40 research outputs found

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Non-contact measurement machine for freeform optics

    Get PDF
    The performance of high-precision optical systems using spherical optics is limited by aberrations. By applying aspherical and freeform optics, the geometrical aberrations can be reduced or eliminated while at the same time also reducing the required number of components, the size and the weight of the system. New manufacturing techniques enable creation of high-precision freeform surfaces. Suitable metrology (high accuracy, universal, non-contact, large measurement volume and short measurement time) is key in the manufacturing and application of these surfaces, but not yet available. In this thesis, the design, realization and testing of a new metrology instrument is described. This measurement machine is capable of universal, noncontact and fast measurement of freeform optics up to Ø500 mm, with an uncertainty of 30 nm (2s). A cylindrical scanning setup with an optical distance probe has been designed. This concept is non-contact, universal and fast. With a probe with 5 mm range, circular tracks on freeform surfaces can be measured rapidly with minimal dynamics. By applying a metrology frame relative to which the position of the probe and the product are measured, most stage errors are eliminated from the metrology loop. Because the probe is oriented perpendicular to the aspherical best-fit of the surface, the sensitivity to tangential errors is reduced. This allows for the metrology system to be 2D. The machine design can be split into three parts: the motion system, the metrology system and: the non-contact probe. The motion system positions the probe relative to the product in 4 degrees of freedom. The product is mounted on an air bearing spindle (??), and the probe is positioned over it in radial (r), vertical (z) and inclination (¿) direction by the R-stage, Z-stage and ¿- axis, respectively. The motion system provides a sub-micrometer repeatable plane of motion to the probe. The Z-stage is hereto aligned to a vertical plane of the granite base using three air bearings, to obtain a parallel bearing stage configuration. To minimize distortions and hysteresis, the stages have separate position and preload frames. Direct drive motors and high resolution optical scales and encoders are used for positioning. Mechanical brakes are applied while measuring a track, to minimize power dissipation and to exclude encoder, amplifier and EMC noise. The motors, brakes and weight compensation are aligned to the centres of gravity of the R and Zstage. Stabilizing controllers have been designed based on frequency response measurements. The metrology system measures the position of the probe relative to the product in the six critical directions in the plane of motion of the probe (the measurement plane). By focussing a vertical and horizontal interferometer onto the ¿-axis rotor, the displacement of the probe is measured relative to the reference mirrors on the upper metrology frame. Due to the reduced sensitivity in tangential direction at the probe tip, the Abbe criterion is still satisfied. Silicon Carbide is the material of choice for the upper metrology frame, due to its excellent thermal and mechanical properties. Mechanical and thermal analysis of this frame shows nanometer-level stabilities under the expected thermal loads. Simulations of the multi-probe method show capabilities of in process separation of the spindle reference edge profile and the spindle error motion with sub-nanometer uncertainty. The non-contact probe measures the distance between the ¿-axis rotor and the surface under test. A dual stage design is applied, which has 5 mm range, nanometer resolution and 5° unidirectional acceptance angle. This enables the R and Z-stage and ¿-axis to be stationary during the measurement of a circular track on a freeform surface. The design consists of a compact integration of the differential confocal method with an interferometer. The focussing objective is positioned by a flexure guidance with a voice coil actuator. A motion controller finds the surface and keeps the objective focused onto it with some tens of nanometers servo error. The electronics and software are designed to safely operate the 5 axes of the machine and to acquire the signals of all measurement channels. The electronics cabinet contains a real-time processor with many in and outputs, control units for all 5 axes, a safety control unit, a probe laser unit and an interferometry interface. The software consists of three main elements: the trajectory planning, the machine control and the data processing. Emphasis has been on the machine control, in order to safely validate the machine performance and perform basic data-processing. The performance of the machine assembly has been tested by stability, single track and full surface measurements. The measurements focus on repeatability, since this is a key condition before achieving low measurement uncertainty by calibration. The measurements are performed on a Ø100 mm optical flat, which was calibrated by NMi VSL to be flat within 7 nm rms. At standstill, the noise level of the metrology loop is 0.9 nm rms over 0.1 s. When measuring a single track at 1 rev/s, 10 revolutions overlap within 10 nm PV. The repeatability of three measurements of the flat, tilted by 13 µm, is 2 nm rms. The flatness measured by the uncalibrated machine matches the NMi data well. Ten measurements of the flat tilted by 1.6 mm repeat to 3.4 nm rms. A new non-contact measurement machine prototype for freeform optics has been developed. The characteristics desired for a high-end, single piece, freeform optics production environment (high accuracy, universal, non-contact, large measurement volume and short measurement time) have been incorporated into one instrument. The validation measurement results exceed the expectations, especially since they are basically raw data. Future calibrations and development of control and dataprocessing software will certainly further improve these results

    Controlo de uma plataforma servo-hidráulica com cinemática paralela para estampagem incremental

    Get PDF
    Mestrado em Engenharia MecânicaSPIF-A is an innovative project about Gough-Stewart platform using parallel kinematics for incremental forming that is supported by different fields of engineering. It is a long term work composed by a professional team that includes professors, students and researchers fancying to improve and contribute for scientific knowledge. Incremental forming is emerging due to its useful advantages, highlighting the high-speed machining. The objective is the control of a Gough-Stewart platform, planning and execution of G-code trajectories. Thereunto, a state-of-the-art regarding incremental forming, parallel platforms, parallel kinematics and control theory is carried out. Position controllers and trajectory planning are developed and implemented for a 6 degree-of-freedom manipulator. Accuracy and reliability tests are done to consummate an hardware improvement. Some types of controllers, based in fuzzy logic and one linear PID, were studied and executed on this platform in order to improve its control system.SPIF-A é um projecto inovador sobre uma plataforma de Gough- Stweart com cinemática paralela para estampagem incremental que abrange inúmeras áreas da engenharia. É um trabalho de longa data composto por uma equipa de profissionais entre professores, estudantes e investigadores que visa estimular o conhecimento científico. A estampagem incremental está muito em voga uma vez que as suas vantagens são tremendas. Dentro desta, destaca-se a estampagem incremental de alta velocidade. O objetivo é então o controlo de uma plataforma Gough-Stewart, planeamento e execução de trajetórias ISO. Para isso, é feita uma revisão do estado da arte sobre estampagem incremental, plataformas paralelas, cinemática paralela e teoria de controladores. São desenvolvidos e implementados controladores de posição e definidas trajetórias para um manipulador de 6 graus de liberdade. São levados a cabo testes de precisão e fiabilidade do hardware do manipulador tendo em vista a sua melhoria futura. Uma série de controladores, baseados em lógica difusa e um controlador PID linear, foram estudados e testados durante a implementação do novo hardware na plataforma tendo em conta a melhoria de todo o seu sistema de controlo

    Automated Micromanipulation of Micro Objects

    Get PDF
    In recent years, research efforts in the development of Micro Electro Mechanical Systems, (MEMS) including microactuators and micromanipulators, have attracted a great deal of attention. The development of microfabrication techniques has resulted in substantial progress in the miniaturization of devices such as electronic circuits. However, the research in MEMS still lags behind in terms of the development of reliable tools for post-fabrication processes and the precise and dexterous manipulation of individual micro size objects. Current micromanipulation mechanisms are prone to high costs, a large footprint, and poor dexterity and are labour intensive. To overcome such, the research in this thesis is focused on the utilization of microactuators in micromanipulation. Microactuators are compliant structures. They undergo substantial deflection during micromanipulation due to the considerable surface micro forces. Their dominance in governing micromanipulation is so compelling that their effects should be considered in designing microactuators and microsensors. In this thesis, the characterization of the surface micro forces and automated micromanipulation are investigated. An inexpensive experimental setup is proposed as a platform to replace Atomic Force Microscopy (AFM) for analyzing the force characterization of micro scale components. The relationship between the magnitudes of the surface micro forces and the parameters such as the velocity of the pushing process, relative humidity, temperature, hydrophilicity of the substrate, and surface area are empirically examined. In addition, a precision automated micromanipulation system is realized. A class of artificial neural networks (NN) is devised to estimate the unmodelled micro forces during the controlled pushing of micro size object along a desired path. Then, a nonlinear controller is developed for the controlled pushing of the micro objects to guarantee the stability of the closed loop system in the Lyapunov sense. To validate the performance of the proposed controller, an experimental setup is designed. The application of the proposed controller is extended to precisely push several micro objects, each with different characteristics in terms of the surface micro forces governing the manipulation process. The proposed adaptive controller is capable of learning to adjust its weights effectively when the surface micro forces change under varying conditions. By using the controller, a fully automated sequential positioning of three micro objects on a flat substrate is performed. The results are compared with those of the identical sequential pushing by using a conventional linear controller. The results suggest that artificial NNs are a promising tool for the design of adaptive controllers to accurately perform the automated manipulation of multiple objects in the microscopic scale for microassembly

    Eighteenth Space Simulation Conference: Space Mission Success Through Testing

    Get PDF
    The Institute of Environmental Sciences' Eighteenth Space Simulation Conference, 'Space Mission Success Through Testing' provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme 'Space Mission Success Through Testing.
    corecore