240,062 research outputs found

    Ke Ao: A Low-Cost 1U CubeSat for Aerospace Education and Research in Hawaii

    Get PDF
    The Ke Ao satellite is a low-cost 1U CubeSat designed and developed by an undergraduate team of engineering students at the University of Hawaii at Manoa (UHM) in collaboration with the Hawaii Space Flight Laboratory (HSFL). The primary goal of the mission is to take one or more pictures from space and automatically identify the Hawaiian Islands using Machine Learning Algorithms - this will demonstrate improved onboard operational autonomy in space. A secondary goal of this project is to promote Aerospace Education and Workforce training in Hawaii. The Ke Ao project was inspired by the Hiapo CubeSat initiative of the Hawaii Science and Technology Museum as a unique platform used to provide engaging meaningful hands-on STEM curriculum for Hawaii students K-12. The realization that low-cost flight hardware, in the order of ~10k,ispracticallynonexistent,andthereforethebarriertolaunchaflightcapableCubeSatisstillhighforsmallorganizationsandschoolswithlowbudgets.TheKeAoprojectstartedintheFallof2019withtheVerticallyIntegratedProject(VIP)AerospaceTechnologieswithElectrical,Mechanical,andComputerScienceEngineeringStudentsatUHandcontinuedtobefacilitatedundertheMechanicalEngineeringSeniorDesignCoursewithintheCollegeofEngineeringthroughouttheyearof2020.TheprojectwasimpactedbytheglobalCOVID19pandemicbutthisenabledthestudentteamtoimproveonthedesignandsimulations.HiapoandKeAoalsoinspiredtheNASAArtemisCubeSatKitprojectbeingdevelopedattheHSFL.TheArtemisCubeSatKitwillbeusedasaneducationaltoolforteachingaerospaceanddistributioninthepublicdomain.ThedevelopmentofthesethreeCubeSatsallowedforsynergisticdevelopmentandmultipurposedesignsandgavethestudentsawidebreadthofdesignexperiences.ThispaperwillexpandonthedesignanddevelopmentforthemainobjectivesforKeAo(1)takeoneormorepicturesoftheHawaiianIslandsfromspace;(2)costshallbenomorethan10k, is practically non-existent, and therefore the barrier to launch a flight-capable CubeSat is still high for small organizations and schools with low budgets. The Ke Ao project started in the Fall of 2019 with the Vertically Integrated Project (VIP) Aerospace Technologies with Electrical, Mechanical, and Computer Science Engineering Students at UH and continued to be facilitated under the Mechanical Engineering Senior Design Course within the College of Engineering throughout the year of 2020. The project was impacted by the global COVID-19 pandemic but this enabled the student team to improve on the design and simulations. Hiapo and Ke Ao also inspired the NASA Artemis CubeSat Kit project being developed at the HSFL. The Artemis CubeSat Kit will be used as an educational tool for teaching aerospace and distribution in the public domain. The development of these three CubeSats allowed for synergistic development and multipurpose designs and gave the students a wide breadth of design experiences. This paper will expand on the design and development for the main objectives for Ke Ao (1) take one or more pictures of the Hawaiian Islands from space; (2) cost shall be no more than 10,000 with built parts; and (3) launch-ready via the NASA CSLI application and requirements. To address these objectives Ke Ao uses spaceflight capable but low-cost hardware flown in previous CubeSat missions and consists of seven primary subsystems: Attitude Determination and Control System, Communications, Electrical Power Systems, On-Board Computer and Flight Software, Payload, Structure and Mechanisms, and Thermal Control Systems. Ke Ao will use onboard magnetic torquers to control the attitude of the payload and take pictures of the Hawaiian Islands. The data will be transmitted to the HSFL ground stations in Hawaii and through the SatNOGS ground station network across the World. Ke Ao’s mission and primary goals are in line with the 2018 NASA Strategic Plan’s Strategic Objective 3.3 to Inspire and Engage the Public in Aeronautics, Space, and Science and contribute to the Nation’s science literacy

    Overview of technologies for building robots in the classroom

    Get PDF
    This paper aims to give an overview of technologies that can be used to implement robotics within an educational context. We discuss complete robotics systems as well as projects that implement only certain elements of a robotics system, such as electronics, hardware, or software. We believe that Maker Movement and DIY trends offers many new opportunities for teaching and feel that they will become much more prominent in the future. Products and projects discussed in this paper are: Mindstorms, Vex, Arduino, Dwengo, Raspberry Pi, MakeBlock, OpenBeam, BitBeam, Scratch, Blockly and ArduBlock

    Designing experiments using digital fabrication in structural dynamics

    Get PDF
    In engineering, traditional approaches aimed at teaching concepts of dynamics to engineering students include the study of a dense yet sequential theoretical development of proofs and exercises. Structural dynamics are seldom taught experimentally in laboratories since these facilities should be provided with expensive equipment such as wave generators, data-acquisition systems, and heavily wired deployments with sensors. In this paper, the design of an experimental experience in the classroom based upon digital fabrication and modeling tools related to structural dynamics is presented. In particular, all experimental deployments are conceived with low-cost, open-source equipment. The hardware includes Arduino-based open-source electronics whereas the software is based upon object-oriented open-source codes for the development of physical simulations. The set of experiments and the physical simulations are reproducible and scalable in classroom-based environments.Peer ReviewedPostprint (author's final draft

    Ghent University-Department of Textiles: annual report 2013

    Get PDF

    An internet of laboratory things

    Get PDF
    By creating “an Internet of Laboratory Things” we have built a blend of real and virtual laboratory spaces that enables students to gain practical skills necessary for their professional science and engineering careers. All our students are distance learners. This provides them by default with the proving ground needed to develop their skills in remotely operating equipment, and collaborating with peers despite not being co-located. Our laboratories accommodate state of the art research grade equipment, as well as large-class sets of off-the-shelf work stations and bespoke teaching apparatus. Distance to the student is no object and the facilities are open all hours. This approach is essential for STEM qualifications requiring development of practical skills, with higher efficiency and greater accessibility than achievable in a solely residential programme
    corecore