9,772 research outputs found

    Numerical simulation of the stress-strain state of the dental system

    Full text link
    We present mathematical models, computational algorithms and software, which can be used for prediction of results of prosthetic treatment. More interest issue is biomechanics of the periodontal complex because any prosthesis is accompanied by a risk of overloading the supporting elements. Such risk can be avoided by the proper load distribution and prediction of stresses that occur during the use of dentures. We developed the mathematical model of the periodontal complex and its software implementation. This model is based on linear elasticity theory and allows to calculate the stress and strain fields in periodontal ligament and jawbone. The input parameters for the developed model can be divided into two groups. The first group of parameters describes the mechanical properties of periodontal ligament, teeth and jawbone (for example, elasticity of periodontal ligament etc.). The second group characterized the geometric properties of objects: the size of the teeth, their spatial coordinates, the size of periodontal ligament etc. The mechanical properties are the same for almost all, but the input of geometrical data is complicated because of their individual characteristics. In this connection, we develop algorithms and software for processing of images obtained by computed tomography (CT) scanner and for constructing individual digital model of the tooth-periodontal ligament-jawbone system of the patient. Integration of models and algorithms described allows to carry out biomechanical analysis on three-dimensional digital model and to select prosthesis design.Comment: 19 pages, 9 figure

    Missouri Watershed Water Quality Initiative

    Get PDF
    Agricultural and Food Policy, Environmental Economics and Policy,

    NEFI: Network Extraction From Images

    Full text link
    Networks and network-like structures are amongst the central building blocks of many technological and biological systems. Given a mathematical graph representation of a network, methods from graph theory enable a precise investigation of its properties. Software for the analysis of graphs is widely available and has been applied to graphs describing large scale networks such as social networks, protein-interaction networks, etc. In these applications, graph acquisition, i.e., the extraction of a mathematical graph from a network, is relatively simple. However, for many network-like structures, e.g. leaf venations, slime molds and mud cracks, data collection relies on images where graph extraction requires domain-specific solutions or even manual. Here we introduce Network Extraction From Images, NEFI, a software tool that automatically extracts accurate graphs from images of a wide range of networks originating in various domains. While there is previous work on graph extraction from images, theoretical results are fully accessible only to an expert audience and ready-to-use implementations for non-experts are rarely available or insufficiently documented. NEFI provides a novel platform allowing practitioners from many disciplines to easily extract graph representations from images by supplying flexible tools from image processing, computer vision and graph theory bundled in a convenient package. Thus, NEFI constitutes a scalable alternative to tedious and error-prone manual graph extraction and special purpose tools. We anticipate NEFI to enable the collection of larger datasets by reducing the time spent on graph extraction. The analysis of these new datasets may open up the possibility to gain new insights into the structure and function of various types of networks. NEFI is open source and available http://nefi.mpi-inf.mpg.de

    On the uncertainty of stream networks derived from elevation data: the error propagation approach

    Get PDF
    DEM error propagation methodology is extended to the derivation of vector-based objects (stream networks) using geostatistical simulations. First, point sampled elevations are used to fit a variogram model. Next 100 DEM realizations are generated using conditional sequential Gaussian simulation; the stream network map is extracted for each of these realizations, and the collection of stream networks is analyzed to quantify the error propagation. At each grid cell, the probability of the occurrence of a stream and the propagated error are estimated. The method is illustrated using two small data sets: Baranja hill (30 m grid cell size; 16 512 pixels; 6367 sampled elevations), and Zlatibor (30 m grid cell size; 15 000 pixels; 2051 sampled elevations). All computations are run in the open source software for statistical computing R: package geoR is used to fit variogram; package gstat is used to run sequential Gaussian simulation; streams are extracted using the open source GIS SAGA via the RSAGA library. The resulting stream error map (Information entropy of a Bernoulli trial) clearly depicts areas where the extracted stream network is least precise – usually areas of low local relief and slightly convex (0–10 difference from the mean value). In both cases, significant parts of the study area (17.3% for Baranja Hill; 6.2% for Zlatibor) show high error (H>0.5) of locating streams. By correlating the propagated uncertainty of the derived stream network with various land surface parameters sampling of height measurements can be optimized so that delineated streams satisfy the required accuracy level. Such error propagation tool should become a standard functionality in any modern GIS. Remaining issue to be tackled is the computational burden of geostatistical simulations: this framework is at the moment limited to small data sets with several hundreds of points. Scripts and data sets used in this article are available on-line via the www.geomorphometry.org website and can be easily adopted/adjusted to any similar case study

    Functional Ontologies and Their Application to Hydrologic Modeling: Development of an Integrated Semantic and Procedural Knowledge Model and Reasoning Engine

    Get PDF
    This dissertation represents the research and development of new concepts and techniques for modeling the knowledge about the many concepts we as hydrologists must understand such that we can execute models that operate in terms of conceptual abstractions and have those abstractions translate to the data, tools, and models we use every day. This hydrologic knowledge includes conceptual (i.e. semantic) knowledge, such as the hydrologic cycle concepts and relationships, as well as functional (i.e. procedural) knowledge, such as how to compute the area of a watershed polygon, average basin slope or topographic wetness index. This dissertation is presented as three papers and a reference manual for the software created. Because hydrologic knowledge includes both semantic aspects as well as procedural aspects, we have developed, in the first paper, a new form of reasoning engine and knowledge base that extends the general-purpose analysis and problem-solving capability of reasoning engines by incorporating procedural knowledge, represented as computer source code, into the knowledge base. The reasoning engine is able to compile the code and then, if need be, execute the procedural code as part of a query. The potential advantage to this approach is that it simplifies the description of procedural knowledge in a form that can be readily utilized by the reasoning engine to answer a query. Further, since the form of representation of the procedural knowledge is source code, the procedural knowledge has the full capabilities of the underlying language. We use the term functional ontology to refer to the new semantic and procedural knowledge models. The first paper applies the new knowledge model to describing and analyzing polygons. The second and third papers address the application of the new functional ontology reasoning engine and knowledge model to hydrologic applications. The second paper models concepts and procedures, including running external software, related to watershed delineation. The third paper models a project scenario that includes integrating several models. A key advance demonstrated in this paper is the use of functional ontologies to apply metamodeling concepts in a manner that both abstracts and fully utilizes computational models and data sets as part of the project modeling process
    • …
    corecore