189 research outputs found

    A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans

    Get PDF
    The need for more effective environmental monitoring of the open and coastal ocean has recently led to notable advances in satellite ocean color technology and algorithm research. Satellite ocean color sensors' data are widely used for the detection, mapping and monitoring of phytoplankton blooms because earth observation provides a synoptic view of the ocean, both spatially and temporally. Algal blooms are indicators of marine ecosystem health; thus, their monitoring is a key component of effective management of coastal and oceanic resources. Since the late 1970s, a wide variety of operational ocean color satellite sensors and algorithms have been developed. The comprehensive review presented in this article captures the details of the progress and discusses the advantages and limitations of the algorithms used with the multi-spectral ocean color sensors CZCS, SeaWiFS, MODIS and MERIS. Present challenges include overcoming the severe limitation of these algorithms in coastal waters and refining detection limits in various oceanic and coastal environments. To understand the spatio-temporal patterns of algal blooms and their triggering factors, it is essential to consider the possible effects of environmental parameters, such as water temperature, turbidity, solar radiation and bathymetry. Hence, this review will also discuss the use of statistical techniques and additional datasets derived from ecosystem models or other satellite sensors to characterize further the factors triggering or limiting the development of algal blooms in coastal and open ocean waters

    Course Manual Winter School on Structure and Functions of Marine Ecosystem: Fisheries

    Get PDF
    Marine ecosystems comprises of diverse organisms and their ambient abiotic components in varied relationships leading to an ecosystem functioning. These relationships provides the services that are essential for marine organisms to sustain in the nature. The studies examining the structure and functioning of these relationships remains unclear and hence understanding and modelling of the ecological functioning is imperative in the context of the threats different ecosystem components are facing. The relationship between marine population and their environment is complex and is subjected to fluctuations which affects the bottom level of an ecosystem pyramid to higher trophic levels. Understanding the energy flow within the marine ecosystems with the help of primary to secondary producers and secondary consumers are potentially important when assessing such states and changes in these environments. Many of the physiological changes are known to affect the key functional group, ie. the species or group of organisms, which play an important role in the health of the ecosystem. In marine environment, phytoplankton are the main functional forms which serves as the base of marine food web. Any change in the phytoplankton community structure may lead to alteration in the composition, size and structure of the entire ecosystem. Hence, it is critical to understand how these effects may scale up to population, communities, and entire marine ecosystem. Such changes are difficult to predict, particularly when more than one trophic level is affected. The identification and quantification of indicators of changes in ecosystem functioning and the knowledge base generated will provide a suitable way of bridging issues related to a specific ecosystem. New and meaningful indicators, derived from our current understanding of marine ecosystem functioning, can be used for assessing the impact of these changes and can be used as an aid in promoting responsible fisheries in marine ecosystems. Phytoplantkon is an indicator determining the colour of open Ocean. In recent years, new technologies have emerged which involves multidisciplinary activities including biogeochemistry and its dynamics affecting higher trophic levels including fishery. The winter school proposed will provide the insights into background required for such an approach involving teaching the theory, practical, analysis and interpretation techniques in understanding the structure and functioning of marine ecosystems from ground truth measurements as well as from satellite remote sensing data. This is organized with the full funding support from Indian council of Agricultural Research (ICAR) New Delhi and the 25 participants who are attending this programme has been selected after scrutiny of their applications based on their bio-data. The participants are from different States across Indian subcontinent covering north, east, west and south. They are serving as academicians such as Professors/ scientists and in similar posts. The training will be a feather in their career and will enable them to do their academic programmes in a better manner. Selected participants will be scrutinized initially to understand their knowledge level and classes will be oriented based on this. In addition, all of them will be provided with an e-manual based on the classes. All selected participants are provided with their travel and accommodation grants. The faculty include the scientists who developed this technology, those who are practicing it and few user groups who do their research in related areas. The programme is coordinated by the Fishery Resources Assessment Division of CMFRI. This programme will generate a team of elite academicians who can contribute to sustainable management of marine ecosystem and they will further contribute to capacity building in the sector by training many more interested researchers in the years to come

    Water Resource Variability and Climate Change

    Get PDF
    Climate change affects global and regional water cycling, as well as surficial and subsurface water availability. These changes have increased the vulnerabilities of ecosystems and of human society. Understanding how climate change has affected water resource variability in the past and how climate change is leading to rapid changes in contemporary systems is of critical importance for sustainable development in different parts of the world. This Special Issue focuses on “Water Resource Variability and Climate Change” and aims to present a collection of articles addressing various aspects of water resource variability as well as how such variabilities are affected by changing climates. Potential topics include the reconstruction of historic moisture fluctuations, based on various proxies (such as tree rings, sediment cores, and landform features), the empirical monitoring of water variability based on field survey and remote sensing techniques, and the projection of future water cycling using numerical model simulations

    Do bacteria thrive when the ocean acidifies? Results from an off-­shore mesocosm study

    Get PDF
    Marine bacteria are the main consumers of the freshly produced organic matter. In order to meet their carbon demand, bacteria release hydrolytic extracellular enzymes that break down large polymers into small usable subunits. Accordingly, rates of enzymatic hydrolysis have a high potential to affect bacterial organic matter recycling and carbon turnover in the ocean. Many of these enzymatic processes were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years with so-far unknown consequences for microbial physiology, organic matter cycling and marine biogeochemistry. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine 25m-long Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging from ca. 280 to 3000 µatm by stepwise addition of CO2 saturated seawater. After CO2 addition, samples were taken every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During both phytoplankton blooms, more transparent exopolymer particles were formed in the high pCO2 mesocosms. The total and cell-specific activities of the protein-degrading enzyme leucine aminopeptidase were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean

    A study of aerosol indirect effects for cumulus clouds on a global scale

    Get PDF
    Using case study approach my investigation on aerosol's effects on fair weather cumulus clouds shows that not only can aerosol reduce cloud droplet sizes like in the case of stratiform clouds, but also they can increase droplet sizes. Atmospheric water vapor loading explains nearly 70% of variations in the dependence of droplet size on aerosol loading for cases over Eastern United States. This finding withstands serious scrutinizing under different scenarios of artificial correlations. A further study on a global scale indicates that only two areas, Eastern US and coastal region of Southeast China, show increasing trend of droplet size with aerosol loading. Results from other regions agree well with findings from past studies further ruling out artificial correlation. Relationship between aerosol loading and cloud liquid water path differs significantly for marine stratocumulus clouds and continental cumuli. Two possible explanations for our findings are confirmed by state-of-the-art cloud resolving model simulations. Deep convective clouds properties are shown to obey a few universally observable relationships. Their cloud top ice particle sizes are positively correlated with their vertical height and they are significantly affected by topography; their optical depth distributions have signature shapes associated with individual regions; their brightness temperature distributions show agreement with the fixed anvil temperature hypothesis. A conceptual model is proposed to understand cloud hydrometeor evolution and is used to study aerosol's influence. Anthropogenic pollution and smoke are shown to decrease ice particle sizes by delaying coalescence process and prolonging condensational growth. As a result cloud glaciation height is increased that possibly leads to invigoration of cloud development. Dust particles are demonstrated to increase ice particle sizes probably by acting as giant condensation nuclei or ice nuclei. Ice particle size vertical structure is shown to have a significant latitudinal variation. Far reaching implications of our results are envisioned for climate studies

    From coastal waters to the open ocean: Dimethylated sulfur compounds in the SW Baltic Sea, the SE Pacific Ocean, and the SW Indian Ocean

    Get PDF
    This thesis provides new perspectives which can improve our understanding of the temporal (coastal and shelf regions) and spatial (shelf and open ocean regions) distributions of the climate-relevant trace gas DMS and related sulfur compounds DMSP and DMSO. Accurately capturing their variabilities and the controlling factors in the water column is key to quantifying DMS emissions and estimating the impact of DMS on the climate and, in turn, how changing environmental conditions can impact DMS cycling and exchange in the future

    Full Proceedings

    Get PDF

    Inland Waters

    Get PDF
    Inland waters, lakes, rivers, and their connected wetlands are the most important and the most vulnerable sources of freshwater on the planet. The ecology of these systems includes biology as well as human populations and civilization. Inland waters and wetlands are highly susceptible to chemical and biological pollutants from natural or human sources, changes in watershed dynamics due to the establishment of dams and reservoirs, and land use changes from agriculture and industry. This book provides a comprehensive review of issues involving inland waters and discusses many worldwide inland water systems. The main topics of this text are water quality investigation, analyses of the ecology of inland water systems, remote sensing observation and numerical modeling methods, and biodiversity investigations

    Current status and long-term insights into the western Dead Sea groundwater system using multi-sensoral remote sensing

    Get PDF
    Arid regions, that have a terrestrial share of 30 %, heavily rely on groundwater for do-mestic, industrial and irrigation purposes. The reliance on groundwater has partly turned into a dependency in areas where the increasing population number and the expansion of irrigated agricultural areas demand more groundwater than is naturally replenished. Yet, spatial and temporal information on groundwater are often scarce induced by the facts that groundwater is given a low priority in many national budgets and numerous (semi-) arid regions in the world encompass large and inaccessible areas. Hence, there is an urgent need to provide low-cost alternatives that in parallel cover large spatial and temporal scales to gain information on the groundwater system. Remote sensing holds a tremendous potential to represent this alternative. The main objective of this thesis is the improvement of existing and the development of novel remote sensing applications to infer information on the scarce but indispensable resource groundwater at the example of the Dead Sea. The background of these de-velopments relies mainly on freely available satellite data sets. I investigate 1) the pos-sibility to infer potential groundwater flow-paths from digital elevation models, 2) the applicability of multi-temporal thermal satellite data to identify groundwater discharge locations, 3) the suitability of multi-temporal thermal satellite data to derive information on the long-term groundwater discharge behaviour, and 4) the differences of thermal data in terms of groundwater discharge between coarse-scaled satellite data and fine-scaled airborne data including a discharge quantification approach. 1) I develop a transparent, reproducible and objective semi-automatic approach us-ing a combined linear filtering and object based classification approach that bases on a medium resolution (30 m ground sampling distance) digital elevation model to extract lineaments. I demonstrate that the obtained lineaments have both, a hydrogeological and groundwater significance, that allow the derivation of potential groundwater flow-paths. These flow-paths match results of existing groundwater flow models remarkably well that validate the findings and shows the possibility to infer potential groundwater flow-paths from remote sensing data. 2) Thermal satellite data enable to identify groundwater discharge into open water bodies given a temperature contrast between groundwater and water body. Integrating a series of thermal data from different periods into a multi-temporal analysis accounts for the groundwater discharge intermittency and hence allows obtaining a representa-tive discharge picture. I analyse the constraints that arise with the multi-temporal anal-ysis (2000-2002) and show that ephemeral surface-runoff causes similar thermal anomalies as groundwater. To exclude surface-runoff influenced data I develop an au-tonomously operating method that facilitates the identification. I calculate on the re-maining surface-runoff uninfluenced data series different statistical measures on a per pixel basis to amplify groundwater discharge induced thermal anomalies. The results reveal that the range and standard deviation of the data series perform best in terms of anomaly amplification and spatial correspondence to in-situ determined spring dis-charge locations. I conclude on the reason that both mirror temperature variability that is stabilized and therefore smaller at areas where spatio-temporal constant groundwater discharge occurs. 3) The application of the before developed method on a thermal satellite data set spanning the years 2000 to 2011 enables to localise specific groundwater discharge sites and to semi-quantitatively analyse the temporal variability of the thermal anomalies (termed groundwater affected area - GAA). I identify 37 groundwater discharge sites along the entire Dead Sea coastline that refine the so far coarsely given spring areas to specific locations. All spatially match independent in-situ groundwater discharge observations and additionally indicate 15 so far unreported discharge sites. Comparing the variability of the GAA extents over time to recharge behaviour reveals analogous curve progressions with a time-shift of two years. This observation suggests that the thermally identified GAAs directly display the before only assumed groundwater discharge volume. This finding provides a serious alternative to monitor groundwater discharge over large temporal and spatial scales that is relevant for different scientific communities. From the results I furthermore conclude to observe the before only assumed and modelled groundwater discharge share from flushing of old brines during periods with an above average Dead Sea level drop. This observation implies the need to not only consider discharge from known terrestrial and submarine springs, but also from flushing of old-brines in order to calculate the total Dead Sea water budget. 4) I present a complementary airborne thermal data set recorded in 01/2011 over the north-western part of the Dead Sea coast. The higher spatial resolution allows to refine the satellite-based GAA to 72 specific groundwater discharge sites and even to specify the so far unknown abundance of submarine springs to six sites with a share of <10 % to the total groundwater discharge. A larger contribution stems from newly iden-tified seeping spring type (24 sites) where groundwater emerges diffusively either ter-restrial or submarine close to the land/water interface with a higher share to the total discharge than submarine springs provide. The major groundwater contribution origi-nates from the 42 identified terrestrial springs. For this spring type, I demonstrate that 93 % of the discharge volume can be modelled with a linear ordinary least square re-gression (R2=0.88) based on the thermal plume extents and in-situ measured discharge volumes from the Israel Hydrological Service. This result implies the possibility to determine discharge volumes at unmonitored sites along the Dead Sea coast as well that can provide a complete physically-based picture of groundwater discharge magni-tude to the Dead Sea for the first time.:1 Introduction 1.1 Remote sensing applications on groundwater 1.1.1 Classical aspects 1.1.2 Modern aspects 1.2 Motivation and main objectives 1.3 Why the western catchment of the Dead Sea? 1.4 Overview 2 The western catchment of the Dead Sea 2.1 Geological and Structural Overview 2.2 Groundwater system 2.3 Groundwater inputs 2.4 Dead Sea 3 Groundwater flow-paths 3.1 Prologue 4 Method development for groundwater discharge identification 4.1 Prologue 5 Localisation and temporal variability of groundwater discharge 5.1 Prologue 6 Qualitative and quantitative refinement of groundwater discharge 6.1 Prologue 7 Conclusion and Outlook 7.1 Main results and implications 7.2 Outlook References Appendi
    corecore