1,690 research outputs found

    Hardware Simulation for Testing IEC 61131-3

    Get PDF
    Testing of control code written in IEC 61131-3 has long been a strenuous manual process. The focus in this master's thesis is on building a simulator of an Alfa Laval separator to enable testing of control code. In this particular case, the control code being tested is written and executed in a soft PLC called TwinCAT. The simulator for testing code is written in C#. When testing code, automated tests are preferred because it enables easy regression testing. For this purpose a testing tool using a customized script language has been developed. Testing with a simulator is also beneficial because errors can be found early in the development process, thus reducing the number of errors left to be found when testing on hardware. Comparison tests show that the simulator performs sufficiently well for testing of control code

    Integrated Real-Virtuality System and Environments for Advanced Control System Developers and Machines Builders

    Get PDF
    The pace of technological change is increasing and sophisticated customer driven markets are forcing rapid machine evolution, increasing complexity and quality, and faster response. To survive and thrive in these markets, machine builders/suppliers require absolute customer and market orientation, focusing on .. rapid provision of solutions rather than products. Their production systems will need to accommodate unpredictable changes while maintaining financial and operational efficiency with short lead and delivery times. Real-Virtuality (R-V) systems are an innovative environment to address these requirements by facilitating enhanced support in machine system design utilising integrated real-virtual environments centred on concurrent machine system development and realization. This environment supports not only machine system design but also the development of the' control system at the same time. Utilising the Real-Virtual Mapping Environment (RVMI;:), 3-D simulation machine models can perform actual machine operations in real-time when coupled with the real machine controller. This provides a more understandable, reliable and transparent machine function and performance. The research study explores different types of controller verification methods and proposes a new method which employs the use of a control signal emulator. The research study has fomulated a novel technique for emulating quadrature encoder signals to provide virtual closed loop control of servomotors. The deployment of a control signal emulator technique makes the system unique and removes its dependency on specific hardware. Enabling the real-time data from the signal emulation environment eases the task of realising a real-time machine simulator. To evaluate the proposed architecture, three case studies were performed. The results have shown that it is possible to create verified and validated machine control programs with no modification needed when applied to the real machine. The migration from the virtual to the real world is totally seamless. The result from the ????study show that the virtual machine is able to operate and respond as a real machine in real-time. This opens up the unexplored potential of integrated 3-D virtual technology. The real-time 3-D simulation virtual machine will enable commissioning and training to be conducted '!-t an earlier stage in the design process (without having to wait for the real machine to be built). Furthermore, various test scenarios can also be developed and tested on the system which helps to provide a better lofriderstanding of the machine behaviours and responses. This research study has made an original contribution in the field of machine system development. It has contributed a novel approach of using emulated control signals to provide machine control programmers with a platform to test their application programs at machine level which involves both discrete digital signals and continuous signals. The real-time virtual environment extends the application domain for the use of simulation. The architecture proposed is generic; to be exact it is not constrained to a specific industrial control system or to a specific simulation vendor

    Design of A Virtual Laboratory for Automation Control

    Get PDF
    In the past, only students who studied on campus were able to access laboratory equipment in traditional lab courses; distance learning students, enrolled in online courses, were at a disadvantage for they could learn basic lab experiment principles but could never experience hands-on learning. Modeling and simulation can be a powerful tool for generating virtual laboratories for distance learning students. This thesis describes the design and development of a virtual laboratory for automation control using mechanical, electrical, and pneumatic components for an automation and control course at Old Dominion University. This virtual laboratory application was implemented for two platforms — Windows personal computers and Android smartphones. The virtual lab serves as pre-lab session for on-campus students and a virtual lab tool for distance-learning students to gain some “hands-on” lab experience. Utilizing the virtual learning environment as a supplement to engineering-based laboratories is also beneficial for students to prepare for the physical experiment and obtain a “hands-on,” practical lab experience without the hazards present in the physical lab. Such a methodology can also be applied to experiments in different fields such chemistry, etc

    Validating a reconfigurable assembly system utilizing virtual commissioning

    Get PDF
    Published ArticleSouth African manufacturing companies today need to be more sophisticated technologically to compete for global markets. The latest trend in automation and manufacturing emerges in the form of reconfigurable systems. The aim of this paper is to show the development of a reconfigurable assembly system and using virtual commissioning to plan, validate and optimize it. To achieve this "DELMIA" software was used to create a virtual simulation environment to verify an assembly cell from such a system as a case study. Simulations were conducted to verify software functions, device movements and operations, and the control software of the system. As a result, it was found that virtual commissioning is an excellent tool for predicting how the system will function, verifying system code early, and rectifying design flaws. This will enable manufacturing companies to be more competitive, ensure increased productivity, save time and ensure them an advantage over their competition

    Automating Virtualization of Machinery for enabling efficient Virtual Engineering Methods

    Get PDF
    Virtual engineering as a new working method in product development should make it much easier to validate the development progress and facilitate team communication. Work steps are brought forward and start with the virtual components instead of real ones. To validate mechanical and electrical CAD as well as programming, automated virtualization systems should create the virtual twin of the machine at the push of a button. For this purpose, generic intelligence is added to enable complex interactive virtual models that can be used for training, monitoring and many other applications. Advanced applications are for example training and support applications, especially in combination with augmented reality and remote collaboration. We propose a system that combines virtual reality, virtual engineering and artificial intelligence methods for the product development process. Geometry analysis algorithms are used to process mechanical CAD data and thus, for example, to automatically parameterize kinematic simulations. In combination with electrical CAD data and the simulations of electric circuits as well as the original machine program allow simulating the behavior of the machine and the user interaction with it. This article will describe the virtualization method in detail and present various use-cases in special machine construction. It will also propose a novel method to use causal discovery in complex machine simulations
    • …
    corecore