431 research outputs found

    Control of a Snake Robot for Ascending and Descending Steps

    Get PDF
    This paper proposes control method for a snake robot to ascend and descend steps. In a multiplane step environment, it is necessary for locomotion to transfer from one plane to another. When a snake robot moves, it touches several planes as its body is long and thin. In this paper, we propose a control method to track the trajectory of a snake robot in a step environment. We decomposed the 3-D motion of the robot into two simple models by introducing an assumption that simplifies the model and controller, and derive a model of the robot as a hybrid system with switching. The control method consists of a tracking controller, a method for shifting the robot\u27s part connecting the planes, and active lifting to control the shape of the robot. Ascent and descent experiments confirm the effectiveness of the proposed controller and the method for shifting the connecting part of the robot\u27s body

    Motion control of a snake robot moving between two non-parallel planes

    Get PDF
    A control method that makes the head of a snake robot follow an arbitrary trajectory on two non-parallel planes, including coexisting sloped and flat planes, is presented. We clarify an appropriate condition of contact between the robot and planes and design a controller for the part of the robot connecting the two planes that satisfies the contact condition. Assuming that the contact condition is satisfied, we derive a simplified model of the robot and design a controller for trajectory tracking of the robot’s head. The controller uses kinematic redundancy to avoid violating the limit of the joint angle and a collision between the robot and the edge of a plane. The effectiveness of the proposed method is demonstrated in experiments using an actual robot

    Task-Space Control of Articulated Mobile Robots With a Soft Gripper for Operations

    Get PDF
    A task-space method is presented for the control of a head-raising articulated mobile robot, allowing the trajectory tracking of a tip of a gripper located on the head of the robot in various operations, e.g., picking up an object and rotating a valve. If the robot cannot continue moving because it reaches a joint angle limit, the robot moves away from the joint limit and changes posture by switching the allocation of lifted/grounded wheels. An articulated mobile robot with a gripper that can grasp objects using jamming transition was developed, and experiments were conducted to demonstrate the effectiveness of the proposed controller in operations

    Smooth control of an articulated mobile robot with switching constraints

    Get PDF
    The paper describes a smooth controller of an articulated mobile robot with switching constraints. The use of switching constraints associated with grounded/lifted wheels is an effective method of controlling various motions; e.g. the avoidance of a moving obstacle. A model of an articulated mobile robot that has active and passive wheels and active joints with switching constraints is derived. A controller that accomplishes the trajectory tracking of the robot’s head and subtasks using smooth joint input is proposed on the basis of the model. Simulations and experiments are presented to show the effectiveness of the proposed controller

    Mechanical Description of a Hyper-Redundant Robot Joint Mechanism Used for a Design of a Biomimetic Robotic Fish

    Get PDF
    A biologically inspired robot in the form of fish (mackerel) model using rubber (as the biomimetic material) for its hyper-redundant joint is presented in this paper. Computerized simulation of the most critical part of the model (the peduncle) shows that the rubber joints will be able to take up the stress that will be created. Furthermore, the frequency-induced softening of the rubber used was found to be critical if the joints are going to oscillate at frequency above 25 Hz. The robotic fish was able to attain a speed of 0.985 m/s while the tail beats at a maximum of 1.7 Hz when tested inside water. Furthermore, a minimum turning radius of 0.8 m (approximately 2 times the fish body length) was achieved

    Development of a novel locomotion algorithm for snake robot

    Get PDF
    A novel algorithm for snake robot locomotion is developed and analyzed in this paper. Serpentine is one of the renowned locomotion for snake robot in disaster recovery mission to overcome narrow space navigation. Several locomotion for snake navigation, such as concertina or rectilinear may be suitable for narrow spaces, but is highly inefficient if the same type of locomotion is used even in open spaces resulting friction reduction which make difficulties for snake movement. A novel locomotion algorithm has been proposed based on the modification of the multi-link snake robot, the modifications include alterations to the snake segments as well elements that mimic scales on the underside of the snake body. Snake robot can be able to navigate in the narrow space using this developed locomotion algorithm. The developed algorithm surmount the others locomotion limitation in narrow space navigation

    Investigation of a novel type of locomotion for a snake robot suited for narrow spaces

    Get PDF
    In snake robot research, one of the most efficient forms of locomotion is the lateral undulation. However, lateral undulation, also known as serpentine locomotion, is ill-suited for narrow spaces, as the body of the snake must assume a certain amount of curvature to propel forward. Other types of motion such as the concertina or rectilinear may be suitable for narrow spaces, but is highly inefficient if the same type of locomotion is used even in open spaces. Though snakes naturally can interchange between the use of serpentine and concertina movement depending on the environment, snake robots based on lateral undulation to date are unable to function satisfactorily in narrow spaces. In undergoing concertina movement, the snake lifts part of its body off the ground to reduce friction; this cannot be reproduced in planar snake robots. To overcome the inability to adapt to narrow spaces, a novel type of a gait is introduced. With slight modifications to the members of the multi-link snake robot, the robot normally developed for lateral undulation is able to utilize the new gait to negotiate narrow spaces. The modifications include alterations to the snake segments as well elements that mimic scales on the underside of the snake body. Scales, often overlooked in locomotion research, play an important role in snake movement by increasing backward and lateral friction while minimizing it in forward direction. This concept provides the basis for movement in the proposed gait. Through kinematic studies the viability of this gait is illustrated

    Modified serpentine motion of the snake robot

    Get PDF
    The frequent occurrence of earthquake in New Zealand drives the research on snake robot for search and rescue operation because of its elongated body shape and locomotion mimicry of the biological snake. Both features are in favour of moving the snake robot through the earthquake disaster area. To facilitate the robot control and information gathering, it is usually required to install a camera on the snake robot head so that the video images of the disaster area can be send back to the human operator. This thesis presents the simulation of a snake robot performing serpentine motion. A camera is attached on the snake robot head to obtain the video image along the line of sight. A remote controller is incorporated to control the advancement based on the video images. This simulation reveals that the video images from the camera oscillate seriously because the camera on the snake robot head follows serpenoid curve during the locomotion. As a result, both robot control and information gathering are affected. A solution is proposed to stabilize the snake robot head and its camera by introducing a correction at the joint between the robot head and its body. This correction aligns the camera sight direction with the moving direction of the snake robot to yield satisfactory video images. Finally, an actual snake robot is implemented with a wireless camera installed on the head to show the effect of correction. Experiments are conducted to control the advancement of snake robot remotely just based on the video images obtained from the camera. This greatly improves the performance of the snake robot
    corecore