

from the occasional practice of introducing rhythmic elements which create an ambiguous

sense of timing until other timbrally and rhythmically related elements are introduced.

Once they are all present, this larger group will fuse perceptually, lending coherence to

its components; when this occurs, it suggests that it is this larger set that would be more

robustly identified as a layer, thus motivating the introduction of the term meta-layer to

refer to those elements which may enter on their own.

3.2 Methods

The initial step in designing the model was a structural analysis similar to that in Chapter 2.

A number of key structural elements were determined, reflecting the musical characteristics

described above. As with qaida, the final output can be seen as dependent on the initial

choice of seed material (analogous to the qaida theme), and the time position. The set

of materials constituting the layers is of course dependent on the seed audio, but there

is also a mutual dependency among the layers. This represents the common tendency of

layers to “interlock,” for example by loosely tiling the timbral space over time, not to

the exclusion of gaps or silence, but minimizing consistent overlap which would dull the

perceptual independence of the layers. The choice of sounding layers at any given moment

is determined by the time position, and the expression a layer as complete vs. as a meta-

layer depends both on time position and on the choice of layer.

The first implication of this analysis was that generation of musical material and the
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structuring of longer forms can be separated. The second was that none generation takes

place once the output has started, and thus must take place in the initial setup. A similar

approach was taking in the qaida model, but in that case it was neither a necessary nor

strict condition — the phrase bank is built at the outset for reasons of computational

efficiency, and the system includes methods for altering this bank while the qaida plays.

The layer-based model in its current form precludes generating additional material as the

music progresses. Modeling such changes would be a natural direction for future work; this

would essentially entail developing a more sophisticated model.

The observations regarding the mutual dependencies of layer content, in addition to

their collective dependency on the seed material suggested an approach based in source

separation. This seems a natural direction to take, given that we are starting with a sin-

gle section of audio, and wish to end up with multiple layers, but there are other possible

approaches, such as linear segmentation and categorization of the segments. An additional

motivation to pursue source separation was that many algorithms attempt to estimate a

mixture of maximally dissimilar components which best represent the signal. The source

separation algorithm chosen, described in Section 3.2.1 has the added benefit that its out-

put is easily interpreted as a time-frequency representation — internally, it operates on

probability distributions, which have the same mathematical form. These characteristics

of source separation align well with the conception of layers as perceptually and timbrally

distinct entities.

We approach the generation of new material corresponding each of these layers in a

similar manner adopted in Chapter 2. The construction of a compositional arc is accom-

plished though their addition and subtraction over time; this component is less deterministic

than the playback pattern implemented previously. As in the qaida model, the system was

coded in Python, with NumPy and SciPy numerical computing extensions. A block dia-

gram of the system architecture is shown in Figure 15. A pre-cut soundfile containing a

short musical excerpt, the seed, is loaded, converted to a time-frequency representation, and

components thought to correspond to timbral layers are extracted, represented as timbral

and temporal profiles. Audio is resynthesized from these components, forming a basis of
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separate layers. Each one of these layers undergoes a beat-synchronous segmentation and

shuffling process. Each resulting segment is analyzed and again segmented according to

detected onsets. These single-event chunks are then put through a filtering function which

suppresses a subset of the events. The end result of this is a hierarchically organized and

shuffled set of layers, depicted in Figure 16.

Audio was imported from prepared soundfiles, and stereo channels were mixed prior to

analysis. First, a time-frequency representation of the signal was obtained by applying the

Short Time Fourier Transform [58], defined in the discrete case as

STFT {x[n]} ≡ X(m,ω) =
∞∑

n=−∞
x[n]w[n−m]e−jωn (4)

where x[n] reresents the audio signal and time index n, m is the time index into the

STFT, omega is frequency, and w represents a window function. In the definition in Equa-

tion 4, the window function serves to both isolate a segment of the signal, and to impose a

shape on that segment. In practice, the STFT is computed by splitting the signal into short

overlapping frames, and applying a window function, in this case either Hann or Hamming

window, and taking the fast Fourier transform (FFT) of the frame. The Hamming window

is defined as

w(n) = 0.53836− 0.46164 cos
(

2πn
N − 1

)
(5)

where the window is of length N , and the Hann window as

w(n) = 0.5
(

1− cos
(

2πn
N − 1

))
. (6)

Frame sizes of N = 1024 samples were used, with 50% overlap. The resulting complex

valued matrix was then used as input to a source separation algorithm using Probabilistic

Latent Component Analysis [57], which yielded pairs of spectral and temporal contributions

for each extracted component.

53



STFT

PLCA

component component component component component

Resynthesis

Segmentation

Shuffling

Onset Detection

Segmentation

Filter

Figure 15: Block diagram of the layer generation system.
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Figure 16: Depiction of the set of processed layers generated from one clip of source
material. These layers form the material from which a new piece is constructed. Note
that the filtering in the last step is dynamic; all of the material is shown here while
only portions will be synthesized.

3.2.1 Source Separation

Blind source separation is the task of analyzing a signal in order to separately recover its

components, without any specific knowledge of the components themselves. In audio, this

corresponds to “unmixing”, in which one seeks to reconstruct the clean signal of each of

a number of sounds that have been mixed together into one or more channels of audio.

Source separation is a challenging problem, and is an active area of research. A number

of techniques have been proposed. One involves using a multichannel audio feed to isolate

sounds originating from different spatial locations [72]. Another approach geared towards

musical analysis assumes a mixture of pitched instruments, and uses multi-pitch analysis, or

the assumption of harmonic partial structures, to extract components [28, 66]. Independent

Component Analysis represents the audio in terms of statistically independent components,

and does not require specific assumptions (multichannel recording, or mixtures of harmonic

spectra) about the material on which it works [39].

We approach the separation of extracting independent layers using a technique devel-

oped by Paris Smaragdis, and described in detail in [56]. Known as Probabilistic Latent

Component Analysis (PLCA), this technique uses the iterative Expectation Maximization

(E-M) algorithm to estimate the timbral profile and relative contribution over time of a set

of components which best describe the signal. The input to the system is a spectrogram,
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Figure 17: A set of components extracted by PLCA. The four graphs in the upper
left describe the magnitude spectra of the components, and the bottom right repre-
sents their respective contribution over time. The top right shows a spectrogram of
the original mixed sound.

and the output consists of a set of paired magnitude spectra and temporal signals. The

system is in fact agnostic to the nature of the input; this version of the algorithm will

operate on any 2-dimensional input. The number of desired components is unfortunately

required as a parameter for the algorithm, and this remains a limitation on the autonomy

of the system. An example output, extracting four components from Clipper, a track by

the well-known English musical group Autechre, is shown in Figure 17.

The code, ported from Matlab, is implemented in Python, with a C++ external gener-

ated using the SWIG wrapper generator.

3.2.2 Partitioning

The components obtained via PLCA were resynthesized with the inverse STFT (iSTFT),

using and overlap-add procedure corresponding to the original overlap of the audio frames.

One difficulty at this stage is that the PLCA returns a magnitude spectrum, that is, a

real-valued sequence, rather than the complex array that is needed to reliably resynthesize
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a time-domain signal. This is in general a problem in iSTFT-based resynthesis, as the

signal is underdetermined given only the magnitudes [2]. Again following [57], the phase

information is simply taken from the original complex STFT of the unseparated signal. This

approach generates audio which is, on informal listening tests, reasonably clear of artifacts.

Following this, the set of audio tracks are partitioned into beat-synchronous audio seg-

ments. There are many possible divisions, and the motivation for this step, and the choice

of partitioning scheme, should be explained. Within the general family of musical styles to

which glitch and IDM belong, many genres make extensive use of drum samples known as

breakbeats. Breakbeats are sections of recordings, often from older funk or gospel records,

in which the all other intrumentation drops out, leaving the drums isolated. With the intro-

duction of relatively cheap samplers in the 1980’s and 90’s, hip-hop producers began using

breakbeat loops as the foundation for their music [38]. Around the same time, producers of

dance-driven styles such as techno and house found breakbeats to be fertile source material,

and quickly a whole genre known as “jungle” sprang up around the idea of building frenetic

and syncopated dance music built from sped-up breakbeats. The two most obvious ways of

using this material in a rhythmic style would be to simply loop the entire audio file, or to

cut it up into isolated hits and arrange those in a MIDI sequencer, and both techniques have

been used extensively across different genres. However, the method that became standard

among jungle producers was to cut the breakbeat into assymetric sections, most commonly

in a 3 – 3 – 2 pattern of beats [12, 10]. The resulting audio files would typically contain

short phrases of several drum hits, and could be rearranged and repeated to form new se-

quences. This technique gave jungle and the multitude of other subgenres that evolved out

of it much of their distinctive character, encouraging heavy syncopation and repetition of

short rhythmic sequences, and integrating the quantized timing of a MIDI sequencer with

the “human” feel present within the segments.

Beat-tracking was attempted, using a Python implementation of Davies’ context-dependent

algorithm [21], however it was found that the precise requirements of this type of segmen-

tation meant that the system had a very low tolerance for error in this step — small errors

in tempo or phrase estimation could drastically lower the quality of the output. “Off-beat”
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phase errors, in which the beat locations are estimated at one half measure from their cor-

rect locations, are probably the most common type of error in beat tracking, but it is the

smaller errors, which might split a beat-synchronous event between segments, that are more

problematic. This is by no means an unsolvable problem; it forms a substantial portion of

Nick Collins’ PhD thesis [12], but a decision was taken to sidestep this issue by clipping the

initial input soundfiles to an integer multiple of their measure length, allowing segmentation

to proceed based on ratios of the total duration.

The precise location of the edits is determined by a routine loosely based on Jehan’s

auto-segmentation [35]. The most recent local minimum in the amplitude envelope is found,

and a zero crossing selected. If no sample index fitting those conditions can be found within

a window of 50 ms, an amplitude ramp of the same length is applied.

These segments are then shuffled for each track. This step both mimics the production

style of breakbeat-based music, and is notably similar to the partition-shuffling described

in 2.4.2 that forms a core routine in the qaida model.

3.2.3 Onset Detection

Onset detection was performed using a spectral flux algorithm. This approach involves

looking for regions in which the overall change in energy across frequency bins is maximal.

A detection function is built from the spectral flux measure, processed to clarify the desired

peaks, and onsets are selected using an adaptive thresholding scheme.

The basic input to the onset detection algorithm is a time-frequency representation of

the signal. This was obtained by calculating the short-time Fourier transform (STFT) of the

signal, defined in Equation 4. After the FFT is computed for each frame, is the magnitude

spectrum is computed, and the resulting spectrogram is processed using an adaptive spectral

whitening method proposed in [64]. This method seeks to improve detection accuracy by

normalizing the magnitude of each frequency bin across time, calculating the normalization

factor from a decaying window to provide a moderately local estimate of the range of values

for a given bin. This is somewhat similar to multiband dynamic compression, in that

amplitudes are scaled according to recent maxima, whose influence decrease over time. An
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option is provided to use a weighted average of the original and whitened spectrograms.

Spectral flux is essentially a measure of the overall change between successive frames of

spectra. There are a number of possible definitions, two of the most straight-forward being

simple Euclidian distance:

SF (n) = |Xk(n)−Xk(n− 1)|2

=

(∑
k

|X(n, k)−X(n− 1, k)|2
)1/2 (7)

where Xk(n) represents the value of the spectrogram at the kth frequency bin and nth

frame, and positive difference:

SF+(n) =
∣∣H+[Xk(n)−Xk(n− 1)]

∣∣ (8)

where H+ = (x+|x|)/2 is a half-wave rectifier, producing a function which only measures

changes in the positive direction[23]. The form used here, however, uses a slightly different,

though related, distance metric. The Lp norm is, briefly, a generalization of a certain class

of distance calculations, defined as

|x|p ≡

(∑
i

|xi|p
)1/p

(9)

where the value of p defines the norm. Euclidian distance, as in 7 is L2, while L1 is a

simple summation, commonly referred to as the Manhattan distance, and is the basis for

8 (before half-wave rectification). Following Sapp [55], we set p = .25, giving the resulting

spectral flux measure:

SFp(n) = |Xk(n)−Xk(n− 1)|p

=

(∑
k

|X(n, k)−X(n− 1, k)|p
)1/p (10)

This was informally found to give slightly better results than L1 or L2.
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The spectral flux detection function is then smoothed by convolving with a short asym-

metric kernel comprised of two half-Hanning windows. The widths of each kernel are spec-

ified by a single parameter; the “left” half is typically specified to be around 20 ms in

length, and the “right” around 150–200 ms. The motivation for this kernel was to preserve

the sharpness of attacks, while crudely modeling temporal masking known to occur within

200 ms after a perceptually salient onset, and around 20 ms before [35]. At the same time,

this process helps to eliminate spurious peaks that are likely to occurs in noisy regions

associated with onsets. This is particularly relevant in the case of detecting onsets in audio

resynthesized from PLCA components, as timbral distortion and other artifacts may occur.

An exponential decay is then applied to the detection function, and the result is stored

separately.

Using a scheme similar to Dixon [23], onsets are identified as those frame indices which

satisfy three conditions: the frame must be contain a local maximum in the detection

function; the detection function in that frame must not be less than the exponentially

decayed copy; the detection function must be greater than some threshold above the local

median, calculated on a sliding window. Additionally, onsets are constrained by a debounce

time, a short temporal window of 50 ms following a detected onset, within which any

subsequent matches to the above three criteria are rejected.

3.2.4 Resegmentation

At this point the audio is again segmented, this time using the detected onsets. An attempt

was made to explicitly look for “offsets” in the audio, loosely defined as a point after the

onset at which the signal returns to a similar state found prior to the onset. However, better

results were obtained by simply cutting the audio into blocks.

3.2.5 Final Representation and Playback

Now in possession of an array of data corresponding to a flexibly playable sequence, that

is, a list of start times and associated audio segments, we have one instance of the basic

components for a piece. Metalayers are implemented by applying a filter to the symbolic

sequence, passing through only a subset of the events. This is applied independently to each
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partition in each layer, in order to preserve the rhythmic structure produced by shuffling

the partitions.

This set of layers and subcomponents becomes the basic material for a full piece. A

contour can be created by following the basic additive procedure of choosing a layer to

introduce at every reiteration of the underlying cycle, and similarly by possibly changing

the sequence filtering parameter of one or more layers at every loop boundary. The order

of introduction is important, of course, and an area of future work would be to apply a

more sophisticated algorithm to this procedure; methods could include sorting by spectral

centroid or other timbral measure to, for example, follow a global timbral arc, or conversely

to ensure a certain degree of relative timbral separation between the currently playing set of

layers. It was found that manually choosing the starting layer to be rhythmically consistent,

occupying the role of a “click-track” or hi-hat, greatly improved the perceptual coherence

of the output. This is of course to be expected, but it should be noted that this device is

frequently employed in the style of music we are concerned with here. More sophistication

could be achieved by analyzing layers for rhythmic stability, and perhaps delaying the

introduction of rhythmically steady elements, allowing for an initial period of uncertainty

while resolving it early enough for the rhythmic character to cohere.

Overly direct analogy with the structure of the qaida back-end is not appropriate, due

to a number of previously described differences in stylistic form, but it can be seen that this

grouping of layers has parallels to both the qaida theme, in that once chosen, the underlying

material remains static for the remainder of the piece, and to the bank of variations, in that

a compositional form can be constructed through choosing elements from it to enter into the

musical output. However, it is also possible to generate a large bank of the layer sets through

multiple applications of the shuffling and partitioning procedures. A single group would still

be chosen at the outset. Initial experiments in this direction are being conducted, and it

is expected that this will greatly improve the system’s performance, since it will become

possible to implement the “push/select” paradigm used in the qaida generator in order to

increase the musicality and coherence of the sonic output.
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3.3 Discussion

The work undertaken in this section of the project was successful in a number of ways,

but admittedly less so than that presented in Chapter 2. For the most part, the discrep-

ancy lies in the raft of technical challenges involved in working directly with the audio, in

particular the process of source separation; further the timbral qualities of the separated

layers resynthesized from components estimated using PLCA often include artifacts from

the FFT resynthesis, and while the separation is often surprisingly effective, it can require

a substantial degree of manual tuning of the parameters. That aspect of the system is not

“intelligent”; it is agnostic to the domain of the material it analyzes, and thus is not able

to incorporate any understanding of the musical structures or other salient qualities that

assist humans in picking apart a mixed signal. Several elements of the generation procedure

also have a fairly low tolerance for error, notably in the segmentation by onset; small errors

at this step can greatly disturb the quality of the final output. Much more work could also

be done to fine-tune the more successful aspects of the system, and introducing an audio

processing module at the output would be one obvious improvement.

However, the majority of runs of the algorithm do produce music which is, as hoped,

both noticeably related to the seed track, and fairly novel. The simple additive form cre-

ates a clearly audible structure, and once that pattern becomes audibly clear, after, say,

the second addition, it tunes the listeners expectation in a way that can be quite effec-

tive. The basic approach to developing this system is highly similar to that used in the

qaida generator, notably in the decision to operate on larger abstracted rhythmic units,

and employing operations exploiting rhythmic context switching to generate related new

material. The idea of operating in parallel on different levels of grouping and abstraction is

common to both as well, for example in separating out the handling of full cycles/loops of

material, manipulating partitions, and descending to the event level. Further, both systems

incorporate the notion of injecting domain-specific knowledge into the choice of operations

at limited specific points in the procedure.

62



CHAPTER IV

CONCLUSION

Two implementations of a fairly generalizable approach to generative rhythmic modeling

have been presented. The systems, designed to model the temporally sequential thema-and-

variations tabla solo form qaida and a layer-based sub-genre of electronica, generate musical

output which is both appropriate and novel within their respective stylistic domains. They

are intended in part to be explorations in computational modeling of musical creativity, and

also to comprise core components of future performance systems. The results are generally

successful, though more so in the case of qaida modeling. Evaluation of the generative

qaida model was performed through a blind online survey, and preliminary results suggest

that listeners do perceive the system’s output as creative and fitting, with some predictable

qualifications.

The work described here in many ways represents an initial step, and there are many

promising areas for future work, most of which have been detailed. Generally, this work

involves a wide array of disciplines, and so future work will be similarly wide-ranging. No-

table areas include modeling expressive bayan modulation, building discriminative models

based on a large corpus of existing music to incorporate a more robust fittingness measure,

and more sohpistication in sound production and reproduction.
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