117 research outputs found

    Mobile locally operated detachable end-effector manipulator for endoscopic surgery

    Get PDF
    Purpose\n Local surgery is safer than remote surgery because emergencies can be more easily addressed. Although many locally operated surgical robots and devices have been developed, none can safely grasp organs and provide traction. A new manipulator with a detachable commercial forceps was developed that can act as a third arm for a surgeon situated in a sterile area near the patient. This mechanism can be disassembled into compact parts that enable mobile use.Methods\n A mobile locally operated detachable end-effector manipulator (LODEM) was developed and tested. This device uses crank-slider and cable-rod mechanisms to achieve 5 degrees of freedom and an acting force of more than 5 N. The total mass is less than 15 kg. The positional accuracy and speed of the prototype device were evaluated while performing simulated in vivo surgery.Results\n The accuracy of the mobile LODEM was 0.4 mm, sufficient for handling organs. The manipulator could be assembled and disassembled in 8 min, making it highly mobile. The manipulator could successfully handle the target organs with the required level of dexterity during an in vivo laparoscopic surgical procedure.Conclusions\n A mobile LODEM was designed that allows minimally invasive robotically assisted endoscopic surgery by a surgeon working near the patient. This device is highly promising for robotic surgery applications.ArticleINTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY. 10(2):161-169 (2015)journal articl

    Realization of a demonstrator slave for robotic minimally invasive surgery

    Get PDF
    Robots for Minimally Invasive Surgery (MIS) can improve the surgeon’s work conditions with respect to conventional MIS and to enable MIS with more complex procedures. This requires to provide the surgeon with tactile feedback to feel forces executed on e.g. tissue and sutures, which is partially lost in conventional MIS. Additionally use of a robot should improve the approach possibilities of a target organ by means of instrument degrees of freedom (DoFs) and of the entry points with a compact set-up. These requirements add to the requirements set by the most common commercially available system, the da Vinci which are: (i) dexterity, (ii) natural hand-eye coordination, (iii) a comfortable body posture, (iv) intuitive utilization, and (v) a stereoscopic ’3D’ view of the operation site. The purpose of Sofie (Surgeon’s operating force-feedback interface Eindhoven) is to evaluate the possible benefit of force-feedback and the approach of both patient and target organ. Sofie integrates master, slave, electronic hardware and control. This thesis focusses on the design and realization of a technology demonstrator of the Slave. To provide good accuracy and valuable force-feedback, good dynamic behavior and limited hysteresis are required. To this end the Slave includes (i) a relatively short force-path between its instrument-tips and between tip and patient, and (ii) a passive instrument-support by means of a remote kinematically fixed point of rotation. The incision tissue does not support the instrument. The Slave is connected directly to the table. It provides a 20 DoF highly adaptable stiff frame (pre-surgical set-up) with a short force-path between the instrumenttips and between instrument-tip and patient. During surgery this frame supports three 4 DoF manipulators, two for exchangeable 4 DoF instruments and one for an endoscope. The pre-surgical set-up of the Slave consists of a 5 DoF platform-adjustment with a platform. This platform can hold three 5 DoF manipulator-adjustments in line-up. The set-up is compact to avoid interference with the team, entirely mechanical and allows fast manual adjustment and fixation of the joints. It provides a stiff frame during surgery. A weight-compensation mechanism for the platformadjustment has been proposed. Measurements indicate all natural frequencies are above 25 Hz. The manipulator moves the instrument in 4 DoFs (??, , ?? and Z). Each manipulator passively supports its instrument with a parallelogram mechanism, providing a kinematically fixed point of rotation. Two manipulators have been designed in consecutive order. The first manipulator drives with a worm-wormwheel, the second design uses a ball-screw drive. This ball-screw drive reduces friction, which is preferred for next generations of the manipulator, since the worm-wormwheel drive shows a relatively low coherence at low frequencies. The compact ??Zmanipulator moves the instrument in ?? by rotating a drum. Friction wheels in the drum provide Z. Eventually, the drum will be removable from the manipulator for sterilization. This layout of the manipulator results in a small motion-envelope and least obstructs the team at the table. Force sensors measuring forces executed with the instrument, are integrated in the manipulator instead of at the instrument tip, to avoid all risks of electrical signals being introduced into the patient. Measurements indicate the separate sensors function properly. Integrated in the manipulator the sensors provide a good indication of the force but do suffer from some hysteresis which might be caused by moving wires. The instrument as realized consists of a drive-box, an instrument-tube and a 4 DoF tip. It provides the surgeon with three DoFs additional to the gripper of conventional MIS instruments. These DoFs include two lateral rotations (pitch and pivot) to improve the approach possibilities and the roll DoF will contribute in stitching. Pitch and roll are driven by means of bevelgears, driven with concentric tubes. Cables drive the pivot and close DoFs of the gripper. The transmissions are backdriveable for safety. Theoretical torques that can be achieved with this instrument approximate the requirements closely. Further research needs to reveal the torques achieved in practice and whether the requirements obtained from literature actually are required for these 4 DoF instruments. Force-sensors are proposed and can be integrated. Sofie currently consists of a master prototype with two 5 DoF haptic interfaces, the Slave and an electronic hardware cabinet. The surgeon uses the haptic interfaces of the Master to manipulate the manipulators and instruments of the Slave, while the actuated DoFs of the Master provide the surgeon with force-feedback. This project resulted in a demonstrator of the slave with force sensors incorporated, compact for easy approach of the patient and additional DoFs to increase approach possibilities of the target organ. This slave and master provide a good starting point to implement haptic controllers. These additional features may ultimately benefit both surgeon and patient

    Development of miniaturized light endoscope-holder robot for laparoscopic surgery

    Full text link
    PURPOSE: We have conducted experiments with an innovatively designed robot endoscope holder for laparoscopic surgery that is small and low cost. MATERIALS AND METHODS: A compact light endoscope robot (LER) that is placed on the patient's skin and can be used with the patient in the lateral or dorsal supine position was tested on cadavers and laboratory pigs in order to allow successive modifications. The current control system is based on voice recognition. The range of vision is 360 degrees with an angle of 160 degrees . Twenty-three procedures were performed. RESULTS: The tests made it possible to advance the prototype on a variety of aspects, including reliability, steadiness, ergonomics, and dimensions. The ease of installation of the robot, which takes only 5 minutes, and the easy handling made it possible for 21 of the 23 procedures to be performed without an assistant. CONCLUSION: The LER is a camera holder guided by the surgeon's voice that can eliminate the need for an assistant during laparoscopic surgery. The ease of installation and manufacture should make it an effective and inexpensive system for use on patients in the lateral and dorsal supine positions. Randomized clinical trials will soon validate a new version of this robot prior to marketing

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Cable-driven parallel robot for transoral laser phonosurgery

    Get PDF
    Transoral laser phonosurgery (TLP) is a common surgical procedure in otolaryngology. Currently, two techniques are commonly used: free beam and fibre delivery. For free beam delivery, in combination with laser scanning techniques, accurate laser pattern scanning can be achieved. However, a line-of-sight to the target is required. A suspension laryngoscope is adopted to create a straight working channel for the scanning laser beam, which could introduce lesions to the patient, and the manipulability and ergonomics are poor. For the fibre delivery approach, a flexible fibre is used to transmit the laser beam, and the distal tip of the laser fibre can be manipulated by a flexible robotic tool. The issues related to the limitation of the line-of-sight can be avoided. However, the laser scanning function is currently lost in this approach, and the performance is inferior to that of the laser scanning technique in the free beam approach. A novel cable-driven parallel robot (CDPR), LaryngoTORS, has been developed for TLP. By using a curved laryngeal blade, a straight suspension laryngoscope will not be necessary to use, which is expected to be less traumatic to the patient. Semi-autonomous free path scanning can be executed, and high precision and high repeatability of the free path can be achieved. The performance has been verified in various bench and ex vivo tests. The technical feasibility of the LaryngoTORS robot for TLP was considered and evaluated in this thesis. The LaryngoTORS robot has demonstrated the potential to offer an acceptable and feasible solution to be used in real-world clinical applications of TLP. Furthermore, the LaryngoTORS robot can combine with fibre-based optical biopsy techniques. Experiments of probe-based confocal laser endomicroscopy (pCLE) and hyperspectral fibre-optic sensing were performed. The LaryngoTORS robot demonstrates the potential to be utilised to apply the fibre-based optical biopsy of the larynx.Open Acces

    Development of A Soft Robotic Approach for An Intra-abdominal Wireless Laparoscopic Camera

    Get PDF
    In Single-Incision Laparoscopic Surgery (SILS), the Magnetic Anchoring and Guidance System (MAGS) arises as a promising technique to provide larger workspaces and field of vision for the laparoscopes, relief space for other instruments, and require fewer incisions. Inspired by MAGS, many concept designs related to fully insertable magnetically driven laparoscopes are developed and tested on the transabdominal operation. However, ignoring the tissue interaction and insertion procedure, most of the designs adopt rigid structures, which not only damage the patients\u27 tissue with excess stress concentration and sliding motion but also require complicated operation for the insertion. Meanwhile, lacking state tracking of the insertable camera including pose and contact force, the camera systems operate in open-loop control. This provides mediocre locomotion precision and limited robustness to uncertainties in the environment. This dissertation proposes, develops, and validates a soft robotic approach for an intra-abdominal wireless laparoscopic camera. Contributions presented in this work include (1) feasibility of a soft intra-abdominal laparoscopic camera with friendly tissue interaction and convenient insertion, (2) six degrees of freedom (DOF) real-time localization, (3) Closed-loop control for a robotic-assisted laparoscopic system and (4) untethering solution for wireless communication and high-quality video transmission. Embedding magnet pairs into the camera and external actuator, the camera can be steered and anchored along the abdominal wall through transabdominal magnetic coupling. To avoid the tissue rapture by the sliding motion and dry friction, a wheel structure is applied to achieve rolling motion. Borrowing the ideas from soft robotic research, the main body of the camera implements silicone material, which grants it the bendability to passively attach along the curved abdominal wall and the deformability for easier insertion. The six-DOF pose is estimated in real-time with internal multi-sensor fusion and Newton-Raphson iteration. Combining the pose tracking and force-torque sensor measurement, an interaction model between the deformable camera and tissue is established to evaluate the interaction force over the tissue surface. Moreover, the proposed laparoscopic system is integrated with a multi-DOF manipulator into a robotic-assisted surgical system, where a closed-loop control is realized based on a feedback controller and online optimization. Finally, the wireless control and video streaming are accomplished with Bluetooth Low Energy (BLE) and Analog Video (AV) transmission. Experimental assessments have been implemented to evaluate the performance of the laparoscopic system

    Modeling, Analysis, Force Sensing and Control of Continuum Robots for Minimally Invasive Surgery

    Get PDF
    This dissertation describes design, modeling and application of continuum robotics for surgical applications, specifically parallel continuum robots (PCRs) and concentric tube manipulators (CTMs). The introduction of robotics into surgical applications has allowed for a greater degree of precision, less invasive access to more remote surgical sites, and user-intuitive interfaces with enhanced vision systems. The most recent developments have been in the space of continuum robots, whose exible structure create an inherent safety factor when in contact with fragile tissues. The design challenges that exist involve balancing size and strength of the manipulators, controlling the manipulators over long transmission pathways, and incorporating force sensing and feedback from the manipulators to the user. Contributions presented in this work include: (1) prototyping, design, force sensing, and force control investigations of PCRs, and (2) prototyping of a concentric tube manipulator for use in a standard colonoscope. A general kinetostatic model is presented for PCRs along with identification of multiple physical constraints encountered in design and construction. Design considerations and manipulator capabilities are examined in the form of matrix metrics and ellipsoid representations. Finally, force sensing and control are explored and experimental results are provided showing the accuracy of force estimates based on actuation force measurements and control capabilities. An overview of the design requirements, manipulator construction, analysis and experimental results are provided for a CTM used as a tool manipulator in a traditional colonoscope. Currently, tools used in colonoscopic procedures are straight and exit the front of the scope with 1 DOF of operation (jaws of a grasper, tightening of a loop, etc.). This research shows that with a CTM deployed, the dexterity of these tools can be increased dramatically, increasing accuracy of tool operation, ease of use and safety of the overall procedure. The prototype investigated in this work allows for multiple tools to be used during a single procedure. Experimental results show the feasibility and advantages of the newly-designed manipulators

    Robocatch: Design and Making of a Hand-Held Spillage-Free Specimen Retrieval Robot for Laparoscopic Surgery

    Get PDF
    Specimen retrieval is an important step in laparoscopy, a minimally invasive surgical procedure performed to diagnose and treat a myriad of medical pathologies in fields ranging from gynecology to oncology. Specimen retrieval bags (SRBs) are used to facilitate this task, while minimizing contamination of neighboring tissues and port-sites in the abdominal cavity. This manual surgical procedure requires usage of multiple ports, creating a traffic of simultaneous operations of multiple instruments in a limited shared workspace. The skill-demanding nature of this procedure makes it time-consuming, leading to surgeons’ fatigue and operational inefficiency. This thesis presents the design and making of RoboCatch, a novel hand-held robot that aids a surgeon in performing spillage-free retrieval of operative specimens in laparoscopic surgery. The proposed design significantly modifies and extends conventional instruments that are currently used by surgeons for the retrieval task: The core instrumentation of RoboCatch comprises a webbed three-fingered grasper and atraumatic forceps that are concentrically situated in a folded configuration inside a trocar. The specimen retrieval task is achieved in six stages: 1) The trocar is introduced into the surgical site through an instrument port, 2) the three webbed fingers slide out of the tube and simultaneously unfold in an umbrella like-fashion, 3) the forceps slide toward, and grasp, the excised specimen, 4) the forceps retract the grasped specimen into the center of the surrounding grasper, 5) the grasper closes to achieve a secured containment of the specimen, and 6) the grasper, along with the contained specimen, is manually removed from the abdominal cavity. The resulting reduction in the number of active ports reduces obstruction of the port-site and increases the procedure’s efficiency. The design process was initiated by acquiring crucial parameters from surgeons and creating a design table, which informed the CAD modeling of the robot structure and selection of actuation units and fabrication material. The robot prototype was first examined in CAD simulation and then fabricated using an Objet30 Prime 3D printer. Physical validation experiments were conducted to verify the functionality of different mechanisms of the robot. Further, specimen retrieval experiments were conducted with porcine meat samples to test the feasibility of the proposed design. Experimental results revealed that the robot was capable of retrieving masses of specimen ranging from 1 gram to 50 grams. The making of RoboCatch represents a significant step toward advancing the frontiers of hand-held robots for performing specimen retrieval tasks in minimally invasive surgery
    • …
    corecore